Not applicable
Not applicable
1. Field of the Invention
The present disclosure relates generally to a valve activation system for the release of a volatile material from a container, and more particularly to a valve activation system having a flexible tube adapted to dispense an aerosolized fluid from a container having a tilt-activated valve stem.
2. Description of the Background of the Invention
Aerosol containers are commonly used to store and dispense volatile materials such as air fresheners, deodorants, insecticides, germicides, decongestants, perfumes, and the like. The volatile material is stored under compression and typically in a liquid state within a container. A release valve on the container controls release of the volatile material contained under compression therein. The release valve typically has a valve stem that extends outwardly from the valve, wherein the valve is activated by the valve stem and the volatile material flows out of the container through the valve stem. In such a release valve, the valve is activated by a displacement of the valve stem with respect to a valve body. The valve stem may be displaced along a longitudinal axis of the valve stem, i.e., axially, or the valve stem may be tilted or displaced in a direction transverse to the longitudinal axis of the valve stem, i.e., radially.
Activation of a release valve may be accomplished by an automated system or manually. In manual activation, a user may adjust an activation force applied to the valve as required to achieve a desired release. Therefore, consideration of applied force requirements is generally less important to design of manually activated release valves. Conventional actuator mechanisms may include motor driven linkages that apply downward pressure to depress the nozzle and open the valve within the container. Typically, these actuator mechanisms are unwieldy and are not readily adaptable to be used in a stand-alone manner and a hand-held manner. Further, many of these actuator mechanisms exhibit a great deal of power consumption. Generally, valves having tilt-activated valve stems require less force for activation than valves having vertically activated valve stems. Release valves requiring smaller activation forces are advantageous because such valves require less power to activate. Decreased power consumption will allow for longer power source life times. Smaller activation forces are also advantageous for automated activation because smaller required forces allow for simpler, smaller, and/or less costly automated designs.
Existing automated valve activation systems for valves having tilt-activated valve stems are complex and may be difficult and expensive to manufacture. Complex systems including gears, springs, and precise interactions of a multitude of moving parts may also require more power to operate, have a greater tendency to break, and may be too large to fit within an overcap for placement on a volatile material container.
Another disadvantage of current valve activation systems for valves having tilt-activated valve stems is the limited ability to control the direction in which the volatile material is released. In an axially activated valve, the volatile material is released along the longitudinal axis of the valve stem no matter how far the valve stem is depressed axially. However, in a tilt-activated valve stem, the direction of release depends on how far the tilt-activated valve stem has been displaced radially and/or the circumferential direction of the radial displacement. This limited ability to control the direction of release limits the type of overcap that may be used with a tilt-activated valve stem. To prevent a portion of the released volatile material from being captured within an overcap, the overcap must include an aperture large enough to accommodate a full range of release directions.
According to one aspect of the invention, a volatile material dispenser includes a drive unit adapted to be mounted on a container. The drive unit is adapted to be activated in response to a signal from at least a sensor to radially displace a tilt-activated valve stem of the container. The volatile material dispenser further includes a flexible tube having a discharge end fixedly held with respect to the container. The flexible tube is adapted to be in fluid communication with the tilt-activated valve stem.
Other aspects and advantages of the present invention will become apparent upon consideration of the following detailed description, wherein similar structures have similar reference numerals.
The volatile material dispenser 50 includes a platform 54 that is disposed on a cylindrical section 56. As shown in
Referring to
A flexible tube 98 includes an inlet end 100 that is attached to the outlet end 86 of the discharge conduit 76 as shown in
The flexible tube 98 has a continuous bore 108 therethrough as shown in
In a non-active state, the tilt-activated valve stem 88 is coincident with a longitudinal axis 110 of the container 52 as shown in
As shown in
The contents of the container 52 may be discharged in a continuous or metered dose. Further, the discharging of the contents of the container 52 may be effected in any number of ways, e.g., a discharge may comprise a partial metered dose or multiple consecutive discharges. It is also contemplated that any appropriate drive assembly having a capacity to downwardly displace the flange 96 as is known to one skilled in the art may be used to radially displace the tilt-activated valve stem 88. For example, it is contemplated that the drive assemblies shown in application Ser. Nos. 11/801,554 and 11/893,456 may be adapted to work with the presently described embodiments.
Referring now to
As shown in
The housing 132 includes a back side 148 and a front side 150. The upper portion 138 includes a convex top surface 152 that generally slopes upwardly from the back side 148 to the front side 150. A circular aperture 154 is disposed through the top surface 152 to accommodate the LED 124 and a rectangular aperture 156 is disposed through the top surface 152 to accommodate the linear switch assembly 126. The front side 150 of the upper portion 138 includes an aperture 158 disposed therethrough for accommodation of the discharge end 101 of the flexible tube 98.
As discussed hereinabove, use of the tilt-activated valve stem 88 in prior art devices is problematic due to an inherent lack of control of a specific direction of release of the fluid. As a result, fluid released through the tilt-activated valve stem 88 may tend to inappropriately spray into the housing 132, thereby undesirably coating the inner surfaces of the housing 132 instead of being directed to the environment. Inclusion of the flexible tube 98 prevents fluid released through the tilt-activated valve stem 88 from spraying into the inside of the housing 132. The flexible tube 98 allows the aperture 158 to be positioned on the housing 132 in a desired location to allow convenient and accurate directional spraying of the fluid from the volatile material dispenser 50. Further, the flexible tube 98 allows the aperture 158 to have a size or a shape without regard to directional spraying limitations of the tilt-activated valve stem 88.
The housing 132 may be retained on the container 52 in any manner known by those skilled in the art. For example, the retention structures described in Balfanz U.S. Pat. No. 4,133,408, Demarest U.S. Pat. No. 5,027,982, and Demarest et al. U.S. Pat. No. 5,609,605 may be used in connection with any of the embodiments described herein. The housing 132 may also be integral with and/or connectable to the volatile material dispenser 50, for example via a connection at the cylindrical section 56 thereof. Illustratively, the housing 132 may include an annular lip (not shown) projecting inwardly from an inner circumferential surface thereof. The annular lip may be adapted to snap over a bottom edge of the cylindrical section 56 or a corresponding outwardly protruding lip (not shown) on an outer circumferential surface of the cylindrical section 56. The housing may thus be retained directly on the volatile material dispenser 50 in addition to, or instead of, being retained on the container 52. Further, any of the aesthetic aspects of the housing 132 described herein may be modified in any manner known by one skilled in the art, e.g., the medial portion 136 and the lower and upper tapering shoulders 142, 144 could be eliminated or the housing 132 could be provided with a different shape.
Each of the vertically extending battery holders 106 is adapted to retain a battery, e.g., a size AA or AAA battery, therein to provide a D.C. power source to the drive unit. In some embodiments, the batteries may be interchangeable with other power sources. For example, the batteries may be replaced by a rechargeable Nickel-Cadmium battery or battery pack (not shown) having an electrical lead 160 that may be used to connect the battery pack to an A.C. power adapter 162 having an appropriate power transformer and A.C./D.C. converter as known to those of skill in the art (see
In another embodiment, the discharge end 101 of the flexible tube 98 is fixedly held with respect to the container 52 by an adjustable guide member 164, e.g., such as the one shown in
The end brackets 174 may be slid up or down along the grooves 170 and the circular arms 184 may be rotatably adjusted within the circular slots 180. By such selective adjustment of the adjustable guide member 164, a user may select the orientation and/or the positioning of the discharge end 101 of the flexible tube 98 with respect to the container 52. As shown in
In a further embodiment, a volatile material dispenser similar to the embodiment shown in
In yet another embodiment, a volatile material dispenser similar to the embodiment shown in
In another embodiment, the linear switch assembly 126 may have a continuous range of settings instead of the four distinct operating modes 220, 222, 224, and 226 described above. In such an embodiment, the linear switch assembly 126 may be provided with a switch mechanism such as a dial (not shown), that provides for continuous user variation of the spraying period and/or the sleep period between continuous spray and sleep periods lasting several hours or days. In a further embodiment, the linear switch assembly 126 may be replaced and/or supplemented by a sensor, e.g., a photocell light sensor, which may be used as a motion detector. Alternatively, more than one sensor may be provided in lieu of the linear switch assembly 126 or in combination with same. It is anticipated that one skilled in the art may provide any type of sensor either alone or in combination with the linear switch assembly 126 and/or other sensors to meet the needs of a user. In one particular embodiment (not shown), e.g., the linear switch assembly 126 and a sensor are both provided in a volatile material dispenser. In such an embodiment, a user may choose to use the timer-based linear switch assembly 126 to automatically operate the solenoid assembly 112, or the user may choose to use the sensor to detect a given event prior to activating the solenoid assembly 112. Alternatively, such a volatile material dispenser may operate in a timer and sensor based mode of operation concurrently.
As noted above, the sensor may be a photocell light sensor. The photocell light sensor collects ambient light and allows the control circuit to detect any changes in the intensity thereof. Filtering of the photocell output is undertaken by the control circuit. If the control circuit determines that a threshold light condition has been reached, e.g., a predetermined level of change in light intensity, the control circuit develops a signal to activate the solenoid assembly 112. For example, if a volatile material dispenser including the photocell light sensor is placed in a lit bathroom, a person walking past the sensor may block a sufficient amount of ambient light from reaching the sensor to cause the control circuit to activate the solenoid assembly 112 and discharge a fluid. Further, other motion detectors known to those of skill in the art may also be utilized, e.g., a passive infrared or pyro-electric motion sensor, an infrared reflective motion sensor, an ultrasonic motion sensor, or a radar or microwave radio motion sensor.
The LED 124 is illuminated when the volatile material dispenser 166 is in an operative state. The LED 124 blinks intermittently once every fifteen seconds during the sleep period. Depending on the selected operating mode, the blinking frequency of the LED 124 begins to increase as a spraying period becomes imminent. The more frequent illumination of the LED 124 serves as a visual indication that the volatile material dispenser 166 is about to discharge fluid contents into the atmosphere.
Any of the embodiments described herein may be modified to include any of the structures or methodologies disclosed in connection with different embodiments. Further, the present disclosure is not limited to aerosol containers of the type specifically shown. Still further, the volatile material dispensers of any of the embodiments disclosed herein may be modified to work with any type of fluid container having a tilt-activated valve stem.
Aerosol dispensers are commonly used to dispense volatile materials such as air fresheners, deodorants, insecticides, germicides, decongestants, perfumes, and the like, that are stored within aerosol containers. Automated valve activation systems for aerosol containers allow the contents thereof to be released without human interaction, for example, according to a predetermined time schedule. Tilt-activated valve stems for aerosol container release valves typically require less force to operate than vertically activated valve stems, but may lack precise directional control. A system for automatically activating a tilt-activated valve stem providing selective directional control is presented. The system may be installed in a typical overcap for use with ordinary tilt-activated aerosol containers, resulting in an improvement in utility of the aerosol container.
Numerous modifications will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is presented for the purpose of enabling those skilled in the art to make and use what is herein disclosed and to teach the best mode of carrying out same. All patents, patent applications, and other references cited herein are incorporated herein by reference as if they appear in this document in their entirety. The exclusive rights to all modifications which come within the scope of this disclosure are reserved.
This application is a divisional of U.S. patent application Ser. No. 12/054,054, filed Mar. 24, 2008.
Number | Name | Date | Kind |
---|---|---|---|
2506449 | Greenwood | Nov 1946 | A |
2662669 | Schmidt | Jan 1950 | A |
2763406 | Countryman | Jun 1952 | A |
2608319 | Petry | Aug 1952 | A |
2613108 | Kraus | Oct 1952 | A |
2912144 | Luddecke | Sep 1956 | A |
2948439 | Glover | Nov 1956 | A |
2868419 | Casey, Jr. | Dec 1956 | A |
3018929 | Obst | Sep 1959 | A |
2928573 | Edelstein | Mar 1960 | A |
3018056 | Montgomery | Jan 1962 | A |
3023427 | Behringer | Mar 1962 | A |
3028054 | Beard, Jr. | Apr 1962 | A |
3050281 | Budwig | Aug 1962 | A |
3088682 | Venus, Jr. | May 1963 | A |
3115277 | Montague, Jr. | Dec 1963 | A |
3127060 | Vosbikian et al. | Mar 1964 | A |
3154224 | Wakeman | Oct 1964 | A |
3155290 | Venus, Jr. | Nov 1964 | A |
3161196 | Berkow | Dec 1964 | A |
3165238 | Wiley | Jan 1965 | A |
3178070 | Leland | Apr 1965 | A |
3180532 | Michel | Apr 1965 | A |
3185356 | Venus, Jr. | May 1965 | A |
3199732 | Strachen | Aug 1965 | A |
3228609 | Edelstein et al. | Jan 1966 | A |
3240389 | Genua | Mar 1966 | A |
3269602 | Weber, III | Aug 1966 | A |
3270925 | Obst | Sep 1966 | A |
3273610 | Frost | Sep 1966 | A |
3289886 | Goldsholl et al. | Dec 1966 | A |
3305134 | Carmichael et al. | Feb 1967 | A |
3326418 | Kropp | Jun 1967 | A |
3329314 | Kolodziej | Jul 1967 | A |
3368717 | Weber, III | Feb 1968 | A |
3398864 | Kolodziej | Aug 1968 | A |
3411670 | Mangel | Nov 1968 | A |
3419189 | Iketani | Dec 1968 | A |
3455485 | Crownover | Jul 1969 | A |
3477613 | Mangel | Nov 1969 | A |
3497108 | Mason | Feb 1970 | A |
3497110 | Bombero et al. | Feb 1970 | A |
3515316 | Green | Jun 1970 | A |
3540624 | Green | Nov 1970 | A |
3542248 | Mangel | Nov 1970 | A |
3543122 | Klebanoff et al. | Nov 1970 | A |
3584766 | Hart et al. | Jun 1971 | A |
3589562 | Buck | Jun 1971 | A |
3589563 | Carragan et al. | Jun 1971 | A |
3591058 | Johnston | Jul 1971 | A |
3617214 | Dolac | Nov 1971 | A |
3620023 | Schmid | Nov 1971 | A |
3627176 | Sailors | Dec 1971 | A |
3632020 | Nixon, Jr. et al. | Jan 1972 | A |
3643836 | Hunt | Feb 1972 | A |
3658209 | Freeman et al. | Apr 1972 | A |
3664548 | Broderick | May 1972 | A |
3666144 | Winder | May 1972 | A |
3677441 | Nixon, Jr. et al. | Jul 1972 | A |
3690519 | Wassilieff | Sep 1972 | A |
3722749 | Ishida | Mar 1973 | A |
3726437 | Siegel | Apr 1973 | A |
3732509 | Florant et al. | May 1973 | A |
3739944 | Rogerson | Jun 1973 | A |
3756465 | Meshberg | Sep 1973 | A |
3794216 | Buck | Feb 1974 | A |
3817429 | Smrt | Jun 1974 | A |
3870274 | Broe | Mar 1975 | A |
3885712 | Libit | May 1975 | A |
3929259 | Fegley et al. | Dec 1975 | A |
3952916 | Phillips | Apr 1976 | A |
3968905 | Pelton | Jul 1976 | A |
3974941 | Mettler | Aug 1976 | A |
3980205 | Smart | Sep 1976 | A |
4004550 | White et al. | Jan 1977 | A |
4006844 | Corris | Feb 1977 | A |
4063664 | Meetze, Jr. | Dec 1977 | A |
4064573 | Calderone | Dec 1977 | A |
4068575 | Difley et al. | Jan 1978 | A |
4068780 | Fegley | Jan 1978 | A |
4077542 | Petterson | Mar 1978 | A |
4096974 | Haber et al. | Jun 1978 | A |
4184612 | Freyre | Jan 1980 | A |
4235373 | Clark | Nov 1980 | A |
4238055 | Staar | Dec 1980 | A |
4275821 | Lanno et al. | Jun 1981 | A |
4358860 | Church | Nov 1982 | A |
4396152 | Abplanalp | Aug 1983 | A |
4415797 | Choustoulakis | Nov 1983 | A |
4483466 | Gutierrez | Nov 1984 | A |
4544086 | Hill et al. | Oct 1985 | A |
4658985 | Madsen et al. | Apr 1987 | A |
4877989 | Drews et al. | Oct 1989 | A |
4967935 | Celest | Nov 1990 | A |
4989755 | Shiau | Feb 1991 | A |
4993570 | Julian et al. | Feb 1991 | A |
5012961 | Madsen et al. | May 1991 | A |
5014881 | Andris | May 1991 | A |
5018963 | Diederich | May 1991 | A |
5025962 | Renfro | Jun 1991 | A |
5029729 | Madsen et al. | Jul 1991 | A |
5038972 | Muderlak et al. | Aug 1991 | A |
5055822 | Campbell et al. | Oct 1991 | A |
5098291 | Curtis et al. | Mar 1992 | A |
5134961 | Giles et al. | Aug 1992 | A |
5137180 | Kieras | Aug 1992 | A |
5154323 | Query et al. | Oct 1992 | A |
5198157 | Bechet | Mar 1993 | A |
5221025 | Privas | Jun 1993 | A |
5249718 | Muderlak | Oct 1993 | A |
5263616 | Abplanalp | Nov 1993 | A |
5297988 | Nishino et al. | Mar 1994 | A |
5337926 | Drobish et al. | Aug 1994 | A |
5337929 | van der Heijden | Aug 1994 | A |
5342584 | Fritz et al. | Aug 1994 | A |
5353744 | Custer | Oct 1994 | A |
5364028 | Wozniak | Nov 1994 | A |
5383580 | Winder | Jan 1995 | A |
RE34847 | Muderlak et al. | Feb 1995 | E |
5392768 | Johansson et al. | Feb 1995 | A |
5397028 | Jesadanont | Mar 1995 | A |
5445324 | Berry et al. | Aug 1995 | A |
5447273 | Wozniak | Sep 1995 | A |
5447277 | Schluter et al. | Sep 1995 | A |
5449117 | Muderlak et al. | Sep 1995 | A |
5489047 | Winder | Feb 1996 | A |
5503303 | LaWare et al. | Apr 1996 | A |
5522722 | Diederich | Jun 1996 | A |
5531344 | Winner | Jul 1996 | A |
5540359 | Gobbel | Jul 1996 | A |
5542605 | Campau | Aug 1996 | A |
5549228 | Brown | Aug 1996 | A |
5588565 | Miller | Dec 1996 | A |
5601235 | Booker et al. | Feb 1997 | A |
5622162 | Johansson et al. | Apr 1997 | A |
5673825 | Chen | Oct 1997 | A |
5676283 | Wang | Oct 1997 | A |
5685456 | Goldstein | Nov 1997 | A |
5695091 | Winings et al. | Dec 1997 | A |
5702036 | Ferrara, Jr. | Dec 1997 | A |
5743251 | Howell et al. | Apr 1998 | A |
5772074 | Dial et al. | Jun 1998 | A |
5787947 | Hertsgaard | Aug 1998 | A |
5791524 | Demarest | Aug 1998 | A |
5810265 | Cornelius et al. | Sep 1998 | A |
5823390 | Muderlak et al. | Oct 1998 | A |
5842602 | Pierpoint | Dec 1998 | A |
5853129 | Spitz | Dec 1998 | A |
5884808 | Muderlak et al. | Mar 1999 | A |
5908140 | Muderlak et al. | Jun 1999 | A |
5922247 | Shoham et al. | Jul 1999 | A |
5924597 | Lynn | Jul 1999 | A |
5938076 | Ganzeboom | Aug 1999 | A |
5964403 | Miller et al. | Oct 1999 | A |
6000658 | McCall, Jr. | Dec 1999 | A |
6003727 | Marshall | Dec 1999 | A |
6006957 | Kunesh | Dec 1999 | A |
6036108 | Chen | Mar 2000 | A |
6039212 | Singh | Mar 2000 | A |
6089410 | Ponton | Jul 2000 | A |
6145712 | Benoist | Nov 2000 | A |
6182904 | Ulczynski et al. | Feb 2001 | B1 |
6216925 | Garon | Apr 2001 | B1 |
6220293 | Rashidi | Apr 2001 | B1 |
6237812 | Fukada | May 2001 | B1 |
6249717 | Nicholson et al. | Jun 2001 | B1 |
6254065 | Ehrensperger et al. | Jul 2001 | B1 |
6260739 | Hsiao | Jul 2001 | B1 |
6267297 | Contadini et al. | Jul 2001 | B1 |
6276574 | Smrt | Aug 2001 | B1 |
6293442 | Mollayan | Sep 2001 | B1 |
6293474 | Helf et al. | Sep 2001 | B1 |
6321742 | Schmidt et al. | Nov 2001 | B1 |
6338424 | Nakamura et al. | Jan 2002 | B2 |
6343714 | Tichenor | Feb 2002 | B1 |
6394310 | Muderlak et al. | May 2002 | B1 |
6409093 | Ulczynski et al. | Jun 2002 | B2 |
6419122 | Chown | Jul 2002 | B1 |
6454185 | Fuchs | Sep 2002 | B2 |
6478199 | Shanklin et al. | Nov 2002 | B1 |
6510561 | Hammond et al. | Jan 2003 | B1 |
6517009 | Yahav | Feb 2003 | B2 |
6533141 | Petterson et al. | Mar 2003 | B1 |
6540155 | Yahav | Apr 2003 | B1 |
6554203 | Hess et al. | Apr 2003 | B2 |
6567613 | Rymer | May 2003 | B2 |
6588627 | Petterson et al. | Jul 2003 | B2 |
6612464 | Petterson et al. | Sep 2003 | B2 |
6616363 | Guillaume et al. | Sep 2003 | B1 |
6619562 | Hamaguchi et al. | Sep 2003 | B2 |
6644507 | Borut et al. | Nov 2003 | B2 |
6645307 | Fox et al. | Nov 2003 | B2 |
6669105 | Bryan et al. | Dec 2003 | B2 |
6688492 | Jaworski et al. | Feb 2004 | B2 |
6694536 | Haygreen | Feb 2004 | B1 |
6701663 | Hughel et al. | Mar 2004 | B1 |
6708849 | Carter et al. | Mar 2004 | B1 |
D488548 | Lablaine | Apr 2004 | S |
6722529 | Ceppaluni et al. | Apr 2004 | B2 |
6739479 | Contadini et al. | May 2004 | B2 |
6769580 | Muderlak et al. | Aug 2004 | B2 |
6776968 | Edwards et al. | Aug 2004 | B2 |
6785911 | Percher | Sep 2004 | B1 |
6790408 | Whitby et al. | Sep 2004 | B2 |
6832701 | Schiller | Dec 2004 | B2 |
6837396 | Jaworski et al. | Jan 2005 | B2 |
6843465 | Scott | Jan 2005 | B1 |
6877636 | Speckhart et al. | Apr 2005 | B2 |
6918512 | Kondoh | Jul 2005 | B2 |
6926002 | Scarrott et al. | Aug 2005 | B2 |
6926172 | Jaworski et al. | Aug 2005 | B2 |
6926211 | Bryan et al. | Aug 2005 | B2 |
6938796 | Blacker et al. | Sep 2005 | B2 |
6971560 | Healy et al. | Dec 2005 | B1 |
6974091 | McLisky | Dec 2005 | B2 |
6978947 | Jin | Dec 2005 | B2 |
D513433 | Lemaire | Jan 2006 | S |
6997349 | Blacker et al. | Feb 2006 | B2 |
7000853 | Fugere | Feb 2006 | B2 |
7028917 | Buthier | Apr 2006 | B2 |
7032782 | Ciavarella et al. | Apr 2006 | B1 |
D520623 | Lablaine | May 2006 | S |
7044337 | Kou | May 2006 | B1 |
7051455 | Bedford | May 2006 | B2 |
D525693 | Butler et al. | Jul 2006 | S |
D527472 | Barraclough et al. | Aug 2006 | S |
D532891 | Buthier et al. | Nov 2006 | S |
7141125 | McKechnie et al. | Nov 2006 | B2 |
D536059 | King et al. | Jan 2007 | S |
D536082 | Pugh | Jan 2007 | S |
7168631 | Jones | Jan 2007 | B2 |
7182227 | Poile et al. | Feb 2007 | B2 |
D537914 | King et al. | Mar 2007 | S |
D538915 | Anderson et al. | Mar 2007 | S |
7192610 | Hughes et al. | Mar 2007 | B2 |
7195139 | Jaworski et al. | Mar 2007 | B2 |
D540931 | Luo | Apr 2007 | S |
7222758 | Scheindel | May 2007 | B1 |
7223361 | Kvietok et al. | May 2007 | B2 |
7249720 | Mathiez | Jul 2007 | B2 |
7600659 | Greer | Oct 2009 | B1 |
7603726 | Sawalski et al. | Oct 2009 | B2 |
20020020756 | Yahav | Feb 2002 | A1 |
20030089734 | Eberhardt et al. | May 2003 | A1 |
20030132254 | Giangreco | Jul 2003 | A1 |
20040011885 | McLisky | Jan 2004 | A1 |
20040028551 | Kvietok et al. | Feb 2004 | A1 |
20040033171 | Kvietok et al. | Feb 2004 | A1 |
20040035949 | Elkins et al. | Feb 2004 | A1 |
20040074935 | Chon | Apr 2004 | A1 |
20040155056 | Yahav | Aug 2004 | A1 |
20040219863 | Willacy | Nov 2004 | A1 |
20050004714 | Chen | Jan 2005 | A1 |
20050023287 | Speckhart et al. | Feb 2005 | A1 |
20050139624 | Hooks et al. | Jun 2005 | A1 |
20050155985 | Meyer | Jul 2005 | A1 |
20050201944 | Kvietok et al. | Sep 2005 | A1 |
20050224596 | Panopoulos | Oct 2005 | A1 |
20050252930 | Contadini et al. | Nov 2005 | A1 |
20050279853 | McLeisch et al. | Dec 2005 | A1 |
20060011737 | Amenos et al. | Jan 2006 | A1 |
20060037532 | Eidson | Feb 2006 | A1 |
20060060615 | McLisky | Mar 2006 | A1 |
20060076366 | Furner et al. | Apr 2006 | A1 |
20060081661 | Lasserre et al. | Apr 2006 | A1 |
20060083632 | Hammond et al. | Apr 2006 | A1 |
20060118658 | Corkhill et al. | Jun 2006 | A1 |
20060124477 | Cornelius et al. | Jun 2006 | A1 |
20060140901 | McKechnie | Jun 2006 | A1 |
20060151546 | McLisky | Jul 2006 | A1 |
20060153733 | Sassoon | Jul 2006 | A1 |
20060175341 | Rodrian | Aug 2006 | A1 |
20060175357 | Hammond | Aug 2006 | A1 |
20060175426 | Schramm et al. | Aug 2006 | A1 |
20060191955 | McLisky | Aug 2006 | A1 |
20060196576 | Fleming et al. | Sep 2006 | A1 |
20060210421 | Hammond et al. | Sep 2006 | A1 |
20060219740 | Bayer | Oct 2006 | A1 |
20060229232 | Contadini et al. | Oct 2006 | A1 |
20060243762 | Sassoon | Nov 2006 | A1 |
20070012718 | Schramm et al. | Jan 2007 | A1 |
20070062980 | Bates et al. | Mar 2007 | A1 |
20070071933 | Gavelli et al. | Mar 2007 | A1 |
20070087953 | McKechnie et al. | Apr 2007 | A1 |
20070093558 | Harper et al. | Apr 2007 | A1 |
20070138326 | Hu | Jun 2007 | A1 |
20070158359 | Rodrian | Jul 2007 | A1 |
20090045219 | Helf et al. | Feb 2009 | A1 |
20090045220 | Helf et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
656230 | Jun 1995 | EP |
0676133 | Oct 1995 | EP |
0826607 | Mar 1998 | EP |
0826608 | Mar 1998 | EP |
1184083 | Mar 2002 | EP |
1214949 | Jun 2002 | EP |
1316514 | Jun 2003 | EP |
1382399 | Jan 2004 | EP |
1430958 | Jun 2004 | EP |
1522506 | Apr 2005 | EP |
1328757 | May 2006 | EP |
1695720 | Aug 2006 | EP |
1702512 | Sep 2006 | EP |
1702513 | Sep 2006 | EP |
1709980 | Oct 2006 | EP |
1726315 | Nov 2006 | EP |
1497250 | Oct 1967 | FR |
1033025 | Jun 1966 | GB |
56037070 | Apr 1981 | JP |
56044060 | Apr 1981 | JP |
56044061 | Apr 1981 | JP |
56044062 | Apr 1981 | JP |
56070865 | Jun 1981 | JP |
57174173 | Oct 1982 | JP |
01-223904 | Sep 1989 | JP |
03-085169 | Apr 1991 | JP |
03-085170 | Apr 1991 | JP |
08-336580 | Dec 1996 | JP |
10216577 | Aug 1998 | JP |
11-076879 | Mar 1999 | JP |
11-236083 | Aug 1999 | JP |
2001048254 | Feb 2001 | JP |
2002068344 | Mar 2002 | JP |
2002113398 | Apr 2002 | JP |
2002-238658 | Aug 2002 | JP |
2003246380 | Sep 2003 | JP |
2003311191 | Nov 2003 | JP |
2005081223 | Mar 2005 | JP |
9115409 | Oct 1991 | WO |
9519304 | Jul 1995 | WO |
9529106 | Nov 1995 | WO |
9934266 | Jul 1999 | WO |
0047335 | Aug 2000 | WO |
0064802 | Nov 2000 | WO |
0075046 | Dec 2000 | WO |
0078467 | Dec 2000 | WO |
0126448 | Apr 2001 | WO |
0240177 | May 2002 | WO |
0240376 | May 2002 | WO |
02072161 | Sep 2002 | WO |
02079679 | Oct 2002 | WO |
02087976 | Nov 2002 | WO |
02094014 | Nov 2002 | WO |
03037748 | May 2003 | WO |
03037750 | May 2003 | WO |
03042068 | May 2003 | WO |
03062094 | Jul 2003 | WO |
03062095 | Jul 2003 | WO |
03068412 | Aug 2003 | WO |
03068413 | Aug 2003 | WO |
03082709 | Oct 2003 | WO |
03086902 | Oct 2003 | WO |
03086947 | Oct 2003 | WO |
03099682 | Dec 2003 | WO |
03104109 | Dec 2003 | WO |
2004043502 | May 2004 | WO |
2004067963 | Aug 2004 | WO |
2004073875 | Sep 2004 | WO |
2004093927 | Nov 2004 | WO |
2004093928 | Nov 2004 | WO |
2005011560 | Feb 2005 | WO |
2005014060 | Feb 2005 | WO |
2005018691 | Mar 2005 | WO |
2005023679 | Mar 2005 | WO |
2005027630 | Mar 2005 | WO |
2005048718 | Jun 2005 | WO |
2005070474 | Aug 2005 | WO |
2005072059 | Aug 2005 | WO |
2005072522 | Aug 2005 | WO |
2005079583 | Sep 2005 | WO |
2005084721 | Sep 2005 | WO |
2006005962 | Jan 2006 | WO |
2006012248 | Feb 2006 | WO |
2006013321 | Feb 2006 | WO |
2006013322 | Feb 2006 | WO |
2006044416 | Apr 2006 | WO |
2006051267 | May 2006 | WO |
2006054103 | May 2006 | WO |
2006056762 | Jun 2006 | WO |
2006058433 | Jun 2006 | WO |
2006064187 | Jun 2006 | WO |
2006074454 | Jul 2006 | WO |
2006087514 | Aug 2006 | WO |
2006087515 | Aug 2006 | WO |
2006095131 | Sep 2006 | WO |
2006104993 | Oct 2006 | WO |
2006105652 | Oct 2006 | WO |
2006108043 | Oct 2006 | WO |
2006134353 | Dec 2006 | WO |
2007028954 | Mar 2007 | WO |
2007029044 | Mar 2007 | WO |
2007036724 | Apr 2007 | WO |
2007045826 | Apr 2007 | WO |
2007045827 | Apr 2007 | WO |
2007045828 | Apr 2007 | WO |
2007045831 | Apr 2007 | WO |
2007045832 | Apr 2007 | WO |
2007045834 | Apr 2007 | WO |
2007045835 | Apr 2007 | WO |
2007045859 | Apr 2007 | WO |
2007052016 | May 2007 | WO |
2007064188 | Jun 2007 | WO |
2007064189 | Jun 2007 | WO |
2007064197 | Jun 2007 | WO |
2007064199 | Jun 2007 | WO |
2009025741 | Feb 2009 | WO |
2009023208 | Feb 2009 | WO |
Entry |
---|
International Search Report and Written Opinion dated Dec. 29, 2009 Appl. No. PCT/US2009/001836. |
International Search Report and Written Opinion dated Nov. 13, 2008 Appl. No. PCT/US2008/009661. |
International Search Report and Written Opinion dated Dec. 23, 2008 Appl. No. PCT/US2008/009663. |
Number | Date | Country | |
---|---|---|---|
20130161348 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12054054 | Mar 2008 | US |
Child | 13748293 | US |