Volatile material dispenser

Information

  • Patent Grant
  • 8387827
  • Patent Number
    8,387,827
  • Date Filed
    Monday, March 24, 2008
    16 years ago
  • Date Issued
    Tuesday, March 5, 2013
    11 years ago
Abstract
A volatile material dispenser includes a drive unit adapted to be releasably mounted on a container having a tilt-activated valve stem. The drive unit is adapted to radially displace the tilt-activated valve stem. A flexible tube having a discharge end is fixedly held with respect to the container. The flexible tube is adapted to be in fluid communication with the tilt-activated valve stem.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

Not applicable


REFERENCE REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable


SEQUENTIAL LISTING

Not applicable


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present disclosure relates generally to a valve activation system for the release of a volatile material from a container, and more particularly to a valve activation system having a flexible tube adapted to dispense an aerosolized fluid from a container having a tilt-activated valve stem.


2. Description of the Background of the Invention


Aerosol containers are commonly used to store and dispense volatile materials such as air fresheners, deodorants, insecticides, germicides, decongestants, perfumes, and the like. The volatile material is stored under compression and typically in a liquid state within a container. A release valve on the container controls release of the volatile material contained under compression therein. The release valve typically has a valve stem that extends outwardly from the valve, wherein the valve is activated by the valve stem and the volatile material flows out of the container through the valve stem. In such a release valve, the valve is activated by a displacement of the valve stem with respect to a valve body. The valve stem may be displaced along a longitudinal axis of the valve stem, i.e., axially, or the valve stem may be tilted or displaced in a direction transverse to the longitudinal axis of the valve stem, i.e., radially.


Activation of a release valve may be accomplished by an automated system or manually. In manual activation, a user may adjust an activation force applied to the valve as required to achieve a desired release. Therefore, consideration of applied force requirements is generally less important to design of manually activated release valves. Conventional actuator mechanisms may include motor driven linkages that apply downward pressure to depress the nozzle and open the valve within the container. Typically, these actuator mechanisms are unwieldy and are not readily adaptable to be used in a stand-alone manner and a hand-held manner. Further, many of these actuator mechanisms exhibit a great deal of power consumption. Generally, valves having tilt-activated valve stems require less force for activation than valves having vertically activated valve stems. Release valves requiring smaller activation forces are advantageous because such valves require less power to activate. Decreased power consumption will allow for longer power source life times. Smaller activation forces are also advantageous for automated activation because smaller required forces allow for simpler, smaller, and/or less costly automated designs.


Existing automated valve activation systems for valves having tilt-activated valve stems are complex and may be difficult and expensive to manufacture. Complex systems including gears, springs, and precise interactions of a multitude of moving parts may also require more power to operate, have a greater tendency to break, and may be too large to fit within an overcap for placement on a volatile material container.


Another disadvantage of current valve activation systems for valves having tilt-activated valve stems is the limited ability to control the direction in which the volatile material is released. In an axially activated valve, the volatile material is released along the longitudinal axis of the valve stem no matter how far the valve stem is depressed axially. However, in a tilt-activated valve stem, the direction of release depends on how far the tilt-activated valve stem has been displaced radially and/or the circumferential direction of the radial displacement. This limited ability to control the direction of release limits the type of overcap that may be used with a tilt-activated valve stem. To prevent a portion of the released volatile material from being captured within an overcap, the overcap must include an aperture large enough to accommodate a full range of release directions.


SUMMARY OF THE INVENTION

According to one aspect of the invention, a volatile material dispenser comprises a drive unit adapted to be releasably mounted on a container having a tilt-activated valve stem. The drive unit is adapted to radially displace the tilt-activated valve stem. A flexible tube having a discharge end is fixedly held with respect to the container. The flexible tube is adapted to be in fluid communication with the tilt-activated valve stem.


According to another aspect of the invention, a dispensing system comprises a housing adapted to be releasably mounted on a container having a tilt-activated valve stem, wherein the housing includes a discharge orifice. A flexible tube is adapted to be in fluid communication with the tilt-activated valve stem and has a discharge end fixedly disposed proximate to the discharge orifice. A drive unit is disposed within the housing, wherein the drive unit includes a solenoid assembly adapted to radially displace the tilt-activated valve stem.


According to yet another aspect of the invention, a volatile material dispenser comprises a drive unit adapted to be mounted on a container. The drive unit is activated in response to a signal from at least a sensor to radially displace a tilt-activated valve stem of the container. A flexible tube has a discharge end fixedly held with respect to the container, wherein the flexible tube is adapted to be in fluid communication with the tilt-activated valve stem.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of one embodiment of a volatile material dispenser mounted on a fluid container;



FIG. 2 is a front elevational view of the volatile material dispenser of FIG. 1;



FIG. 3 is a rear elevational view of the volatile material dispenser of FIG. 1;



FIG. 4 is a right side elevational view of the volatile material dispenser of FIG. 1;



FIG. 5 is a left side elevational view of the volatile material dispenser of FIG. 1;



FIG. 6 is a top plan view of the volatile material dispenser of FIG. 1;



FIG. 7 is an right side elevational view partly in section taken along the lines 7-7 of FIG. 6 with structure above a platform of the volatile material dispenser omitted for purposes of clarity;



FIG. 8 is right side elevational view of the volatile material dispenser of FIG. 1 with mounting brackets and support components omitted for purposes of clarity;



FIG. 9 is a partial cross-sectional view of the volatile material dispenser taken generally along lines 9-9 of FIG. 7, wherein only the fluid container, a discharge conduit, and a flexible tube are shown for purposes of clarity;



FIG. 10 is a cross-sectional view of a guide member of the volatile material dispenser of FIG. 1 taken generally along the lines 10-10 of FIG. 6, wherein structure behind the plane of section has been omitted for purposes of clarity;



FIG. 11 is a front elevational view of a housing for the volatile material dispenser of FIG. 1;



FIG. 12 is a right side elevational view of the housing of FIG. 11;



FIG. 13 is a left and rear side isometric view of another embodiment of a housing for the volatile material dispenser of FIG. 1 similar to the ones shown in FIGS. 12 and 13, except the present embodiment includes an AC connector and is mounted on a container;



FIG. 14 is a cross-sectional view of a different embodiment showing an adjustable guide member taken along the lines 14-14 of FIG. 6, wherein structure behind the plane of section has been omitted for purposes of clarity;



FIG. 15 is a partial cross-sectional view of the adjustable guide member of FIG. 14 taken generally along the lines 15-15 of FIG. 14;



FIG. 16 is a right side isometric view of another embodiment of a volatile material dispenser including the adjustable guide member depicted in FIGS. 14 and 15;



FIG. 17 is a front elevational view of a housing for the volatile material dispenser of FIG. 16 including a slot and an aperture to accommodate a sensor;



FIG. 18 is a right side elevational view of the housing of FIG. 17 further depicting a depressible panel; and



FIG. 19 is a timing diagram illustrating the operation of the volatile material dispensers of FIGS. 1-18 according to a first operational sequence.





Other aspects and advantages of the present invention will become apparent upon consideration of the following detailed description, wherein similar structures have similar reference numerals.


DETAILED DESCRIPTION


FIGS. 1-7 depict a volatile material dispenser 50 adapted to be mounted on a container 52 (see FIGS. 1-5 and 7). The volatile material dispenser 50 discharges fluid from the container 52 upon the occurrence of a particular condition. The condition could be the manual activation of the volatile material dispenser 50 or the automatic activation of the volatile material dispenser 50 in response to an electrical signal from a timer or a sensor. The fluid discharged may be a fragrance or insecticide disposed within a carrier liquid, a deodorizing liquid, or the like. The fluid may also comprise other actives, such as sanitizers, air fresheners, odor eliminators, mold or mildew inhibitors, insect repellents, and/or the like, and/or that have aromatherapeutic properties. The fluid alternatively comprises any fluid known to those skilled in the art that may be dispensed from the container 52. The volatile material dispenser 50 is therefore adapted to dispense any number of different fluid formulations.


The volatile material dispenser 50 includes a platform 54 that is disposed on a cylindrical section 56. As shown in FIG. 7, the cylindrical section 56 is shaped to snap fit onto an upper end 58 of the container 52. FIG. 7 shows that the present embodiment includes an annular protrusion 60 projecting inwardly from an inner circumference 62 of the cylindrical section 56. A distal end 64 of the annular protrusion 60 forms a snap fit with an undercut 66 of the container 52 disposed between an upper mounting cup 68 and a lower mounting cup 70 on the upper end 58 of the container 52. The container 52 may be an aerosol container of any size and volume known to those skilled in the art.


Referring to FIG. 7, an aperture 72 is provided in the platform 54. The aperture 72 accommodates an inlet portion 74 of a discharge conduit 76, as shown in FIGS. 7-9. As best seen in FIG. 9, the discharge conduit 76 includes a transverse medial portion 78 that connects the inlet portion 74 to an outlet portion 80. A continuous aperture 82 is disposed through the discharge conduit 76 from a base end 84 to an outlet end 86. A valve assembly (not shown) within the container 52 includes a tilt-activated valve stem 88 extending upwardly through a collar 90 disposed on an end surface 92 of the container 52. The base end 84 of the discharge conduit 76 is attached, e.g., by a press fit, over the tilt-activated valve stem 88. The continuous aperture 82 is in fluid communication with a bore 94 disposed through the tilt-activated valve stem 88. As seen in FIGS. 7 and 8, the discharge conduit 76 further includes a flange 96 that extends radially from the inlet portion 74 thereof. The tilt-activated valve stem 88 may be of the type described in Van der Heijden U.S. Pat. No. 4,064,782, which is herein incorporated by reference in its entirety.


A flexible tube 98 includes an inlet end 100 that is attached to the outlet end 86 of the discharge conduit 76 as shown in FIGS. 1, 3, 4, and 9. The flexible tube 98 also includes a discharge end 101 as shown in FIGS. 1, 2, 4-6, 15, and 16. In the present embodiment, a sleeve 102 is attached over the flexible tube 98 adjacent the discharge end 101 thereof as shown in FIGS. 2, 6, 10, 14, and 15, e.g., by a press fit, an adhesive, a fastener, or by any other means of attachment. A guide member 104, such as shown in FIGS. 2, 3, 6, and 10, fixedly holds the sleeve 102 to immobilize the discharge end 101 of the flexible tube 98 with respect to the container 52. The guide member 104 may be attached proximate to the discharge end 101 of the flexible tube 98 as shown in FIG. 10, e.g., by a press fit therearound, by an adhesive, by a fastener, or by any means of attachment known to one having skill in the art. Further, it is contemplated in other embodiments that the guide member 104 may directly hold the flexible tube 98 by removing the sleeve 102. In this embodiment, the guide member 104 is attached between a pair of vertically extending battery holders 106 as shown in FIGS. 1-3, 6, and 10.


The flexible tube 98 has a continuous bore 108 therethrough as shown in FIGS. 2, 6, 9, 10, 14, and 15 that provides fluid communication between the inlet end 100 and the discharge end 101 thereof. The tube may have an outer surface that is smooth or crenellated and that has a cross section that is circular, e.g., as depicted in FIG. 14, or that is pentagonal, hexagonal, elliptical, triangular, square, octagonal, or any other shape known to one having ordinary skill in the art. Likewise, the bore 108 through the tube 98 may have an inner surface that is smooth or crenellated and may have any desired cross section, e.g., circular, elliptical, square, triangular, pentagonal, hexagonal, octagonal, or any other shape that is the same or different than the cross section of the outer surface, as known to one having ordinary skill in the art. Further, the cross sections of the outer surface of the tube 98 and the inner surface of the bore 108 may each be uniform or variable between the inlet end 100 and the discharge end 101 of the tube 98.


In a non-active state, the tilt-activated valve stem 88 is coincident with a longitudinal axis 110 of the container 52 as shown in FIG. 7. A drive unit, e.g., a solenoid assembly 112 driving a plunger 114, as shown in FIG. 8, engages the flange 96 on the discharge conduit 76 when activated. A representative solenoid assembly, for example, is a Ledex® Low Profile Battery Operated Linear Solenoid, size number 1ECM, model number 282342-025, which is available from Johnson Electric, Industry Products Group, Vandalia, Ohio. The 1ECM-282342-025 solenoid weighs 42.5 grams, is 25.4 mm in diameter and 13.5 mm tall. When operating on a 50% maximum duty cycle, the 1ECM-282342-025 solenoid nominally requires 2.9 volts DC, generates 2.2 Newtons (0.49 pounds) of force through a nominal stroke of 2 mm, and can remain energized for a maximum of 162 seconds.


As shown in FIG. 8, downward extension of the plunger 114 in a direction parallel with the longitudinal axis 110 causes downward displacement of the flange 96. The discharge conduit 76 is sufficiently rigid such that downward displacement of the flange 96 causes the base end 84 of the discharge conduit 76 to be displaced in a radial direction 116 away from the longitudinal axis 110, whereupon the tilt-activated valve stem 88 disposed within the base end 84 is also displaced in a radial direction 116 away from the longitudinal axis 110. When a distal end of the tilt-activated valve stem 88 is displaced radially to a sufficient degree, i.e., into an operable position, the valve assembly within the container 52 is opened and the contents of the container 52 are discharged through the bore 94 of the tilt-activated valve stem 88. In the terminology of the axisymmetric coordinate system used herein, a radial displacement includes any displacement of the distal end of the tilt-activated valve stem 88 away from the longitudinal axis 110. Such a radial displacement may therefore be characterized as a lateral or a transverse displacement of the distal end of the tilt-activated valve stem 88. Release of fluid via the volatile material dispenser 50 through the tilt-activated valve stem 88 may be problematic in prior art devices due to the lack of control of a specific direction of release, as mentioned hereinabove. However, the inclusion of the flexible tube 98 attached to the discharge conduit 76 allows the fluid to be specifically directed in the present embodiment because the discharge end 101 of the flexible tube 98 is fixedly held with respect to the container 52 by the guide member 104.


The contents of the container 52 may be discharged in a continuous or metered dose. Further, the discharging of the contents of the container 52 may be effected in any number of ways, e.g., a discharge may comprise a partial metered dose or multiple consecutive discharges. It is also contemplated that any appropriate drive assembly having a capacity to downwardly displace the flange 96 as is known to one skilled in the art may be used to radially displace the tilt-activated valve stem 88. For example, it is contemplated that the drive assemblies shown in application Ser. Nos. 11/801,554 and 11/893,456, which are incorporated by reference herein in their entirety, may be adapted to work with the presently described embodiments.


Referring now to FIGS. 1-6, the solenoid assembly 112 is attached to the platform 54 by an attachment wall 118. In other embodiments, the solenoid assembly 112 may be attached to the platform 54 by support screws (not shown) extending from the solenoid assembly 112 or by other attachment mechanisms known to one having skill in the art. A pair of support pillars 120 extends upwardly from the platform 54. A printed circuit board 122 is held between the support pillars 120 and above the solenoid assembly 112. The printed circuit board 122 includes a light emitting diode (LED) 124 affixed to a front side thereof and extending upwardly therefrom. A linear switch assembly 126 is attached to a rear side of the printed circuit board 122. A positioning finger 128 extends from a rectangular slot 130 in the linear switch assembly 126.


As shown in FIGS. 11-13, a housing 132 has a generally cylindrical shape and includes a lower portion 134, a medial portion 136 and an upper portion 138. The lower portion 134 includes an inwardly projecting annular lip (not shown) at a bottom end thereof. The annular lip is adapted to snap fit over a ridge 140 (see FIGS. 1-8) extending outwardly from an outer circumference of the container 52 to allow the housing 132 to be mounted on the container 52, such as shown in FIG. 13. The medial portion 136 of the housing 132 has a slightly smaller diameter than the lower portion 134 and is connected thereto by a lower tapering shoulder 142. An upper tapering shoulder 144 connects the medial portion 136 to the upper portion 138, which has a diameter approximately equal to that of the lower portion 134.


The housing 132 includes a back side 148 and a front side 150. The upper portion 138 includes a convex top surface 152 that generally slopes upwardly from the back side 148 to the front side 150. A circular aperture 154 is disposed through the top surface 152 to accommodate the LED 124 and a rectangular aperture 156 is disposed through the top surface 152 to accommodate the linear switch assembly 126. The front side 150 of the upper portion 138 includes an aperture 158 disposed therethrough for accommodation of the discharge end 101 of the flexible tube 98.


As discussed hereinabove, use of the tilt-activated valve stem 88 in prior art devices is problematic due to an inherent lack of control of a specific direction of release of the fluid. As a result, fluid released through the tilt-activated valve stem 88 may tend to inappropriately spray into the housing 132, thereby undesirably coating the inner surfaces of the housing 132 instead of being directed to the environment. Inclusion of the flexible tube 98 prevents fluid released through the tilt-activated valve stem 88 from spraying into the inside of the housing 132. The flexible tube 98 allows the aperture 158 to be positioned on the housing 132 in a desired location to allow convenient and accurate directional spraying of the fluid from the volatile material dispenser 50. Further, the flexible tube 98 allows the aperture 158 to have a size or a shape without regard to directional spraying limitations of the tilt-activated valve stem 88.


The housing 132 may be retained on the container 52 in any manner known by those skilled in the art. For example, the retention structures described in Balfanz U.S. Pat. No. 4,133,408, Demarest U.S. Pat. No. 5,027,982, and Demarest et al. U.S. Pat. No. 5,609,605, which are herein incorporated by reference in their entirety, may be used in connection with any of the embodiments described herein. The housing 132 may also be integral with and/or connectable to the volatile material dispenser 50, for example via a connection at the cylindrical section 56 thereof. Illustratively, the housing 132 may include an annular lip (not shown) projecting inwardly from an inner circumferential surface thereof. The annular lip may be adapted to snap over a bottom edge of the cylindrical section 56 or a corresponding outwardly protruding lip (not shown) on an outer circumferential surface of the cylindrical section 56. The housing may thus be retained directly on the volatile material dispenser 50 in addition to, or instead of, being retained on the container 52. Further, any of the aesthetic aspects of the housing 132 described herein may be modified in any manner known by one skilled in the art, e.g., the medial portion 136 and the lower and upper tapering shoulders 142, 144 could be eliminated or the housing 132 could be provided with a different shape.


Each of the vertically extending battery holders 106 is adapted to retain a battery, e.g., a size AA or AAA battery, therein to provide a D.C. power source to the drive unit. In some embodiments, the batteries may be interchangeable with other power sources. For example, the batteries may be replaced by a rechargeable Nickel-Cadmium battery or battery pack (not shown) having an electrical lead 160 that may be used to connect the battery pack to an A.C. power adapter 162 having an appropriate power transformer and A.C./D.C. converter as known to those of skill in the art (see FIG. 13).


In another embodiment, the discharge end 101 of the flexible tube 98 is fixedly held with respect to the container 52 by an adjustable guide member 164, e.g., such as the one shown in FIGS. 14 and 15. In this embodiment, a volatile material dispenser 166 (see FIG. 16) includes a pair of vertically extending battery holders 168, each including a groove 170 running vertically along inwardly facing edges 172 thereof. The adjustable guide member 164 includes a pair of end brackets 174. Each end bracket 174 has a support body 176 and a tongue 178 extending from the support body 176 and sized to snugly fit within one of the grooves 170. Each end bracket 174 also includes a circular slot 180 in a side of the end bracket 174 opposite from the tongue 178. The adjustable guide member 164 also includes a central support member 182 that has a circular arm 184 projecting laterally from each side thereof along an axis of rotation 186. Each circular arm 184 is snugly disposed within one of the circular slots 180. The central support member 182 may be attached proximate to the discharge end 101 of the flexible tube 98, e.g., by a press fit therearound as shown in FIG. 14, by an adhesive, by a fastener, or by any means of attachment known to one having skill in the art.


The end brackets 174 may be slid up or down along the grooves 170 and the circular arms 184 may be rotatably adjusted within the circular slots 180. By such selective adjustment of the adjustable guide member 164, a user may select the orientation and/or the positioning of the discharge end 101 of the flexible tube 98 with respect to the container 52. As shown in FIG. 16, the adjustable guide member 164 allows the discharge end 101 of the flexible tube 98 to be fixedly held in a first position 188. The discharge end 101 of the flexible tube 98 may also be downwardly translated to be fixedly held in a second position 190 or may be upwardly translated and rotatably reoriented to be fixedly held in a third position 192. Indeed, the adjustable guide member 164 allows a user to select any combined rotational orientation and vertical position of the discharge end 101 of the flexible tube 98 about the axis 186 and along the grooves 170, respectively.


In a further embodiment, a volatile material dispenser similar to the embodiment shown in FIG. 16 includes a sensor (not shown) disposed on the platform 54 and facing radially away from the longitudinal axis 110. The sensor is in electronic communication with the printed circuit board 122 as will be further described in detail below. A housing 198 for the volatile material dispenser is shown in FIGS. 17 and 18. The housing 198 is generally similar to the housing 132 described hereinabove with regard to FIGS. 11 and 12 except for the following differences. A discharge orifice or slot 200 is disposed through the upper portion 138 and the medial portion 136 along the front side 150 of the housing 198. The housing 198 also includes an aperture 202 disposed through the front side 150 of the lower portion 134. When the housing 198 is mounted on the container 52 over the volatile material dispenser a sensor is disposed in the aperture 202 to allow sensing of the environment. Further, the discharge end 101 of the flexible tube 98 may be adjusted by the adjustable guide member 164 to be disposed anywhere within the slot 200.


In yet another embodiment, a volatile material dispenser similar to the embodiment shown in FIG. 16 includes a normally open switch (not shown) having a manual pushbutton or other mechanical actuator known to one having skill in the art mounted on a base. The normally open switch may be electronically connected to the printed circuit board 122 to trigger activation of the drive unit. Alternatively, the manual pushbutton may be mechanically linked to the discharge conduit 76 by a mechanical linkage known to one skilled in the art such that depression of the manual pushbutton radially displaces the tilt-activated valve stem 88. A depressible panel 214 on the back side 148 of the medial portion 136 of the housing 198, as shown in FIG. 18, may be adapted to contact and depress the manual pushbutton when the housing 198 is mounted to the container 52. The depressible panel 214 may be a living hinge or may be inwardly depressible in another way as known to one skilled in the art. The depressible panel 214 may also include a finger depression 216 to facilitate ease of use.



FIG. 19 depicts a timing diagram that illustrates the operation of any of the volatile material dispensers hereinabove described during an in use condition. Initially, the volatile material dispenser, for example the volatile material dispenser 166, is energized by moving the positioning finger 128 of the linear switch assembly 126 from an “OFF” position 218 to one of four operating modes 220, 222, 224, and 226, as shown in FIG. 3, whereupon a control circuit (not shown), which may be etched on the printed circuit board 122, causes the volatile material dispenser 166 to enter a startup delay period. Each of the four operating modes 220, 222, 224, and 226 corresponds to a predetermined sleep period between consecutive spraying periods. For example, the first operating mode 220 may correspond to a five minute sleep period, the second operating mode 222 may correspond to a seven and a half minute sleep period, the third operating mode 224 may correspond to a fifteen minute sleep period, and the fourth operating mode 226 may correspond to a thirty minute sleep period. For the present example, we shall assume the first operating mode 220 has been chosen. Upon completion of the startup delay period, the solenoid assembly 112 is activated to discharge fluid from the container 52 during a first spraying period. The startup delay period is preferably about three seconds long, and the spraying period is typically about 98 milliseconds long. Upon completion of the first spraying period, the volatile material dispenser 166 enters a first sleep period that lasts 5 minutes. Upon expiration of the first sleep period the solenoid assembly 112 is activated to discharge fluid during a second spraying period. Thereafter, the volatile material dispenser 166 enters a second sleep period that lasts for 5 minutes. In the present example, the second sleep period is interrupted by the manual activation of the volatile material dispenser 166, whereupon fluid is dispensed during a third spraying period. Automatic operation thereafter continues with alternating sleep and spraying periods. At any time during a sleep period, the user may manually activate the volatile material dispenser 166 for a selectable or fixed period of time by depressing a manual pushbutton that may be mounted thereto as described above. Upon termination of the manual spraying operation, the volatile material dispenser 166 completes the pending sleep period. Thereafter, a spraying operation is undertaken.


In another embodiment, the linear switch assembly 126 may have a continuous range of settings instead of the four distinct operating modes 220, 222, 224, and 226 described above. In such an embodiment, the linear switch assembly 126 may be provided with a switch mechanism such as a dial (not shown), that provides for continuous user variation of the spraying period and/or the sleep period between continuous spray and sleep periods lasting several hours or days. In a further embodiment, the linear switch assembly 126 may be replaced and/or supplemented by a sensor, e.g., a photocell light sensor, which may be used as a motion detector. Alternatively, more than one sensor may be provided in lieu of the linear switch assembly 126 or in combination with same. It is anticipated that one skilled in the art may provide any type of sensor either alone or in combination with the linear switch assembly 126 and/or other sensors to meet the needs of a user. In one particular embodiment (not shown), e.g., the linear switch assembly 126 and a sensor are both provided in a volatile material dispenser. In such an embodiment, a user may choose to use the timer-based linear switch assembly 126 to automatically operate the solenoid assembly 112, or the user may choose to use the sensor to detect a given event prior to activating the solenoid assembly 112. Alternatively, such a volatile material dispenser may operate in a timer and sensor based mode of operation concurrently.


As noted above, the sensor may be a photocell light sensor. The photocell light sensor collects ambient light and allows the control circuit to detect any changes in the intensity thereof. Filtering of the photocell output is undertaken by the control circuit. If the control circuit determines that a threshold light condition has been reached, e.g., a predetermined level of change in light intensity, the control circuit develops a signal to activate the solenoid assembly 112. For example, if a volatile material dispenser including the photocell light sensor is placed in a lit bathroom, a person walking past the sensor may block a sufficient amount of ambient light from reaching the sensor to cause the control circuit to activate the solenoid assembly 112 and discharge a fluid. Further, other motion detectors known to those of skill in the art may also be utilized, e.g., a passive infrared or pyro-electric motion sensor, an infrared reflective motion sensor, an ultrasonic motion sensor, or a radar or microwave radio motion sensor.


The LED 124 is illuminated when the volatile material dispenser 166 is in an operative state. The LED 124 blinks intermittently once every fifteen seconds during the sleep period. Depending on the selected operating mode, the blinking frequency of the LED 124 begins to increase as a spraying period becomes imminent. The more frequent illumination of the LED 124 serves as a visual indication that the volatile material dispenser 166 is about to discharge fluid contents into the atmosphere.


Any of the embodiments described herein may be modified to include any of the structures or methodologies disclosed in connection with different embodiments. Further, the present disclosure is not limited to aerosol containers of the type specifically shown. Still further, the volatile material dispensers of any of the embodiments disclosed herein may be modified to work with any type of fluid container having a tilt-activated valve stem.


INDUSTRIAL APPLICABILITY

Aerosol dispensers are commonly used to dispense volatile materials such as air fresheners, deodorants, insecticides, germicides, decongestants, perfumes, and the like, that are stored within aerosol containers. Automated valve activation systems for aerosol containers allow the contents thereof to be released without human interaction, for example, according to a predetermined time schedule. Tilt-activated valve stems for aerosol container release valves typically require less force to operate than vertically activated valve stems, but may lack precise directional control. A system for automatically activating a tilt-activated valve stem providing selective directional control is presented. The system may be installed in a typical overcap for use with ordinary tilt-activated aerosol containers, resulting in an improvement in utility of the aerosol container.


Numerous modifications to the present invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is presented for the purpose of enabling those skilled in the art to make and use the invention and to teach the best mode of carrying out same. The exclusive rights to all modifications which come within the scope of the appended claims are reserved.

Claims
  • 1. A volatile material dispenser, comprising: a housing adapted to be releasably mounted on an upper end of a container having a tilt-activated valve stem, wherein an electronic drive unit disposed within the housing includes a plunger adapted to radially displace the tilt-activated valve stem; anda flexible tube substantially provided within the housing and having a discharge end fixedly held with respect to the container, wherein the flexible tube is adapted to be in fluid communication with the tilt-activated valve stem.
  • 2. The volatile material dispenser of claim 1 further comprising a discharge conduit for disposition between an inlet end of the flexible tube and a tilt-activated valve stem to provide fluid communication between the tilt-activated valve stein and the inlet end of the flexible tube.
  • 3. The volatile material dispenser of claim 2, wherein the discharge conduit comprises an inlet portion, an outlet portion disposed parallel to the inlet portion, and a transverse medial portion connecting the inlet portion and the outlet portion.
  • 4. The volatile material dispenser of claim 2, wherein the discharge conduit includes a flange extending radially therefrom.
  • 5. The volatile material dispenser of claim 4, wherein the plunger is adapted to engage and axially displace the flange of the discharge conduit to radially displace a tilt-activated valve stern.
  • 6. The volatile material dispenser of claim 1, wherein the discharge end of the flexible tube is fixedly held with respect to a container by a guide member allowing adjustable orientation and positioning of the discharge end with respect to the container.
  • 7. The volatile material dispenser of claim 6, wherein the discharge end of the flexible tube is oriented radially away from a longitudinal axis of a container.
  • 8. The volatile material dispenser of claim 6, wherein the discharge end of the flexible tube is held axially parallel to a longitudinal axis of a container.
  • 9. The volatile material dispenser of claim 1 further including a container having a tilt-activated valve stem.
  • 10. A volatile material dispenser, comprising: a housing adapted to be releasably mounted on an upper end of a container having a tilt-activated valve stem, wherein an electronic drive unit disposed within the housing is adapted to radially displace the tilt-activated valve stem;a flexible tube having a discharge end fixedly held with respect to the container, wherein the flexible tube is adapted to be in fluid communication with the tilt-activated valve stem; anda discharge conduit for disposition between an inlet end of the flexible tube and a tilt-activated valve stem to provide fluid communication between the tilt-activated valve stem and the inlet end of the flexible tube, wherein the discharge conduit includes a flange extending radially therefrom,wherein the electronic drive unit includes a plunger adapted to engage and axially displace the flange of the discharge conduit to radially displace the tilt-activated valve stem.
  • 11. A dispenser, comprising: a housing having an electronic drive unit disposed therein, wherein the electronic drive unit is adapted to radially displace a tilt-activated valve stem of a container; anda flexible tube substantially provided within the housing and having a discharge end fixedly held with respect to the container, wherein the flexible tube is adapted to be in fluid communication with the tilt-activated valve stem.
  • 12. The dispenser of claim 11 further comprising a discharge conduit for disposition between an inlet end of the flexible tube and a tilt-activated valve stem to provide fluid communication between the tilt-activated valve stein and the inlet end of the flexible tube.
  • 13. The dispenser of claim 12, wherein the discharge conduit includes a flange extending radially therefrom.
  • 14. The dispenser of claim 13, wherein the discharge conduit comprises an inlet portion, an outlet portion disposed parallel to the inlet portion, and a transverse medial portion connecting the inlet portion and the outlet portion.
  • 15. The dispenser of claim 14, wherein the electronic drive unit includes a plunger adapted to engage and axially displace the flange of the discharge conduit to radially displace a tilt-activated valve stem.
  • 16. The dispenser of claim 11, wherein the electronic drive unit is adapted to be releasably retained on a container.
US Referenced Citations (288)
Number Name Date Kind
2506449 Greenwood May 1950 A
2608319 Petry Aug 1952 A
2613108 Kraus Oct 1952 A
2662669 Schmidt Dec 1953 A
2763406 Countryman Sep 1956 A
2868419 Casey, Jr. Jan 1959 A
2912144 Luddecke Nov 1959 A
2928573 Edelstein Mar 1960 A
2948439 Glover et al. Aug 1960 A
3018056 Montgomery Jan 1962 A
3018929 Obst Jan 1962 A
3023427 Behringer Mar 1962 A
3028054 Beard, Jr. Apr 1962 A
3050281 Budwig Aug 1962 A
3088682 Venus, Jr. May 1963 A
3115277 Montague, Jr. Dec 1963 A
3127060 Vosbikian et al. Mar 1964 A
3154224 Wakeman Oct 1964 A
3155290 Venus, Jr. Nov 1964 A
3161196 Berkow Dec 1964 A
3165238 Wiley Jan 1965 A
3180532 Michel Apr 1965 A
3185356 Venus, Jr. May 1965 A
3199732 Strachan Aug 1965 A
3228609 Edelstein et al. Jan 1966 A
3240389 Genua Mar 1966 A
3269602 Weber, III Aug 1966 A
3270925 Obst Sep 1966 A
3273610 Frost Sep 1966 A
3289886 Goldsholl et al. Dec 1966 A
3305134 Carmichael et al. Feb 1967 A
3326418 Kropp Jun 1967 A
3329314 Kolodziej Jul 1967 A
3368717 Weber, III Feb 1968 A
3398864 Kolodziej Aug 1968 A
3411670 Mangel Nov 1968 A
3419189 Iketani Dec 1968 A
3455485 Crownover Jul 1969 A
3477613 Mangel Nov 1969 A
3497108 Mason Feb 1970 A
3497110 Bombero et al. Feb 1970 A
3515316 Green Jun 1970 A
3540624 Green Nov 1970 A
3542248 Mangel Nov 1970 A
3543122 Klebanoff et al. Nov 1970 A
3584766 Hart et al. Jun 1971 A
3589562 Buck Jun 1971 A
3589563 Carragan et al. Jun 1971 A
3591058 Johnston Jul 1971 A
3617214 Dolac Nov 1971 A
3620023 Schmid Nov 1971 A
3627176 Sailors Dec 1971 A
3632020 Nixon, Jr. et al. Jan 1972 A
3643836 Hunt Feb 1972 A
3658209 Freeman et al. Apr 1972 A
3664548 Broderick May 1972 A
3666144 Winder May 1972 A
3677441 Nixon, Jr. et al. Jul 1972 A
3690519 Wassilieff Sep 1972 A
3722749 Ishida Mar 1973 A
3726437 Siegel Apr 1973 A
3732509 Florant et al. May 1973 A
3739944 Rogerson Jun 1973 A
3756465 Meshberg Sep 1973 A
3794216 Buck Feb 1974 A
3817429 Smrt Jun 1974 A
3870274 Broe Mar 1975 A
3885712 Libit May 1975 A
3929259 Fegley et al. Dec 1975 A
3952916 Phillips Apr 1976 A
3968905 Pelton Jul 1976 A
3972447 Fegley Aug 1976 A
3974941 Mettler Aug 1976 A
3980205 Smart Sep 1976 A
4004550 White et al. Jan 1977 A
4006844 Corris Feb 1977 A
4063664 Meetze, Jr. Dec 1977 A
4064573 Calderone Dec 1977 A
4068575 Difley et al. Jan 1978 A
4068780 Fegley Jan 1978 A
4077542 Petterson Mar 1978 A
4096974 Haber et al. Jun 1978 A
4184612 Freyre Jan 1980 A
4235373 Clark Nov 1980 A
4238055 Staar Dec 1980 A
4275821 Lanno et al. Jun 1981 A
4358860 Church Nov 1982 A
4396152 Abplanalp Aug 1983 A
4415797 Choustoulakis Nov 1983 A
4483466 Gutierrez Nov 1984 A
4544086 Hill et al. Oct 1985 A
4625342 Gangnath et al. Dec 1986 A
4658985 Madsen et al. Apr 1987 A
4877989 Drews et al. Oct 1989 A
4967935 Celest Nov 1990 A
4989755 Shiau Feb 1991 A
4993570 Julian et al. Feb 1991 A
5012961 Madsen et al. May 1991 A
5014881 Andris May 1991 A
5018963 Diederich May 1991 A
5025962 Renfro Jun 1991 A
5029729 Madsen et al. Jul 1991 A
5038972 Muderlak et al. Aug 1991 A
5055822 Campbell et al. Oct 1991 A
5098291 Curtis et al. Mar 1992 A
5134961 Giles et al. Aug 1992 A
5137180 Kieras Aug 1992 A
5154323 Query et al. Oct 1992 A
5198157 Bechet Mar 1993 A
5221025 Privas Jun 1993 A
5249718 Muderlak Oct 1993 A
5263616 Abplanalp Nov 1993 A
5297988 Nishino et al. Mar 1994 A
5337926 Drobish et al. Aug 1994 A
5337929 van der Heijden Aug 1994 A
5342584 Fritz et al. Aug 1994 A
5353744 Custer Oct 1994 A
5364028 Wozniak Nov 1994 A
5383580 Winder Jan 1995 A
RE34847 Muderlak et al. Feb 1995 E
5392768 Johansson et al. Feb 1995 A
5397028 Jesadanont Mar 1995 A
5445324 Berry et al. Aug 1995 A
5447273 Wozniak Sep 1995 A
5447277 Schlüter et al. Sep 1995 A
5449117 Muderlak et al. Sep 1995 A
5489047 Winder Feb 1996 A
5503303 LaWare et al. Apr 1996 A
5522722 Diederich Jun 1996 A
5531344 Winner Jul 1996 A
5540359 Gobbel Jul 1996 A
5542605 Campau Aug 1996 A
5549228 Brown Aug 1996 A
5588565 Miller Dec 1996 A
5601235 Booker et al. Feb 1997 A
5622162 Johansson et al. Apr 1997 A
5673825 Chen Oct 1997 A
5676283 Wang Oct 1997 A
5685456 Goldstein Nov 1997 A
5695091 Winings et al. Dec 1997 A
5702036 Ferrara, Jr. Dec 1997 A
5743251 Howell et al. Apr 1998 A
5772074 Dial et al. Jun 1998 A
5787947 Hertsgaard Aug 1998 A
5791524 Demarest Aug 1998 A
5810265 Cornelius et al. Sep 1998 A
5823390 Muderlak et al. Oct 1998 A
5842602 Pierpoint Dec 1998 A
5853129 Spitz Dec 1998 A
5884808 Muderlak et al. Mar 1999 A
5908140 Muderlak et al. Jun 1999 A
5922247 Shoham et al. Jul 1999 A
5924597 Lynn Jul 1999 A
5938076 Ganzeboom Aug 1999 A
5964403 Miller et al. Oct 1999 A
6000658 McCall, Jr. Dec 1999 A
6003727 Marshall Dec 1999 A
6006957 Kunesh Dec 1999 A
6036108 Chen Mar 2000 A
6039212 Singh Mar 2000 A
6089410 Ponton Jul 2000 A
6145712 Benoist Nov 2000 A
6182904 Ulczynski et al. Feb 2001 B1
6216925 Garon Apr 2001 B1
6220293 Rashidi Apr 2001 B1
6237812 Fukada May 2001 B1
6249717 Nicholson et al. Jun 2001 B1
6254065 Ehrensperger et al. Jul 2001 B1
6260739 Hsiao Jul 2001 B1
6267297 Contadini et al. Jul 2001 B1
6276574 Smrt Aug 2001 B1
6293442 Mollayan Sep 2001 B1
6293474 Helf et al. Sep 2001 B1
6321742 Schmidt et al. Nov 2001 B1
6338424 Nakamura et al. Jan 2002 B2
6343714 Tichenor Feb 2002 B1
6394310 Muderlak et al. May 2002 B1
6409093 Ulczynski et al. Jun 2002 B2
6419122 Chown Jul 2002 B1
6454185 Fuchs Sep 2002 B2
6478199 Shanklin et al. Nov 2002 B1
6510561 Hammond et al. Jan 2003 B1
6517009 Yahav Feb 2003 B2
6533141 Petterson et al. Mar 2003 B1
6540155 Yahav Apr 2003 B1
6554203 Hess et al. Apr 2003 B2
6567613 Rymer May 2003 B2
6588627 Petterson et al. Jul 2003 B2
6612464 Petterson et al. Sep 2003 B2
6616363 Guillaume et al. Sep 2003 B1
6619562 Hamaguchi et al. Sep 2003 B2
6644507 Borut et al. Nov 2003 B2
6645307 Fox et al. Nov 2003 B2
6669105 Bryan et al. Dec 2003 B2
6688492 Jaworski et al. Feb 2004 B2
6694536 Haygreen Feb 2004 B1
6701663 Hughel et al. Mar 2004 B1
6708849 Carter et al. Mar 2004 B1
D488548 Lablaine Apr 2004 S
6722529 Ceppaluni et al. Apr 2004 B2
6739479 Contadini et al. May 2004 B2
6769580 Muderlak et al. Aug 2004 B2
6776968 Edwards et al. Aug 2004 B2
6785911 Percher Sep 2004 B1
6790408 Whitby et al. Sep 2004 B2
6832701 Schiller Dec 2004 B2
6837396 Jaworski et al. Jan 2005 B2
6843465 Scott Jan 2005 B1
6877636 Speckhart et al. Apr 2005 B2
6918512 Kondoh Jul 2005 B2
6926002 Scarrott et al. Aug 2005 B2
6926172 Jaworski et al. Aug 2005 B2
6926211 Bryan et al. Aug 2005 B2
6938796 Blacker et al. Sep 2005 B2
6971560 Healy et al. Dec 2005 B1
6974091 McLisky Dec 2005 B2
6978947 Jin Dec 2005 B2
D513433 Lemaire Jan 2006 S
6997349 Blacker et al. Feb 2006 B2
7000853 Fugere Feb 2006 B2
7028917 Buthier Apr 2006 B2
7032782 Ciavarella et al. Apr 2006 B1
D520623 Lablaine May 2006 S
7044337 Kou May 2006 B1
7051455 Bedford May 2006 B2
D525693 Butler et al. Jul 2006 S
D527472 Barraclough et al. Aug 2006 S
D532891 Buthier et al. Nov 2006 S
7141125 McKechnie et al. Nov 2006 B2
D536059 King et al. Jan 2007 S
D536082 Pugh Jan 2007 S
7168631 Jones Jan 2007 B2
7182227 Poile et al. Feb 2007 B2
D537914 King et al. Mar 2007 S
D538915 Anderson et al. Mar 2007 S
7192610 Hughes et al. Mar 2007 B2
7195139 Jaworski et al. Mar 2007 B2
D540931 Luo Apr 2007 S
7222758 Scheindel May 2007 B1
7223361 Kvietok et al. May 2007 B2
7249720 Mathiez Jul 2007 B2
7360674 Sassoon Apr 2008 B2
7600659 Greer et al. Oct 2009 B1
20020020756 Yahav Feb 2002 A1
20030089734 Eberhardt et al. May 2003 A1
20030132254 Giangreco Jul 2003 A1
20040011885 McLisky Jan 2004 A1
20040028551 Kvietok et al. Feb 2004 A1
20040033171 Kvietok et al. Feb 2004 A1
20040035949 Elkins et al. Feb 2004 A1
20040074935 Chon Apr 2004 A1
20040155056 Yahav Aug 2004 A1
20040219863 Willacy Nov 2004 A1
20050004714 Chen Jan 2005 A1
20050023287 Speckhart et al. Feb 2005 A1
20050139624 Hooks et al. Jun 2005 A1
20050155985 Meyer Jul 2005 A1
20050201944 Kvietok et al. Sep 2005 A1
20050224596 Panopoulos Oct 2005 A1
20050252930 Contadini et al. Nov 2005 A1
20050279853 McLeisch et al. Dec 2005 A1
20060011737 Amenos et al. Jan 2006 A1
20060037532 Eidson Feb 2006 A1
20060060615 McLisky Mar 2006 A1
20060076366 Furner et al. Apr 2006 A1
20060081661 Lasserre et al. Apr 2006 A1
20060083632 Hammond et al. Apr 2006 A1
20060118658 Corkhill et al. Jun 2006 A1
20060124477 Cornelius et al. Jun 2006 A1
20060140901 McKechnie Jun 2006 A1
20060151546 McLisky Jul 2006 A1
20060153733 Sassoon Jul 2006 A1
20060175341 Rodrian Aug 2006 A1
20060175357 Hammond Aug 2006 A1
20060175426 Schramm et al. Aug 2006 A1
20060191955 McLisky Aug 2006 A1
20060196576 Fleming et al. Sep 2006 A1
20060210421 Hammond et al. Sep 2006 A1
20060219740 Bayer Oct 2006 A1
20060229232 Contadini et al. Oct 2006 A1
20060243762 Sassoon Nov 2006 A1
20070012718 Schramm et al. Jan 2007 A1
20070062980 Bates et al. Mar 2007 A1
20070071933 Gavelli et al. Mar 2007 A1
20070087953 McKechnie et al. Apr 2007 A1
20070093558 Harper et al. Apr 2007 A1
20070138326 Hu Jun 2007 A1
20070158359 Rodrian Jul 2007 A1
Foreign Referenced Citations (117)
Number Date Country
656230 Jun 1995 EP
0676133 Oct 1995 EP
0826607 Mar 1998 EP
0826608 Mar 1998 EP
1184083 Mar 2002 EP
1214949 Jun 2002 EP
1316514 Jun 2003 EP
1382399 Jan 2004 EP
1430958 Jun 2004 EP
1522506 Apr 2005 EP
1328757 May 2006 EP
1695720 Aug 2006 EP
1702512 Sep 2006 EP
1702513 Sep 2006 EP
1709980 Oct 2006 EP
1726315 Nov 2006 EP
1497250 Oct 1967 FR
1033025 Jun 1966 GB
56037070 Apr 1981 JP
56044060 Apr 1981 JP
56044061 Apr 1981 JP
56044062 Apr 1981 JP
56070865 Jun 1981 JP
57174173 Oct 1982 JP
01-223904 Sep 1989 JP
03-085169 Apr 1991 JP
03-085170 Apr 1991 JP
08-336580 Dec 1996 JP
10216577 Aug 1998 JP
11-076879 Mar 1999 JP
11-236083 Aug 1999 JP
2001048254 Feb 2001 JP
2002068344 Mar 2002 JP
2002113398 Apr 2002 JP
2002-238658 Aug 2002 JP
2003246380 Sep 2003 JP
2003311191 Nov 2003 JP
2005081223 Mar 2005 JP
WO 9115409 Oct 1991 WO
WO 9519304 Jul 1995 WO
WO 9529106 Nov 1995 WO
WO 9934266 Jul 1999 WO
WO 0047335 Aug 2000 WO
WO 0064802 Nov 2000 WO
WO 0075046 Dec 2000 WO
WO 0078467 Dec 2000 WO
WO 0126448 Apr 2001 WO
WO 0240177 May 2002 WO
WO 0240376 May 2002 WO
WO 02072161 Sep 2002 WO
WO 02079679 Oct 2002 WO
WO 02087976 Nov 2002 WO
WO 02094014 Nov 2002 WO
WO 03037748 May 2003 WO
WO 03037750 May 2003 WO
WO 03042068 May 2003 WO
WO 03062094 Jul 2003 WO
WO 03062095 Jul 2003 WO
WO 03068412 Aug 2003 WO
WO 03068413 Aug 2003 WO
WO 03082709 Oct 2003 WO
WO 03086902 Oct 2003 WO
WO 03086947 Oct 2003 WO
WO 03099682 Dec 2003 WO
WO 03104109 Dec 2003 WO
WO 2004043502 May 2004 WO
WO 2004067963 Aug 2004 WO
WO 2004073875 Sep 2004 WO
WO 2004093927 Nov 2004 WO
WO 2004093928 Nov 2004 WO
WO 2005011560 Feb 2005 WO
WO 2005014060 Feb 2005 WO
WO 2005018691 Mar 2005 WO
WO 2005023679 Mar 2005 WO
WO 2005027630 Mar 2005 WO
WO 2005048718 Jun 2005 WO
WO 2005070474 Aug 2005 WO
WO 2005072059 Aug 2005 WO
WO 2005072522 Aug 2005 WO
WO 2005079583 Sep 2005 WO
WO 2005084721 Sep 2005 WO
WO 2006005962 Jan 2006 WO
WO 2006012248 Feb 2006 WO
WO 2006013321 Feb 2006 WO
WO 2006013322 Feb 2006 WO
WO 2006044416 Apr 2006 WO
WO 2006051267 May 2006 WO
WO 2006054103 May 2006 WO
WO 2006056762 Jun 2006 WO
WO 2006058433 Jun 2006 WO
WO 2006064187 Jun 2006 WO
WO 2006074454 Jul 2006 WO
WO 2006087514 Aug 2006 WO
WO 2006087515 Aug 2006 WO
WO 2006095131 Sep 2006 WO
WO 2006104993 Oct 2006 WO
WO 2006105652 Oct 2006 WO
WO 2006108043 Oct 2006 WO
WO 2006134353 Dec 2006 WO
WO 2007028954 Mar 2007 WO
WO 2007029044 Mar 2007 WO
WO 2007036724 Apr 2007 WO
WO 2007045826 Apr 2007 WO
WO 2007045827 Apr 2007 WO
WO 2007045828 Apr 2007 WO
WO 2007045831 Apr 2007 WO
WO 2007045832 Apr 2007 WO
WO 2007045834 Apr 2007 WO
WO 2007045835 Apr 2007 WO
WO 2007045859 Apr 2007 WO
WO 2007052016 May 2007 WO
WO 2007064188 Jun 2007 WO
WO 2007064189 Jun 2007 WO
WO 2007064197 Jun 2007 WO
WO 2007064199 Jun 2007 WO
2009023208 Feb 2009 WO
2009025741 Feb 2009 WO
Non-Patent Literature Citations (3)
Entry
International Search Report and Written Opinion dated Dec. 29, 2009 Appl. No. PCT/US2009/001836.
International Search Report and Written Opinion in PCT/US2008/009661 dated Nov. 13, 2008.
International Search Report and Written Opinion in PCT/US2008/009663 dated Dec. 23, 2008.
Related Publications (1)
Number Date Country
20090236362 A1 Sep 2009 US