The present subject matter relates generally to wind turbine generators and, more particularly, to voltage control systems and techniques for use with wind turbine generators having continuous control of reactive power for at least part of the reactive power compensation function.
Wind power generation is typically provided by a wind “farm” having a large number (often 100 or more) of wind turbine generators. Individual wind turbine generators can provide important benefits to power system operation. These benefits are related to mitigation of voltage flicker caused by wind gusts and mitigation of voltage deviations caused by external events.
In a wind farm setting, each wind turbine generator can experience a unique wind force. Therefore, each wind turbine generator can include a local controller to control the response to wind gusts and other external events. Prior art wind farm control has been based on one of two architectures: local control with constant power factor and farm level control in fast voltage control, or local control in constant voltage control with no farm level control.
Both of these prior art control architectures suffer from disadvantages. Local control with constant power factor and farm level control in fast voltage control requires fast communications with aggressive action from the farm level to the local level. If the farm level control is inactive, the local control can aggravate voltage flicker. With constant voltage control on each generator, steady-state operation varies significantly with small deviations in loading on the transmission grid. This causes the wind turbine generators to encounter limits in steady-state operation that prevent a response to disturbances, resulting in a loss of voltage regulation. Because reactive current is higher than necessary during this mode of operation, overall efficiency of the wind turbine generator decreases.
Accordingly, improved voltage control systems and techniques for use with wind turbine generators would be welcomed in the art.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect, the present subject matter is directed to a voltage control system for a wind turbine generator. The system may include a reactive power regulator configured to control reactive power production by the wind turbine generator by adjusting a voltage setpoint for the generator. The reactive power regulator may have a first time constant and the voltage setpoint may be defined between an upper limit and a lower limit. The system may also include a voltage limit regulator configured to adjust at least one of the upper limit or the lower limit for the voltage setpoint based on a voltage-related parameter of the system. In addition, the system may include a voltage regulator coupled to the reactive power regulator. The voltage regulator may be configured to control real power production by the wind turbine generator based on the voltage setpoint. The voltage regulator may have a second time constant, wherein the first time constant is numerically greater than the second time constant.
In another aspect, the present subject matter is directed to a method for controlling a wind turbine generator. The method may generally include receiving a reactive power command, adjusting at least one of an upper limit or a lower limit for a voltage setpoint of the wind turbine generator based on a voltage-related parameter, determining the voltage setpoint based on the reactive power command, determining a reactive current command for the wind turbine generator in response to the voltage setpoint and generating a real and reactive power based on the reactive current command.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
In general, the present subject matter is directed to a voltage control system for one or more wind turbine generators including relatively fast regulation of voltage for individual generators with relatively slower overall reactive power regulation at a substation or wind farm level. The relatively slow reactive power regulator may adjust a voltage setpoint of the relatively fast voltage regulator. The fast voltage regulation can be at the generator terminals or at a synthesized remote point (e.g., between the generator terminals and the collector bus). Prior art reactive power controllers are designed with time constants of lower numerical value than those used in voltage regulator design. That is, in the prior art, the reactive power control loop is inside of the voltage control loop, which results in a less stable system than described herein.
It will be apparent to those of ordinary skill in the art that the disclosed control system provides an improved control structure involving both local and farm level control that overcomes the disadvantages of the prior art control architectures described above. Specifically, the disclosed control system eliminates the requirement for fast and aggressive control from the wind farm level, which allows for an improved response in the event that the farm level control is out of service. In addition, the disclosed system provides efficient steady-state operation, while system dynamic response remains well within the limits set.
Moreover, the disclosed system also allows for the upper and/or lower limits of the voltage setpoint generated by the reactive power regulator to be dynamically adjusted in order to account for voltage-related variables within the system. For example, in response to certain overvoltage conditions, such as high grid voltages in combination with electrical phase imbalances and/or high rotor voltages, the upper limit of the voltage setpoint may be lowered or otherwise adjusted to prevent equipment damage due to excessive voltages without the necessity of tripping the system. Thus, by avoiding such preventative tripping actions, the disclosed system may continue to operate despite overvoltage conditions, thereby enhancing the efficiency and overall operation of a wind farm.
Referring to the drawings,
Each wind turbine generator 110 includes a local controller that is responsive to the conditions of the wind turbine generator being controlled. In one embodiment, the controller for each wind turbine generator 110 senses only the terminal voltage and current (via potential and current transformers). The voltage and current sensed are used by the local controller to provide an appropriate response to cause the wind turbine generator 110 to provide the desired reactive power and voltage. A control system diagram corresponding to one embodiment of a wind turbine generator controller is described in greater detail below with respect to
Referring still to
The wind farm 100 provides real and reactive power output (labeled Pwf and Qwf, respectively) via a wind farm main transformer 130. A farm level controller 150 senses the wind farm output as well as the voltage at a point of common coupling 140 to provide a farm level reactive power command (Farm Level Q Cmd) 155. In one embodiment, the farm level controller 150 provides a single reactive power command to all the wind turbine generators 110 of the wind farm 100. In alternate embodiments, the farm level controller 150 may provide multiple commands for subsets of wind turbine generators 110 of the wind farm 100. The commands to subsets of the wind turbine generators 110 may be based on, for example, additional information related to the operating conditions of one or more of the generators 110.
Referring now to
Conceptually, the control system of
An operator or farm level Q command 200 is a signal that indicates desired reactive power at the generator terminals. In farm level operation, the wind turbine generator Q command 200 is set equal to the output of the farm level control (line 155 in
In one embodiment, the operator or farm level Q command 200 is transmitted to a command limiter 220, which operates to maintain reactive power commands within a predetermined range. As shown in
The specific values used for Qmax and Qmin may be based on, for example, generator reactive capabilities. In one embodiment the value for Qmax is 800 kVAR and the value for Qmin is −1200 kVAR for a 1.5 MW wind turbine generator. However, it should be readily appreciated that the specific values for Qmax and Qmin may generally depend upon the capability of the specific generators being used.
As shown in
The Q error 235 is an input signal to a reactive power regulator 240 (hereinafter referred to as the VAR regulator 240), which generates a voltage setpoint 250 (hereinafter referred to as the V command 250) that indicates to a wind turbine generator 110 the reactive power to be provided by the generator. In one embodiment, the VAR regulator 240 is a proportional integral (PI) controller that has a closed-loop time constant in the range of 1 to 10 seconds (e.g., 3 seconds, 5 seconds, 5.5 seconds). Other types of controllers may be also be used, for example, proportional derivative (PD) controllers, proportional integral derivative (PID) controllers, state space controllers, etc. Additionally, other time constants can be used for the VAR regulator 240 provided that the time constant for the VAR regulator 240 is numerically greater than the time constant for a voltage regulator 270 (described below).
In several embodiments, the V command 250 may be limited to a predetermined range between Vmax 242 and Vmin 244. For example, in one embodiment, Vmax 242 and Vmin 244 may be defined in terms of a percentage of the rated generator output, such as by defining Vmax 242 as 105% of the rated generator voltage while defining Vmin 244 can be 95% of the rated generator voltage. However, it should be appreciated that alternate upper and lower limits may also be used.
In addition to defining a predetermined range or as an alternative thereto, the values for Vmax 242 and/or Vmin 244 may be set and/or dynamically adjusted based on the operating parameters of one or more of the wind turbine generators 110 and/or based on any other operating parameters of the entire system. For example, as shown in
It should be appreciated that, by using the voltage limit regulator 248 as described above, other voltage-based power system values may be maintained within equipment capabilities, thereby allowing the system to operate without requiring the performance of certain preventative actions. For example, overvoltage tripping actions are often performed when certain voltage-related conditions are present in combination with specific grid conditions, such as when there is high grid voltage simultaneous with a voltage imbalance across the three phases or when there is high grid voltage simultaneous with high generator speed and power output (which can lead to high rotor voltage in some types of generators, such as dual-fed generators). However, by setting or otherwise adjusting the value for Vmax 242 based on one or more relevant voltage-related parameters of the system, the wind turbine generator(s) 110 of the wind farm 100 may continue to operate at reduced reactive capacities without the need to trip the entire system. As such, the overall efficiency and operation of the wind farm 100 may be improved.
It should also be appreciated that, in addition to setting/adjusting the value for Vmax 242 or as an alternative thereto, the voltage limit regulator 248 may also be configured to set or dynamically adjust the value for Vmin 244 based on one or more voltage-related parameters of the system.
Referring still to
The voltage regulator 270 generates a reactive current command 280, which is used to control generator reactive current and, thus, generator reactive power (Qwg in
In general, there are two components of a reactive current command: the real power component denoted as Irq_Cmd and the reactive power component denoted as Ird_Cmd. The reactive current command 280 (generated as described above with respect to
In one embodiment, all of the limits discussed above with respect to
Referring now to
At 305, the upper and/or lower limits for the voltage setpoint (i.e., V Command 250 shown in
Additionally, it should be appreciated that, in several embodiments, the upper and/or lower limits of the voltage setpoint may be initially set as a function of a predetermined range (e.g., based on generator terminal voltage) and subsequently adjusted using the voltage limit regulator 248 to account for varying grid and/or system operating conditions.
At 310, the voltage setpoint is determined based on the reactive power command, with the voltage setpoint being limited to a value defined between the upper and lower limits. Additionally, at 315, a reactive current command for the generator is determined based on the voltage setpoint. The reactive current command may be limited, at 320, to a range based on, for example, the current rating of the generator. For example, crest current ratings can be used for the limits, or percentages of crest current ratings can be used for the limits. Moreover, at 325, the reactive current command is transmitted to the local controller for the wind turbine generator 110, which causes the commanded current to be provided to the generator. Thereafter, at 330, the generator may provide a reactive power output (Qwg in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4251735 | Coleman | Feb 1981 | A |
4350947 | Uenosono et al. | Sep 1982 | A |
4400659 | Barron et al. | Aug 1983 | A |
4607206 | Sember et al. | Aug 1986 | A |
5225712 | Erdman | Jul 1993 | A |
5798633 | Larsen et al. | Aug 1998 | A |
5808499 | Behbahani et al. | Sep 1998 | A |
5886417 | Oka et al. | Mar 1999 | A |
6107784 | Nomiya et al. | Aug 2000 | A |
6265852 | Kitamura et al. | Jul 2001 | B1 |
6327162 | Larsen et al. | Dec 2001 | B1 |
6456056 | Katoh et al. | Sep 2002 | B1 |
6479907 | Eriksson et al. | Nov 2002 | B1 |
6512966 | Lof et al. | Jan 2003 | B2 |
6566764 | Rebsdorf et al. | May 2003 | B2 |
6590366 | Browning et al. | Jul 2003 | B1 |
6700356 | Dorn | Mar 2004 | B1 |
6762592 | Noguchi et al. | Jul 2004 | B2 |
6815932 | Wall | Nov 2004 | B2 |
6856038 | Rebsdorf et al. | Feb 2005 | B2 |
6856039 | Mikhail et al. | Feb 2005 | B2 |
6870350 | Garrigan et al. | Mar 2005 | B2 |
6924565 | Wilkins et al. | Aug 2005 | B2 |
7015595 | Feddersen et al. | Mar 2006 | B2 |
7095130 | Ichinose et al. | Aug 2006 | B2 |
7224081 | Larsen | May 2007 | B2 |
8049352 | Jorgensen et al. | Nov 2011 | B2 |
20030015876 | Ichinose et al. | Jan 2003 | A1 |
20030151259 | Feddersen et al. | Aug 2003 | A1 |
20030227172 | Erdman et al. | Dec 2003 | A1 |
20040070359 | Dohnal et al. | Apr 2004 | A1 |
20050040655 | Wilkins et al. | Feb 2005 | A1 |
20050042098 | Wobben | Feb 2005 | A1 |
20050200133 | Wobben | Sep 2005 | A1 |
20060028025 | Kikuchi et al. | Feb 2006 | A1 |
20090278351 | Rivas et al. | Nov 2009 | A1 |
20100133831 | Scholte-Wassink | Jun 2010 | A1 |
20100134076 | Cardinal et al. | Jun 2010 | A1 |
20110031762 | Letas | Feb 2011 | A1 |
20110156389 | Arlaban Gabeiras et al. | Jun 2011 | A1 |
20120101640 | Stapelfeldt | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
196 20 906 | Jan 1998 | DE |
03030329 | Apr 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20140062085 A1 | Mar 2014 | US |