The disclosure relates to camera systems and, specifically, to a voice responsive camera system which dynamically tracks an active speaker.
For communication from remote locations, a video conference system is a convenient method. The video conference system provides both video and audio information from participants. Cameras employed in the video conference system are preferably able to frame and track active speakers during the conference. The most common way of doing this is by manual control of the cameras. However, this is inconvenient in practice.
Therefore, it is desired to provide a camera capable of providing automatic tracking of active speakers during a video conference.
Many aspects of the camera system can be better understood with reference to the accompanying drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the system. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Embodiments of the camera system will now be described in detail with reference to the drawings.
Referring to
The sound signal measured by the first sound sensors 13a or the second sound sensor 13b can be, for example, a time index representing a time of receipt of a sound wave generated from the acoustic source 20, such as travel time of the sound wave from the acoustic source 20 to the corresponding sound sensor. The sound wave is received and measured by the sound sensor (for example, 13a) to generate the corresponding sound signal. If the acoustic source 20 is substantially located equidistant between the two sound sensors 13a and 13b, the corresponding sound signals measured by the two sound sensors 13a, 13b are substantially the same in the time index. On the contrary, if the acoustic source 20 is located away from the central position, due to inequity between the distances to the two sound sensors 13a and 13b, the sound signals measured by the two sound sensors 13a, 13b corresponding to the same sound wave are different.
The processing unit 15 is configured for calculating a difference between the two time indices measured by the two sound sensors 13a and 13b. The driver 11 drives the supporter 12 to move the camera 14 according to the difference. The camera system 10 then begins measurement of another sound wave generated from the acoustic source 20 and originates new sound signals corresponding thereto. The driver 11 moves the camera 14 according to the difference between the sound signals. In this embodiment, the camera system 10 continues moving the camera 14 until the difference between the time indices measured by the two sound sensors 13a and 13b is zero. Accordingly, the camera 14 is aligned with the acoustic source 20.
Referring to
The sound signals measured by the sound sensors 13a, 13b in this embodiment are, for example, time indices which represent the time (t1 or t2 as shown in
Similarly, if the difference (t1−t2) is a positive, the supporter 12 is moved to bring the first sound sensor 13a closer to the acoustic source 20. The camera system 10 continues movement of the supporter 12 until the difference (t1−t2) is substantially zero. This facilitates the acoustic source 20 to be located in the central position and thus aligns the camera 14 with the acoustic source 20.
As the distance between the two sound sensors 13a, 13b increases, the difference (t1−t2) between the measured first and second sound signals becomes more notable. However, in this embodiment, in consideration of device size, the supporter 12 is 12˜20 centimeters in length.
Similarly, if the difference (e1−e2) is a positive, the supporter 12 is moved to bring the sound sensor 13a closer to the acoustic source 20 until the difference (t1−t2) is substantially zero. This places the acoustic source 20 in a central position and aligns the camera 14 with the acoustic source 20.
It is to be noted that application of the camera system is not limited to that disclosed, and is equally applicable in any other system requiring tracking function corresponding to sound, such as a security camera system, while remaining well within the scope of the disclosure.
It will be understood that the above particular embodiments are described and shown in the drawings by way of illustration only. The principles and features of the disclosure may be employed in various and numerous embodiments thereof without departing from the scope of the invention as claimed. The above-described embodiments illustrate the scope of the invention but do not restrict the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
200810302237.X | Jun 2008 | CN | national |