The disclosure relates generally to couplers that can be used in optical communication technology and more particularly to a voltage controlled optical directional coupler and associated systems and operating methods, which may be used in optical communication networks, such as fiber optic networks.
No admission is made that any reference cited herein constitutes prior art. Applicant expressly reserves the right to challenge the accuracy and pertinency of any cited reference.
A first embodiment of the disclosure relates to a voltage controlled optical directional coupler. The voltage controlled optical directional coupler (VCODC) of this embodiment may include a first optical hybrid coupler, which may include a trunk input of the voltage controlled optical directional coupler. The VCODC of the first embodiment may further include a second optical hybrid coupler, which may be coupled with a tap output of the VCODC, and one or more voltage controlled optical elements configured to couple the first optical hybrid coupler to the second optical hybrid coupler. The one or more voltage controlled optical elements may have a variable transparency depending on a voltage applied to the one or more voltage controlled optical elements. The VCODC may be configured to divert a portion of optical power received to the trunk input to the tap output based on a variable coupling ratio of the VCODC. The portion of optical power that is diverted may be dependent on the variable transparency of the one or more voltage controlled optical elements.
A second embodiment relates to a method for operating a VCODC. The VCODC that may be used in the method of the second embodiment may include a first optical hybrid coupler, which may include a trunk input of the VCODC, and a second optical hybrid coupler coupled with a tap output of the VCODC. The first optical hybrid coupler may be coupled with the second optical hybrid coupler via one or more voltage controlled optical elements having a variable transparency depending on a voltage applied to the one or more voltage controlled optical elements. The method may include setting a target optical power at the tap output (POPT TAP) for the VCODC. A portion of optical power received to the trunk input may be diverted to the tap output based on a variable coupling ratio of the VCODC. The portion of optical power that is diverted may be dependent on the variable transparency of the one or more voltage controlled optical elements. The method may further include observing an actual POPT TAP during operation of the VCODC, and determining whether the actual POPT TAP is equal to the target POPT TAP. The method may also include adjusting the variable coupling ratio of the VCODC to achieve the POPT TAP by tuning the voltage applied to the one or more voltage controlled optical elements in an instance in which the actual POPT TAP is not equal to the target POPT TAP.
A third embodiment relates to a system including a VCODC. The system may be, for example, an optical network, such as a fiber optic network in which a VCODC in accordance with various embodiments may be implemented. The VCODC included in the system of the third embodiment may be the VCODC of the first embodiment. The system of the third embodiment may further include a control loop that may be configured to adjust the variable coupling ratio of the VCODC to achieve a target optical power at the tap output (POPT TAP) by tuning a voltage that may be applied to one or more voltage controlled optical elements of the VCODC in an instance in which an observed POPT TAP is not equal to the target POPT TAP. The system may additionally include processing circuitry configured to set the target POPT TAP.
Additional features and advantages will be set forth in the detailed description, and will be readily apparent to those skilled in the art.
The foregoing general description and the detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims.
The accompanying drawings constitute a part of this specification. The drawings each illustrate one or more embodiments, and together with the description serve to explain principles and operation of the various embodiments.
An optical directional coupler diverts a fixed amount of optical power determined by a coupling ratio of the optical directional coupler from a trunk to a branch or tap location. Optical directional couplers are used for signal distribution of optical signals in a variety of distribution topologies, such as in a daisy chain topology.
Various example embodiments disclosed herein provide a voltage controlled optical coupler that can address the design limitations inherent with usage of conventional optical directional couplers. In this regard, the coupling ratio of a voltage controlled optical coupler disclosed herein can be adjusted through voltage tuning to achieve a desired tap output power. As such, voltage tuned optical directional couplers disclosed herein can reduce design complications in deployment of daisy chain topologies, allowing for deployment of longer daisy chains having more taps than possible when using conventional optical directional couplers. Moreover, the increased daisy chain length possible with use of voltage controlled optical couplers disclosed herein can reduce the amount of fiber needed for an overall network deployment, thus reducing costs for network deployment.
In this operation, Ports 2 and 3 are assumed to have identical reflectors with reflection coefficient Γ, and optical power with a magnitude of P is injected to port 4. According to the transfer matrix, the optical power at port 2 will be one half of the input power and with an angle of 180 degrees, and the optical power at port 3 will be one half of the input power with an angle of 270 degrees (referring to the input). In this example, the phase shift between port 2 and port 3 optical powers is 90 degrees.
Since Ports 2 and 3 have identical reflectors with a reflection coefficient of 0<Γ<1,the same amount of optical power will be reflected from port 2 and port 3, as illustrated in
In a case where the reflected waves from ports 2 and 3 returns to port 4, (input port) the waves will return in a 180 degree phase shift between of them, and they will cancel each other as illustrated in
the magnitude of the reflected power to port 1 is PPORT1=Γ·P+.
The VCODC 300 may include a first optical hybrid coupler 310 and a second optical hybrid coupler 314, which may be coupled (e.g., connected back-to-back) via one or more voltage controlled optical elements. The first optical hybrid coupler 310 and the second optical hybrid coupler 314 are coupled via two such voltage controlled optical elements—a first voltage controlled optical element 320 and a second voltage controlled optical element 324. It will be appreciated that while two voltage controlled optical elements are illustrated by way of example in
The voltage controlled optical element(s) (e.g., the first voltage controlled optical element 320 and the second voltage controlled optical element 324) used to couple the first optical hybrid coupler 310 and the second optical hybrid coupler 314 may be implemented via any optical element having a variable transparency depending on a voltage applied to the one voltage controlled optical elements. For example, a lens, such as a voltage controlled optical reflector may be used to implement the first voltage controlled optical element 320 and/or the second voltage controlled optical element 324.
An optical termination 330, such as may include black or opaque structure, may be connected to the lower output of the second optical hybrid coupler 314. The other port of the second optical hybrid coupler 324 may be coupled with a tap output of the VCODC 300. In the embodiment illustrated in
The first optical hybrid coupler 310 may include and/or otherwise be coupled with a trunk input 342, which may receive an input optical power, POPT IN. The VCODC 300 may be configured to divert a portion of power received to the tap input 342 (e.g., a portion of POPT IN) to the tap output 346. The portion of optical power diverted to the tap output 346 may be referred to as POPT TAP. The portion of optical power received to the trunk input 342 that is not diverted to the tap output 346 may be passed through to the trunk output 348, and may be referred to as POPT OUT.
The optical power value of POPT OUT our at the trunk output 348 varies with the coupling ratio of the VCODC 300, and may be described by the following equation:
POPT OUT=Γ·P+,
where the reflection coefficient Γ is correlated to the voltage controlled transparency of the voltage controlled optical element(s) (e.g., the first voltage controlled optical element 320 and the second voltage controlled optical element 324) used to couple the first optical hybrid coupler 310 and the second optical hybrid coupler 314.
The optical power value of POPT TAP likewise varies with the coupling ratio of the VCODC 300, and may be described by the following equation:
POPT TAP=POPT IN·(1−Γ).
The VCODC 300 may further include and/or otherwise be coupled with a control loop 348. The control loop 348 may be configured to adjust the variable coupling ratio of the VCODC 300 to maintain and/or otherwise achieve a target POPT TAP by tuning the voltage applied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 in an instance in which an actual POPT TAP observed during operation of the VCODC 300 is not equal to the target POPT TAP. In this regard, the control loop 348 may be configured to tune the voltage applied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 to increase transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 in an instance in which the observed POPT TAP is less than the target POPT TAP, and may be configured to tune the voltage applied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 to decrease transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 in an instance in which the observed POPT TAP is greater than the target POPT TAP.
The control loop 348 of some example embodiments may include a sensor 350 and a voltage controller 360. The sensor 350 may be embodied as any sensor configured to sense an actual POPT TAP during operation of the VCODC 300 and to generate a correction signal indicative of the value of the actual POPT TAP. The correction signal may comprise a correction voltage having a value corresponding to the optical power of the actual POPT TAP observed by the sensor 350. For example, such as that illustrated in and described below with respect to
The correction signal generated by the sensor 350 may be passed to the voltage controller 360. The voltage controller 360 may also be provided with an indication of a target POPT TAP value 362. The target POPT TAP value 362 may be a tunable threshold, or setpoint, that may be adjusted based on a desired POPT TAP value. In some example embodiments, such as that illustrated in and described below with respect to
The voltage controller 360 may be embodied as any circuit that may be configured to tune the voltage supplied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 based on the correction signal received from the sensor 350 to achieve the target POPT TAP value 362. In this regard, the voltage controller 360 may be configured to tune the voltage applied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 to increase transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 in an instance in which the observed POPT TAP is less than the target POPT TAP. In some embodiments, increasing the transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 may also decrease a reflectivity of the first voltage controlled optical element 320 and the second voltage controlled optical element 324. The voltage controller 360 may be further configured to tune the voltage applied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 to decrease transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 in an instance in which the observed POPT TAP is greater than the target POPT TAP. Decreasing the transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 may also increase a reflectivity of the first voltage controlled optical element 320 and the second voltage controlled optical element 324. The voltage controller 360 may accordingly be configured to close the control loop 348 by producing a voltage fed to the first voltage controlled optical element 320 and the second voltage controlled optical element 324.
In some embodiments, such as that illustrated in and described with respect to
Accordingly the coupling ratio of the VCODC 300 can be adjusted through voltage tuning to achieve a target POPT TAP, which may be required and/or otherwise desired for deployment within a network topology. As such, a substantially constant POPT TAP may be maintained by the VCODC 300. According to one aspect, the VCODC 300 can be used to build optimized, easy to design daisy chain networks with reduced (e.g., minimal) power loss compared to conventional optical directional couplers.
The VCODC 400 may include a first optical hybrid coupler 410 and a second optical hybrid coupler 414, which may, respectively, be embodiments of the first optical hybrid coupler 310 and the second optical hybrid coupler 314. The first optical hybrid coupler 410 and the second optical hybrid coupler 414 may be coupled (e.g., connected back-to-back) via a first voltage controlled optical reflector 420 and a second voltage controlled optical reflector 424. The first voltage controlled optical reflector 420 and the second voltage controlled optical reflector 424 may, for example, be embodiments of the first voltage controlled optical element 320 and the second voltage controlled optical element 324.
An optical termination 430, such as may include black or opaque structure, may be connected to the lower output of the second optical hybrid coupler 414. The other port of the second optical hybrid coupler 424 may be coupled with an optical coupler 440, which may provide the tap output 446 of the VCODC 400.
The first optical hybrid coupler 410 may include and/or otherwise be coupled with a trunk input 442, which may receive an input optical power, POPT IN. The VCODC 400 may be configured to divert a portion of power received to the tap input 442 (e.g., a portion of POPT IN) to the tap output 446. The portion of optical power diverted to the tap output 446 may be referred to as POPT TAP.The portion of optical power received to the trunk input 442 that is not diverted to the tap output 446 may be passed through to the trunk output 448, and may be referred to as POPT OUT.
Similarly to the VCODC 300, the optical power value of POPT OUT at the trunk output 448 varies with the coupling ratio of the VCODC 400, and may be described by the following equation:
where the reflection coefficient 1′is correlated to the voltage controlled transparency of the first voltage controlled optical reflector 420 and the second voltage controlled optical reflector 424.
The optical power value of POPT TAP likewise varies with the coupling ratio of the VCODC 400, and may be described by the following equation:
POPT TAP=POPT IN·(1−Γ).
The VCODC 400 may further include a photodiode 450 and a loop filter 460, which may form a control loop that may be configured to tune the voltage applied to the first voltage controlled optical reflector 420 and the second voltage controlled optical reflector 424 to tune POPT TAP to a target value. The photodiode 450 may, for example, be an embodiment of the sensor 350. The loop filter 460 may, for example, be an embodiment of the voltage controller 360. In this regard, the photodiode 450 and the loop filter 460 may collectively form an embodiment of the control loop 348.
The output of the optical coupler 440 may illuminate the photo diode 450, which may be configured to produce a correction voltage related to the POPT TAP observed via the output of the optical coupler 440. The generated correction voltage may be passed to the loop filter 460, which may also be supplied with a tunable threshold voltage 462 (e.g., a reference voltage), which may correspond to a target POPT TAP. In some example embodiments, such as that illustrated in and described below with respect to
The loop filter 460 may be configured to tune the voltage applied to the first voltage controlled optical reflector 420 and the second voltage controlled optical reflector 424 based at least in part on the relationship between the threshold voltage 462 and the correction voltage produced by the photodiode 450. The loop filter 460 can accordingly close the control loop for the VCODC 400 by producing the voltage fed to the first voltage controlled optical reflector 420 and the second voltage controlled optical reflector 424 based on the relationship between the threshold voltage 462 and the correction voltage produced by the photodiode 450.
The coupling ratio of the VCODC 400 can accordingly be adjusted through voltage tuning to achieve a target POPT TAP, which may be required and/or otherwise desired for deployment within a network topology. According to one aspect, the VCODC 400 can be used to build optimized, easy to design daisy chain networks with reduced (e.g., minimal) power loss compared to conventional optical directional couplers.
The control loop 548 may include a sensor 550 and a voltage controller 560. The sensor 550 may be configured to observe an actual POPT TAP of the VCODC 502 and generate a correction signal indicative of the actual POPT TAP. In this regard, the sensor 550 may, for example, be an embodiment of the sensor 350. The voltage controller 560 may be configured to receive the correction signal generated by the sensor 550. The voltage controller 560 may also be supplied with a tunable indication of a target POPT TAP 562, which may, for example, be a threshold voltage corresponding to the target POPT TAP. The voltage controller 560 may be configured to adjust a coupling ratio of the VCODC 502 through voltage tuning that may be performed based on the tunable indication of the target POPT TAP 562 and the correction signal to achieve the target POPT TAP. In this regard, the voltage controller 560 may, for example, be an embodiment of the voltage controller 360.
The target POPT TAP 562 may be supplied and/or otherwise controlled by processing circuitry 570. In some example embodiments, the processing circuitry 570 may include a processor 572 and, in some embodiments, such as that illustrated in
The processor 572 may be embodied in a variety of forms. For example, the processor 572 may be embodied as various hardware processing means such as a microprocessor, a coprocessor, a controller or various other computing or processing devices including integrated circuits such as, for example, an ASIC (application specific integrated circuit), an FPGA (field programmable gate array), some combination thereof, or the like. Although illustrated as a single processor, it will be appreciated that the processor 572 may comprise a plurality of processors. In some example embodiments, the processor 572 may be configured to execute instructions that may be stored in the memory 574 and/or that may be otherwise accessible to the processor 572. As such, whether configured by hardware or by a combination of hardware and software, the processor 572 may be configured to control the target POPT TAP for one or more VCODCs 502 in accordance with various example embodiments.
In some example embodiments, the memory 574 may include one or more memory and/or other storage devices. Memory 574 may include fixed and/or removable memory devices. In some embodiments, the memory 574 may provide a non-transitory computer-readable storage medium that may store computer program instructions that may be executed by the processor 572. In this regard, the memory 574 may be configured to store information, data, applications, instructions and/or the like for enabling the processor 572 to control the target POPT TAP for one or more VCODCs 502.
The system 500 may be implemented within a network topology including one or more VCODCs. For example, in some deployments, the system 500 may be implemented within a daisy chain topology including a plurality of VCODCs 502. The processing circuitry 570 in such deployments may be interfaced with the control loops of multiple VCODCs 502 to control the target POPT TAP for each respective VCODC 502. In such deployments, the processing circuitry 570 may be configured to individually set a target POPT TAP for each respective VCODC 502, or may be configured to set a universal target POPT TAP for all of the VCODCs 502 depending on the particular network topology and/or other network design specifications/needs.
Operation 600 may include setting a target optical power at the tap output (POPT TAP) for a VCODC, and may be performed by processing circuitry, such as circuitry 570. Operation 600 may include providing an indication of the target POPT TAP to an element of a control loop, such as a voltage controller (e.g., voltage controller 360, loop filter 460, and/or voltage controller 560) as a setpoint to enable the control loop to adjust the coupling ratio of the VCODC to achieve the target POPT TAP. For example, operation 600 may include supplying a threshold, or reference, voltage corresponding to the target POPT TAP to a voltage controller.
Operation 610 may include observing an actual POPT TAP at the tap output of the VCODC. Operation 610 may be performed by a sensor, such as sensor 350, photodiode 450, and/or sensor 550, which may be implemented within the control loop. Operation 610 may include the sensor generating a correction signal indicative of the actual POPT TAP.
Operation 620 may include determining whether the actual POPT TAP is equal to the target POPT TAP. Operation 620 may be performed by a voltage controller as, such voltage controller 360, loop filter 460, and/or voltage controller 560. Operation 620 may be performed based on a control signal indicative of the actual POPT TAP that may be supplied to the voltage controller attendant to performance of operation 610. For example, in embodiments in which the correction signal is a correction voltage and the target POPT TAP is indicated via a threshold voltage, operation 620 may be performed by determining a relationship between the correction voltage and the threshold voltage.
In an instance in which it is determined at operation 620 that the actual POPT TAP does not equal the target POPT TAP, the method may proceed to operation 630, which may include the control loop adjusting the variable coupling ratio of the VCODC to achieve the target POPT TAP. In this regard, operation 630 may include tuning a voltage applied to one or more voltage controlled optical elements (e.g., voltage controlled optical elements 320, 324; voltage controlled optical reflectors 420, 424; and/or the like) within the voltage controlled optical coupler to increase transparency of the voltage controlled optical elements in an instance in which the actual POPT TAP is less than the target POPT TAP, or to decrease transparency of the voltage controlled optical elements in an instance in which the actual POPT TAP is greater than the target POPT TAP. Operation 630 may be performed by a voltage controller, such as voltage controller 360, loop filter 460, and/or voltage controller 560, which may be implemented within the control loop.
If, however, it is determined at operation 620 that the actual POPT TAP is equal (e.g., substantially equal within a margin of error that may vary with design specifications) to the target POPT TAP, the method may instead proceed to operation 640, which may include maintaining the current coupling ratio of the VCODC.
In some embodiments, the method may return to operation 610 after performance of operation 630 and/or after operation 640. In this regard, operations 610-640 may be performed on an ongoing basis by the control loop during operation of the VCODC in order to maintain the target POPT TAP.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.
This application is a continuation of International Application No. PCT/IL14/050535 filed on Jun. 12, 2014, which claims the benefit of priority to U.S. Provisional Application No. 61/834,066, filed on Jun. 12, 2013, and Provisional Application No. 61/894,129, filed on Oct. 22, 2013, the contents of which are relied upon and incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3824597 | Berg | Jul 1974 | A |
4302071 | Winzer | Nov 1981 | A |
4365865 | Stiles | Dec 1982 | A |
4449246 | Seiler et al. | May 1984 | A |
4573212 | Lipsky | Feb 1986 | A |
4665560 | Lange | May 1987 | A |
4867527 | Dotti et al. | Sep 1989 | A |
4889977 | Haydon | Dec 1989 | A |
4896939 | O'Brien | Jan 1990 | A |
4916460 | Powell | Apr 1990 | A |
4939852 | Brenner | Jul 1990 | A |
4972346 | Kawano et al. | Nov 1990 | A |
5039195 | Jenkins et al. | Aug 1991 | A |
5042086 | Cole et al. | Aug 1991 | A |
5056109 | Gilhousen et al. | Oct 1991 | A |
5059927 | Cohen | Oct 1991 | A |
5125060 | Edmundson | Jun 1992 | A |
5187803 | Sohner et al. | Feb 1993 | A |
5189718 | Barrett et al. | Feb 1993 | A |
5189719 | Coleman et al. | Feb 1993 | A |
5206655 | Caille et al. | Apr 1993 | A |
5208812 | Dudek et al. | May 1993 | A |
5210812 | Nilsson et al. | May 1993 | A |
5260957 | Hakimi | Nov 1993 | A |
5263108 | Kurokawa et al. | Nov 1993 | A |
5267122 | Glover et al. | Nov 1993 | A |
5268971 | Nilsson et al. | Dec 1993 | A |
5268980 | Yuuki | Dec 1993 | A |
5278690 | Vella-Coleiro | Jan 1994 | A |
5278923 | Nazarathy et al. | Jan 1994 | A |
5278989 | Burke et al. | Jan 1994 | A |
5280472 | Gilhousen et al. | Jan 1994 | A |
5299947 | Barnard | Apr 1994 | A |
5301056 | O'Neill | Apr 1994 | A |
5325223 | Bears | Jun 1994 | A |
5339058 | Lique | Aug 1994 | A |
5339184 | Tang | Aug 1994 | A |
5343320 | Anderson | Aug 1994 | A |
5377035 | Wang et al. | Dec 1994 | A |
5379455 | Koschek | Jan 1995 | A |
5381459 | Lappington | Jan 1995 | A |
5396224 | Dukes et al. | Mar 1995 | A |
5400391 | Emura et al. | Mar 1995 | A |
5420863 | Taketsugu et al. | May 1995 | A |
5424864 | Emura | Jun 1995 | A |
5444564 | Newberg | Aug 1995 | A |
5457557 | Zarem et al. | Oct 1995 | A |
5459727 | Vannucci | Oct 1995 | A |
5469523 | Blew et al. | Nov 1995 | A |
5519830 | Opoczynski | May 1996 | A |
5543000 | Lique | Aug 1996 | A |
5546443 | Raith | Aug 1996 | A |
5557698 | Gareis et al. | Sep 1996 | A |
5574815 | Kneeland | Nov 1996 | A |
5598288 | Collar | Jan 1997 | A |
5606725 | Hart | Feb 1997 | A |
5615034 | Hori | Mar 1997 | A |
5627879 | Russell et al. | May 1997 | A |
5640678 | Ishikawa et al. | Jun 1997 | A |
5642405 | Fischer et al. | Jun 1997 | A |
5644622 | Russell et al. | Jul 1997 | A |
5648961 | Ebihara | Jul 1997 | A |
5651081 | Blew et al. | Jul 1997 | A |
5657374 | Russell et al. | Aug 1997 | A |
5668562 | Cutrer et al. | Sep 1997 | A |
5677974 | Elms et al. | Oct 1997 | A |
5682256 | Motley et al. | Oct 1997 | A |
5694232 | Parsay et al. | Dec 1997 | A |
5703602 | Casebolt | Dec 1997 | A |
5708681 | Malkemes et al. | Jan 1998 | A |
5726984 | Kubler et al. | Mar 1998 | A |
5765099 | Georges et al. | Jun 1998 | A |
5790536 | Mahany et al. | Aug 1998 | A |
5790606 | Dent | Aug 1998 | A |
5793772 | Burke et al. | Aug 1998 | A |
5802173 | Hamilton-Piercy et al. | Sep 1998 | A |
5802473 | Rutledge et al. | Sep 1998 | A |
5805975 | Green, Sr. et al. | Sep 1998 | A |
5805983 | Naidu et al. | Sep 1998 | A |
5809395 | Hamilton-Piercy et al. | Sep 1998 | A |
5809431 | Bustamante et al. | Sep 1998 | A |
5812296 | Tarusawa et al. | Sep 1998 | A |
5818619 | Medved et al. | Oct 1998 | A |
5818883 | Smith et al. | Oct 1998 | A |
5821510 | Cohen et al. | Oct 1998 | A |
5825651 | Gupta et al. | Oct 1998 | A |
5838474 | Stilling | Nov 1998 | A |
5839052 | Dean et al. | Nov 1998 | A |
5852651 | Fischer et al. | Dec 1998 | A |
5854986 | Dorren et al. | Dec 1998 | A |
5859719 | Dentai et al. | Jan 1999 | A |
5862460 | Rich | Jan 1999 | A |
5867485 | Chambers et al. | Feb 1999 | A |
5867763 | Dean et al. | Feb 1999 | A |
5881200 | Burt | Mar 1999 | A |
5883882 | Schwartz | Mar 1999 | A |
5896568 | Tseng et al. | Apr 1999 | A |
5903834 | Wallstedt et al. | May 1999 | A |
5910776 | Black | Jun 1999 | A |
5913003 | Arroyo et al. | Jun 1999 | A |
5917636 | Wake et al. | Jun 1999 | A |
5930682 | Schwartz et al. | Jul 1999 | A |
5936754 | Ariyavisitakul et al. | Aug 1999 | A |
5943372 | Gans et al. | Aug 1999 | A |
5943453 | Hodgson | Aug 1999 | A |
5946622 | Bojeryd | Aug 1999 | A |
5949564 | Wake | Sep 1999 | A |
5953670 | Newson | Sep 1999 | A |
5959531 | Gallagher, III et al. | Sep 1999 | A |
5960344 | Mahany | Sep 1999 | A |
5969837 | Farber et al. | Oct 1999 | A |
5983070 | Georges et al. | Nov 1999 | A |
5987303 | Dutta et al. | Nov 1999 | A |
6005884 | Cook et al. | Dec 1999 | A |
6006069 | Langston et al. | Dec 1999 | A |
6006105 | Rostoker et al. | Dec 1999 | A |
6011980 | Nagano et al. | Jan 2000 | A |
6014546 | Georges et al. | Jan 2000 | A |
6016426 | Bodell | Jan 2000 | A |
6023625 | Myers, Jr. | Feb 2000 | A |
6037898 | Parish et al. | Mar 2000 | A |
6061161 | Yang et al. | May 2000 | A |
6069721 | Oh et al. | May 2000 | A |
6088381 | Myers, Jr. | Jul 2000 | A |
6118767 | Shen et al. | Sep 2000 | A |
6122529 | Sabat, Jr. et al. | Sep 2000 | A |
6127917 | Tuttle | Oct 2000 | A |
6128470 | Naidu et al. | Oct 2000 | A |
6128477 | Freed | Oct 2000 | A |
6148041 | Dent | Nov 2000 | A |
6150921 | Werb et al. | Nov 2000 | A |
6157810 | Georges et al. | Dec 2000 | A |
6192216 | Sabat, Jr. et al. | Feb 2001 | B1 |
6194968 | Winslow | Feb 2001 | B1 |
6212397 | Langston et al. | Apr 2001 | B1 |
6222503 | Gietema | Apr 2001 | B1 |
6222965 | Smith | Apr 2001 | B1 |
6223201 | Reznak | Apr 2001 | B1 |
6232870 | Garber et al. | May 2001 | B1 |
6236789 | Fitz | May 2001 | B1 |
6236863 | Waldroup et al. | May 2001 | B1 |
6240274 | Izadpanah | May 2001 | B1 |
6246500 | Ackerman | Jun 2001 | B1 |
6268946 | Larkin et al. | Jul 2001 | B1 |
6275990 | Dapper et al. | Aug 2001 | B1 |
6279158 | Geile et al. | Aug 2001 | B1 |
6286163 | Trimble | Sep 2001 | B1 |
6292673 | Maeda et al. | Sep 2001 | B1 |
6295451 | Mimura | Sep 2001 | B1 |
6301240 | Slabinski et al. | Oct 2001 | B1 |
6307869 | Pawelski | Oct 2001 | B1 |
6314163 | Acampora | Nov 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6323980 | Bloom | Nov 2001 | B1 |
6324391 | Bodell | Nov 2001 | B1 |
6330241 | Fort | Dec 2001 | B1 |
6330244 | Swartz et al. | Dec 2001 | B1 |
6334219 | Hill et al. | Dec 2001 | B1 |
6336021 | Nukada | Jan 2002 | B1 |
6336042 | Dawson et al. | Jan 2002 | B1 |
6337754 | Imajo | Jan 2002 | B1 |
6340932 | Rodgers et al. | Jan 2002 | B1 |
6353406 | Lanzl et al. | Mar 2002 | B1 |
6353600 | Schwartz et al. | Mar 2002 | B1 |
6359714 | Imajo | Mar 2002 | B1 |
6370203 | Boesch et al. | Apr 2002 | B1 |
6374078 | Williams et al. | Apr 2002 | B1 |
6374124 | Slabinski | Apr 2002 | B1 |
6389010 | Kubler et al. | May 2002 | B1 |
6400318 | Kasami et al. | Jun 2002 | B1 |
6400418 | Wakabayashi | Jun 2002 | B1 |
6404775 | Leslie et al. | Jun 2002 | B1 |
6405018 | Reudink et al. | Jun 2002 | B1 |
6405058 | Bobier | Jun 2002 | B2 |
6405308 | Gupta et al. | Jun 2002 | B1 |
6414624 | Endo et al. | Jul 2002 | B2 |
6415132 | Sabat, Jr. | Jul 2002 | B1 |
6421327 | Lundby et al. | Jul 2002 | B1 |
6438301 | Johnson et al. | Aug 2002 | B1 |
6438371 | Fujise et al. | Aug 2002 | B1 |
6448558 | Greene | Sep 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6459519 | Sasai et al. | Oct 2002 | B1 |
6459989 | Kirkpatrick et al. | Oct 2002 | B1 |
6477154 | Cheong et al. | Nov 2002 | B1 |
6480702 | Sabat, Jr. | Nov 2002 | B1 |
6486907 | Farber et al. | Nov 2002 | B1 |
6496290 | Lee | Dec 2002 | B1 |
6501965 | Lucidarme | Dec 2002 | B1 |
6504636 | Seto et al. | Jan 2003 | B1 |
6504831 | Greenwood et al. | Jan 2003 | B1 |
6512478 | Chien | Jan 2003 | B1 |
6519395 | Bevan et al. | Feb 2003 | B1 |
6519449 | Zhang et al. | Feb 2003 | B1 |
6525855 | Westbrook et al. | Feb 2003 | B1 |
6535330 | Lelic et al. | Mar 2003 | B1 |
6535720 | Kintis et al. | Mar 2003 | B1 |
6556551 | Schwartz | Apr 2003 | B1 |
6577794 | Currie et al. | Jun 2003 | B1 |
6577801 | Broderick et al. | Jun 2003 | B2 |
6580402 | Navarro et al. | Jun 2003 | B2 |
6580905 | Naidu et al. | Jun 2003 | B1 |
6580918 | Leickel et al. | Jun 2003 | B1 |
6583763 | Judd | Jun 2003 | B2 |
6587514 | Wright et al. | Jul 2003 | B1 |
6594496 | Schwartz | Jul 2003 | B2 |
6597325 | Judd et al. | Jul 2003 | B2 |
6598009 | Yang | Jul 2003 | B2 |
6606430 | Bartur et al. | Aug 2003 | B2 |
6615074 | Mickle et al. | Sep 2003 | B2 |
6628732 | Takaki | Sep 2003 | B1 |
6634811 | Gertel et al. | Oct 2003 | B1 |
6636747 | Harada et al. | Oct 2003 | B2 |
6640103 | Inman et al. | Oct 2003 | B1 |
6643437 | Park | Nov 2003 | B1 |
6652158 | Bartur et al. | Nov 2003 | B2 |
6654590 | Boros et al. | Nov 2003 | B2 |
6654616 | Pope, Jr. et al. | Nov 2003 | B1 |
6657535 | Magbie et al. | Dec 2003 | B1 |
6658269 | Golemon et al. | Dec 2003 | B1 |
6665308 | Rakib et al. | Dec 2003 | B1 |
6670930 | Navarro | Dec 2003 | B2 |
6674966 | Koonen | Jan 2004 | B1 |
6675294 | Gupta et al. | Jan 2004 | B1 |
6678509 | Skarman et al. | Jan 2004 | B2 |
6687437 | Starnes et al. | Feb 2004 | B1 |
6690328 | Judd | Feb 2004 | B2 |
6701137 | Judd et al. | Mar 2004 | B1 |
6704298 | Matsumiya et al. | Mar 2004 | B1 |
6704545 | Wala | Mar 2004 | B1 |
6710366 | Lee et al. | Mar 2004 | B1 |
6714706 | Kambe | Mar 2004 | B2 |
6714800 | Johnson et al. | Mar 2004 | B2 |
6731880 | Westbrook et al. | May 2004 | B2 |
6745013 | Porter et al. | Jun 2004 | B1 |
6758913 | Tunney et al. | Jul 2004 | B1 |
6763226 | McZeal, Jr. | Jul 2004 | B1 |
6771862 | Karnik et al. | Aug 2004 | B2 |
6771933 | Eng et al. | Aug 2004 | B1 |
6775427 | Evans | Aug 2004 | B2 |
6784802 | Stanescu | Aug 2004 | B1 |
6785558 | Stratford et al. | Aug 2004 | B1 |
6788666 | Linebarger et al. | Sep 2004 | B1 |
6801767 | Schwartz et al. | Oct 2004 | B1 |
6807374 | Imajo et al. | Oct 2004 | B1 |
6812824 | Goldinger et al. | Nov 2004 | B1 |
6812905 | Thomas et al. | Nov 2004 | B2 |
6823174 | Masenten et al. | Nov 2004 | B1 |
6826163 | Mani et al. | Nov 2004 | B2 |
6826164 | Mani et al. | Nov 2004 | B2 |
6826337 | Linnell | Nov 2004 | B2 |
6836660 | Wala | Dec 2004 | B1 |
6836673 | Trott | Dec 2004 | B1 |
6838738 | Costello | Jan 2005 | B1 |
6842433 | West et al. | Jan 2005 | B2 |
6847856 | Bohannon | Jan 2005 | B1 |
6850510 | Kubler | Feb 2005 | B2 |
6865390 | Goss et al. | Mar 2005 | B2 |
6873823 | Hasarchi | Mar 2005 | B2 |
6876056 | Tilmans et al. | Apr 2005 | B2 |
6879290 | Toutain et al. | Apr 2005 | B1 |
6882311 | Walker et al. | Apr 2005 | B2 |
6883710 | Chung | Apr 2005 | B2 |
6885344 | Mohamadi | Apr 2005 | B2 |
6885846 | Panasik et al. | Apr 2005 | B1 |
6889060 | Fernando et al. | May 2005 | B2 |
6909399 | Zegelin et al. | Jun 2005 | B1 |
6915058 | Pons | Jul 2005 | B2 |
6915529 | Suematsu et al. | Jul 2005 | B1 |
6919858 | Rofougaran | Jul 2005 | B2 |
6920330 | Caronni et al. | Jul 2005 | B2 |
6924997 | Chen et al. | Aug 2005 | B2 |
6930987 | Fukuda et al. | Aug 2005 | B1 |
6931183 | Panak et al. | Aug 2005 | B2 |
6931659 | Kinemura | Aug 2005 | B1 |
6933849 | Sawyer | Aug 2005 | B2 |
6934511 | Lovinggood et al. | Aug 2005 | B1 |
6934541 | Miyatani | Aug 2005 | B2 |
6941112 | Hasegawa | Sep 2005 | B2 |
6946989 | Vavik | Sep 2005 | B2 |
6961312 | Kubler et al. | Nov 2005 | B2 |
6963289 | Aljadeff et al. | Nov 2005 | B2 |
6963552 | Sabat, Jr. et al. | Nov 2005 | B2 |
6965718 | Koertel | Nov 2005 | B2 |
6967347 | Estes et al. | Nov 2005 | B2 |
6968107 | Belardi et al. | Nov 2005 | B2 |
6970652 | Zhang et al. | Nov 2005 | B2 |
6973243 | Koyasu et al. | Dec 2005 | B2 |
6974262 | Rickenbach | Dec 2005 | B1 |
6977502 | Hertz | Dec 2005 | B1 |
7002511 | Ammar et al. | Feb 2006 | B1 |
7006465 | Toshimitsu et al. | Feb 2006 | B2 |
7013087 | Suzuki et al. | Mar 2006 | B2 |
7015826 | Chan et al. | Mar 2006 | B1 |
7020473 | Splett | Mar 2006 | B2 |
7020488 | Bleile et al. | Mar 2006 | B1 |
7024166 | Wallace | Apr 2006 | B2 |
7035512 | Van Bijsterveld | Apr 2006 | B2 |
7039399 | Fischer | May 2006 | B2 |
7043271 | Seto et al. | May 2006 | B1 |
7047028 | Cagenius et al. | May 2006 | B2 |
7050017 | King et al. | May 2006 | B2 |
7053838 | Judd | May 2006 | B2 |
7054513 | Herz et al. | May 2006 | B2 |
7069577 | Geile et al. | Jun 2006 | B2 |
7072586 | Aburakawa et al. | Jul 2006 | B2 |
7082320 | Kattukaran et al. | Jul 2006 | B2 |
7084769 | Bauer et al. | Aug 2006 | B2 |
7093985 | Lord et al. | Aug 2006 | B2 |
7103119 | Matsuoka et al. | Sep 2006 | B2 |
7103377 | Bauman et al. | Sep 2006 | B2 |
7106252 | Smith et al. | Sep 2006 | B2 |
7106931 | Sutehall et al. | Sep 2006 | B2 |
7110795 | Doi | Sep 2006 | B2 |
7114859 | Tuohimaa et al. | Oct 2006 | B1 |
7127175 | Mani et al. | Oct 2006 | B2 |
7127176 | Sasaki | Oct 2006 | B2 |
7142503 | Grant et al. | Nov 2006 | B1 |
7142535 | Kubler et al. | Nov 2006 | B2 |
7142619 | Sommer et al. | Nov 2006 | B2 |
7146506 | Hannah et al. | Dec 2006 | B1 |
7160032 | Nagashima et al. | Jan 2007 | B2 |
7171244 | Bauman | Jan 2007 | B2 |
7184728 | Solum | Feb 2007 | B2 |
7190748 | Kim et al. | Mar 2007 | B2 |
7194023 | Norrell et al. | Mar 2007 | B2 |
7199443 | Elsharawy | Apr 2007 | B2 |
7200305 | Dion et al. | Apr 2007 | B2 |
7200391 | Chung et al. | Apr 2007 | B2 |
7228072 | Mickelsson et al. | Jun 2007 | B2 |
7263293 | Ommodt et al. | Aug 2007 | B2 |
7269311 | Kim et al. | Sep 2007 | B2 |
7280011 | Bayar et al. | Oct 2007 | B2 |
7286843 | Scheck | Oct 2007 | B2 |
7286854 | Ferrato et al. | Oct 2007 | B2 |
7295119 | Rappaport et al. | Nov 2007 | B2 |
7302140 | Nashimoto | Nov 2007 | B2 |
7310430 | Mallya et al. | Dec 2007 | B1 |
7313415 | Wake et al. | Dec 2007 | B2 |
7315735 | Graham | Jan 2008 | B2 |
7324730 | Varkey et al. | Jan 2008 | B2 |
7343164 | Kallstenius | Mar 2008 | B2 |
7348843 | Qiu et al. | Mar 2008 | B1 |
7349633 | Lee et al. | Mar 2008 | B2 |
7359408 | Kim | Apr 2008 | B2 |
7359674 | Markki et al. | Apr 2008 | B2 |
7366150 | Lee et al. | Apr 2008 | B2 |
7366151 | Kubler et al. | Apr 2008 | B2 |
7369526 | Lechleider et al. | May 2008 | B2 |
7379669 | Kim | May 2008 | B2 |
7388892 | Nishiyama et al. | Jun 2008 | B2 |
7392025 | Rooyen et al. | Jun 2008 | B2 |
7392029 | Pronkine | Jun 2008 | B2 |
7394883 | Funakubo et al. | Jul 2008 | B2 |
7403156 | Coppi et al. | Jul 2008 | B2 |
7409159 | Izadpanah | Aug 2008 | B2 |
7412224 | Kotola et al. | Aug 2008 | B2 |
7424228 | Williams et al. | Sep 2008 | B1 |
7444051 | Tatat et al. | Oct 2008 | B2 |
7450853 | Kim et al. | Nov 2008 | B2 |
7450854 | Lee et al. | Nov 2008 | B2 |
7451365 | Wang et al. | Nov 2008 | B2 |
7454222 | Huang et al. | Nov 2008 | B2 |
7460507 | Kubler et al. | Dec 2008 | B2 |
7460829 | Utsumi et al. | Dec 2008 | B2 |
7460831 | Hasarchi | Dec 2008 | B2 |
7466925 | Iannelli | Dec 2008 | B2 |
7469105 | Wake et al. | Dec 2008 | B2 |
7477597 | Segel | Jan 2009 | B2 |
7483504 | Shapira et al. | Jan 2009 | B2 |
7483711 | Burchfiel | Jan 2009 | B2 |
7496070 | Vesuna | Feb 2009 | B2 |
7496384 | Seto et al. | Feb 2009 | B2 |
7505747 | Solum | Mar 2009 | B2 |
7512419 | Solum | Mar 2009 | B2 |
7522552 | Fein et al. | Apr 2009 | B2 |
7539509 | Bauman et al. | May 2009 | B2 |
7542452 | Penumetsa | Jun 2009 | B2 |
7546138 | Bauman | Jun 2009 | B2 |
7548138 | Kamgaing | Jun 2009 | B2 |
7548695 | Wake | Jun 2009 | B2 |
7551641 | Pirzada et al. | Jun 2009 | B2 |
7557758 | Rofougaran | Jul 2009 | B2 |
7580384 | Kubler et al. | Aug 2009 | B2 |
7586861 | Kubler et al. | Sep 2009 | B2 |
7590354 | Sauer et al. | Sep 2009 | B2 |
7593704 | Pinel et al. | Sep 2009 | B2 |
7599420 | Forenza et al. | Oct 2009 | B2 |
7599672 | Shoji et al. | Oct 2009 | B2 |
7610046 | Wala | Oct 2009 | B2 |
7630690 | Kaewell, Jr. et al. | Dec 2009 | B2 |
7633934 | Kubler et al. | Dec 2009 | B2 |
7639982 | Wala | Dec 2009 | B2 |
7646743 | Kubler et al. | Jan 2010 | B2 |
7646777 | Hicks, III et al. | Jan 2010 | B2 |
7653397 | Pernu et al. | Jan 2010 | B2 |
7668565 | Ylänen et al. | Feb 2010 | B2 |
7675936 | Mizutani et al. | Mar 2010 | B2 |
7688811 | Kubler et al. | Mar 2010 | B2 |
7693486 | Kasslin et al. | Apr 2010 | B2 |
7697467 | Kubler et al. | Apr 2010 | B2 |
7697574 | Suematsu et al. | Apr 2010 | B2 |
7715375 | Kubler et al. | May 2010 | B2 |
7720510 | Pescod et al. | May 2010 | B2 |
7751374 | Donovan | Jul 2010 | B2 |
7751838 | Ramesh et al. | Jul 2010 | B2 |
7760703 | Kubler et al. | Jul 2010 | B2 |
7761093 | Sabat, Jr. et al. | Jul 2010 | B2 |
7768951 | Kubler et al. | Aug 2010 | B2 |
7773573 | Chung et al. | Aug 2010 | B2 |
7778603 | Palin et al. | Aug 2010 | B2 |
7787823 | George et al. | Aug 2010 | B2 |
7805073 | Sabat, Jr. et al. | Sep 2010 | B2 |
7809012 | Ruuska et al. | Oct 2010 | B2 |
7812766 | Leblanc et al. | Oct 2010 | B2 |
7812775 | Babakhani et al. | Oct 2010 | B2 |
7817969 | Castaneda et al. | Oct 2010 | B2 |
7835328 | Stephens et al. | Nov 2010 | B2 |
7848316 | Kubler et al. | Dec 2010 | B2 |
7848770 | Scheinert | Dec 2010 | B2 |
7853234 | Afsahi | Dec 2010 | B2 |
7870321 | Rofougaran | Jan 2011 | B2 |
7880677 | Rofougaran et al. | Feb 2011 | B2 |
7881755 | Mishra et al. | Feb 2011 | B1 |
7894423 | Kubler et al. | Feb 2011 | B2 |
7899007 | Kubler et al. | Mar 2011 | B2 |
7907972 | Walton et al. | Mar 2011 | B2 |
7912043 | Kubler et al. | Mar 2011 | B2 |
7912506 | Lovberg et al. | Mar 2011 | B2 |
7916706 | Kubler et al. | Mar 2011 | B2 |
7917177 | Bauman | Mar 2011 | B2 |
7920553 | Kubler et al. | Apr 2011 | B2 |
7920858 | Sabat, Jr. et al. | Apr 2011 | B2 |
7924783 | Mahany et al. | Apr 2011 | B1 |
7936713 | Kubler et al. | May 2011 | B2 |
7949364 | Kasslin et al. | May 2011 | B2 |
7957777 | Vu et al. | Jun 2011 | B1 |
7962111 | Solum | Jun 2011 | B2 |
7969009 | Chandrasekaran | Jun 2011 | B2 |
7969911 | Mahany et al. | Jun 2011 | B2 |
7990925 | Tinnakornsrisuphap et al. | Aug 2011 | B2 |
7996020 | Chhabra | Aug 2011 | B1 |
8018907 | Kubler et al. | Sep 2011 | B2 |
8023886 | Rofougaran | Sep 2011 | B2 |
8027656 | Rofougaran et al. | Sep 2011 | B2 |
8036308 | Rofougaran | Oct 2011 | B2 |
8082353 | Huber et al. | Dec 2011 | B2 |
8086192 | Rofougaran et al. | Dec 2011 | B2 |
8135102 | Wiwel et al. | Mar 2012 | B2 |
8213401 | Fischer et al. | Jul 2012 | B2 |
8223795 | Cox et al. | Jul 2012 | B2 |
8238463 | Arslan et al. | Aug 2012 | B1 |
8270387 | Cannon et al. | Sep 2012 | B2 |
8290483 | Sabat, Jr. et al. | Oct 2012 | B2 |
8306563 | Zavadsky et al. | Nov 2012 | B2 |
8346278 | Wala et al. | Jan 2013 | B2 |
8428201 | McHann, Jr. et al. | Apr 2013 | B1 |
8428510 | Stratford et al. | Apr 2013 | B2 |
8462683 | Uyehara et al. | Jun 2013 | B2 |
8472579 | Uyehara et al. | Jun 2013 | B2 |
8509215 | Stuart | Aug 2013 | B2 |
8509850 | Zavadsky et al. | Aug 2013 | B2 |
8526970 | Wala et al. | Sep 2013 | B2 |
8532242 | Fischer et al. | Sep 2013 | B2 |
8626245 | Zavadsky et al. | Jan 2014 | B2 |
8737454 | Wala et al. | May 2014 | B2 |
8743718 | Grenier et al. | Jun 2014 | B2 |
8743756 | Uyehara et al. | Jun 2014 | B2 |
8750173 | Knox | Jun 2014 | B2 |
8837659 | Uyehara et al. | Sep 2014 | B2 |
8837940 | Smith et al. | Sep 2014 | B2 |
8873585 | Oren et al. | Oct 2014 | B2 |
8929288 | Stewart et al. | Jan 2015 | B2 |
20010024545 | Sorin | Sep 2001 | A1 |
20010033710 | Kim | Oct 2001 | A1 |
20010036163 | Sabat, Jr. et al. | Nov 2001 | A1 |
20010036199 | Terry | Nov 2001 | A1 |
20020003645 | Kim et al. | Jan 2002 | A1 |
20020009070 | Lindsay et al. | Jan 2002 | A1 |
20020012336 | Hughes et al. | Jan 2002 | A1 |
20020012495 | Sasai et al. | Jan 2002 | A1 |
20020016827 | McCabe et al. | Feb 2002 | A1 |
20020045519 | Watterson et al. | Apr 2002 | A1 |
20020048071 | Suzuki et al. | Apr 2002 | A1 |
20020051434 | Ozluturk et al. | May 2002 | A1 |
20020075906 | Cole et al. | Jun 2002 | A1 |
20020085811 | Kambe | Jul 2002 | A1 |
20020092347 | Niekerk et al. | Jul 2002 | A1 |
20020097564 | Struhsaker et al. | Jul 2002 | A1 |
20020103012 | Kim et al. | Aug 2002 | A1 |
20020111149 | Shoki | Aug 2002 | A1 |
20020111192 | Thomas et al. | Aug 2002 | A1 |
20020114038 | Arnon et al. | Aug 2002 | A1 |
20020123365 | Thorson et al. | Sep 2002 | A1 |
20020126967 | Panak et al. | Sep 2002 | A1 |
20020128009 | Boch et al. | Sep 2002 | A1 |
20020130778 | Nicholson | Sep 2002 | A1 |
20020181668 | Masoian et al. | Dec 2002 | A1 |
20020190845 | Moore | Dec 2002 | A1 |
20020197984 | Monin et al. | Dec 2002 | A1 |
20030002604 | Fifield et al. | Jan 2003 | A1 |
20030007214 | Aburakawa et al. | Jan 2003 | A1 |
20030016418 | Westbrook et al. | Jan 2003 | A1 |
20030045284 | Copley et al. | Mar 2003 | A1 |
20030069922 | Arunachalam | Apr 2003 | A1 |
20030078074 | Sesay et al. | Apr 2003 | A1 |
20030112826 | Ashwood Smith et al. | Jun 2003 | A1 |
20030141962 | Barink | Jul 2003 | A1 |
20030161637 | Yamamoto et al. | Aug 2003 | A1 |
20030165287 | Krill et al. | Sep 2003 | A1 |
20030174099 | Bauer et al. | Sep 2003 | A1 |
20030209601 | Chung | Nov 2003 | A1 |
20040001719 | Sasaki | Jan 2004 | A1 |
20040008114 | Sawyer | Jan 2004 | A1 |
20040017785 | Zelst | Jan 2004 | A1 |
20040037565 | Young et al. | Feb 2004 | A1 |
20040041714 | Forster | Mar 2004 | A1 |
20040043764 | Bigham et al. | Mar 2004 | A1 |
20040047313 | Rumpf et al. | Mar 2004 | A1 |
20040078151 | Aljadeff et al. | Apr 2004 | A1 |
20040095907 | Agee et al. | May 2004 | A1 |
20040100930 | Shapira et al. | May 2004 | A1 |
20040106435 | Bauman et al. | Jun 2004 | A1 |
20040126068 | Van Bijsterveld | Jul 2004 | A1 |
20040126107 | Jay et al. | Jul 2004 | A1 |
20040139477 | Russell et al. | Jul 2004 | A1 |
20040146020 | Kubler et al. | Jul 2004 | A1 |
20040149736 | Clothier | Aug 2004 | A1 |
20040151164 | Kubler et al. | Aug 2004 | A1 |
20040151503 | Kashima et al. | Aug 2004 | A1 |
20040157623 | Splett | Aug 2004 | A1 |
20040160912 | Kubler et al. | Aug 2004 | A1 |
20040160913 | Kubler et al. | Aug 2004 | A1 |
20040162084 | Wang | Aug 2004 | A1 |
20040162115 | Smith et al. | Aug 2004 | A1 |
20040162116 | Han et al. | Aug 2004 | A1 |
20040165573 | Kubler et al. | Aug 2004 | A1 |
20040175173 | Deas | Sep 2004 | A1 |
20040196404 | Loheit et al. | Oct 2004 | A1 |
20040202257 | Mehta et al. | Oct 2004 | A1 |
20040203703 | Fischer | Oct 2004 | A1 |
20040203704 | Ommodt et al. | Oct 2004 | A1 |
20040203846 | Caronni et al. | Oct 2004 | A1 |
20040204109 | Hoppenstein | Oct 2004 | A1 |
20040208526 | Mibu | Oct 2004 | A1 |
20040208643 | Roberts et al. | Oct 2004 | A1 |
20040215723 | Chadha | Oct 2004 | A1 |
20040218873 | Nagashima et al. | Nov 2004 | A1 |
20040233877 | Lee et al. | Nov 2004 | A1 |
20040258105 | Spathas et al. | Dec 2004 | A1 |
20040267971 | Seshadri | Dec 2004 | A1 |
20050052287 | Whitesmith et al. | Mar 2005 | A1 |
20050058451 | Ross | Mar 2005 | A1 |
20050068179 | Roesner | Mar 2005 | A1 |
20050076982 | Metcalf et al. | Apr 2005 | A1 |
20050078006 | Hutchins | Apr 2005 | A1 |
20050093679 | Zai et al. | May 2005 | A1 |
20050099343 | Asrani et al. | May 2005 | A1 |
20050116821 | Wilsey et al. | Jun 2005 | A1 |
20050123232 | Piede et al. | Jun 2005 | A1 |
20050141545 | Fein et al. | Jun 2005 | A1 |
20050143077 | Charbonneau | Jun 2005 | A1 |
20050147067 | Mani et al. | Jul 2005 | A1 |
20050147071 | Karaoguz et al. | Jul 2005 | A1 |
20050148306 | Hiddink | Jul 2005 | A1 |
20050159108 | Fletcher | Jul 2005 | A1 |
20050174236 | Brookner | Aug 2005 | A1 |
20050176458 | Shklarsky et al. | Aug 2005 | A1 |
20050185884 | Haus et al. | Aug 2005 | A1 |
20050201323 | Mani et al. | Sep 2005 | A1 |
20050201761 | Bartur et al. | Sep 2005 | A1 |
20050219050 | Martin | Oct 2005 | A1 |
20050224585 | Durrant et al. | Oct 2005 | A1 |
20050226625 | Wake et al. | Oct 2005 | A1 |
20050232636 | Durrant et al. | Oct 2005 | A1 |
20050242188 | Vesuna | Nov 2005 | A1 |
20050252971 | Howarth et al. | Nov 2005 | A1 |
20050266797 | Utsumi et al. | Dec 2005 | A1 |
20050266854 | Niiho et al. | Dec 2005 | A1 |
20050269930 | Shimizu et al. | Dec 2005 | A1 |
20050271396 | Iannelli | Dec 2005 | A1 |
20050272439 | Picciriello et al. | Dec 2005 | A1 |
20060002326 | Vesuna | Jan 2006 | A1 |
20060014548 | Bolin | Jan 2006 | A1 |
20060017633 | Pronkine | Jan 2006 | A1 |
20060028352 | McNamara et al. | Feb 2006 | A1 |
20060045054 | Utsumi et al. | Mar 2006 | A1 |
20060045524 | Lee et al. | Mar 2006 | A1 |
20060045525 | Lee et al. | Mar 2006 | A1 |
20060053324 | Giat et al. | Mar 2006 | A1 |
20060056327 | Coersmeier | Mar 2006 | A1 |
20060062579 | Kim et al. | Mar 2006 | A1 |
20060083520 | Healey et al. | Apr 2006 | A1 |
20060094470 | Wake et al. | May 2006 | A1 |
20060104643 | Lee et al. | May 2006 | A1 |
20060159388 | Kawase et al. | Jul 2006 | A1 |
20060172775 | Conyers et al. | Aug 2006 | A1 |
20060182446 | Kim et al. | Aug 2006 | A1 |
20060182449 | Iannelli et al. | Aug 2006 | A1 |
20060189354 | Lee et al. | Aug 2006 | A1 |
20060209745 | MacMullan et al. | Sep 2006 | A1 |
20060223439 | Pinel et al. | Oct 2006 | A1 |
20060233506 | Noonan et al. | Oct 2006 | A1 |
20060239630 | Hase et al. | Oct 2006 | A1 |
20060257065 | Coldren et al. | Nov 2006 | A1 |
20060257073 | Nashimoto | Nov 2006 | A1 |
20060268738 | Goerke et al. | Nov 2006 | A1 |
20060274704 | Desai et al. | Dec 2006 | A1 |
20070009266 | Bothwell | Jan 2007 | A1 |
20070050451 | Caspi et al. | Mar 2007 | A1 |
20070054682 | Fanning et al. | Mar 2007 | A1 |
20070058978 | Lee et al. | Mar 2007 | A1 |
20070060045 | Prautzsch | Mar 2007 | A1 |
20070060055 | Desai et al. | Mar 2007 | A1 |
20070071128 | Meir et al. | Mar 2007 | A1 |
20070076649 | Lin et al. | Apr 2007 | A1 |
20070093273 | Cai | Apr 2007 | A1 |
20070149250 | Crozzoli et al. | Jun 2007 | A1 |
20070166042 | Seeds et al. | Jul 2007 | A1 |
20070173288 | Skarby et al. | Jul 2007 | A1 |
20070174889 | Kim et al. | Jul 2007 | A1 |
20070224954 | Gopi | Sep 2007 | A1 |
20070230328 | Saitou | Oct 2007 | A1 |
20070243899 | Hermel et al. | Oct 2007 | A1 |
20070248358 | Sauer | Oct 2007 | A1 |
20070253714 | Seeds et al. | Nov 2007 | A1 |
20070257796 | Easton et al. | Nov 2007 | A1 |
20070263953 | Thalliya et al. | Nov 2007 | A1 |
20070264009 | Sabat, Jr. et al. | Nov 2007 | A1 |
20070264011 | Sone et al. | Nov 2007 | A1 |
20070268846 | Proctor et al. | Nov 2007 | A1 |
20070274279 | Wood et al. | Nov 2007 | A1 |
20070292143 | Yu et al. | Dec 2007 | A1 |
20070297005 | Montierth et al. | Dec 2007 | A1 |
20080002652 | Gupta et al. | Jan 2008 | A1 |
20080007453 | Vassilakis et al. | Jan 2008 | A1 |
20080013909 | Kostet et al. | Jan 2008 | A1 |
20080013956 | Ware et al. | Jan 2008 | A1 |
20080013957 | Akers et al. | Jan 2008 | A1 |
20080014948 | Scheinert | Jan 2008 | A1 |
20080026765 | Charbonneau | Jan 2008 | A1 |
20080031628 | Dragas et al. | Feb 2008 | A1 |
20080043714 | Pernu | Feb 2008 | A1 |
20080056167 | Kim et al. | Mar 2008 | A1 |
20080058018 | Scheinert | Mar 2008 | A1 |
20080063397 | Hu et al. | Mar 2008 | A1 |
20080070502 | George et al. | Mar 2008 | A1 |
20080080863 | Sauer et al. | Apr 2008 | A1 |
20080098203 | Master et al. | Apr 2008 | A1 |
20080118014 | Reunamaki et al. | May 2008 | A1 |
20080119198 | Hettstedt et al. | May 2008 | A1 |
20080124086 | Matthews | May 2008 | A1 |
20080124087 | Hartmann et al. | May 2008 | A1 |
20080129634 | Pera et al. | Jun 2008 | A1 |
20080134194 | Liu | Jun 2008 | A1 |
20080144989 | Sakurai | Jun 2008 | A1 |
20080145061 | Lee et al. | Jun 2008 | A1 |
20080150514 | Codreanu et al. | Jun 2008 | A1 |
20080166094 | Bookbinder et al. | Jul 2008 | A1 |
20080194226 | Rivas et al. | Aug 2008 | A1 |
20080207253 | Jaakkola et al. | Aug 2008 | A1 |
20080212969 | Fasshauer et al. | Sep 2008 | A1 |
20080219670 | Kim et al. | Sep 2008 | A1 |
20080232305 | Oren et al. | Sep 2008 | A1 |
20080232799 | Kim | Sep 2008 | A1 |
20080247716 | Thomas | Oct 2008 | A1 |
20080253280 | Tang et al. | Oct 2008 | A1 |
20080253351 | Pernu et al. | Oct 2008 | A1 |
20080253773 | Zheng | Oct 2008 | A1 |
20080260388 | Kim et al. | Oct 2008 | A1 |
20080261656 | Bella et al. | Oct 2008 | A1 |
20080268766 | Narkmon et al. | Oct 2008 | A1 |
20080268833 | Huang et al. | Oct 2008 | A1 |
20080273844 | Kewitsch | Nov 2008 | A1 |
20080279137 | Pernu et al. | Nov 2008 | A1 |
20080280569 | Hazani et al. | Nov 2008 | A1 |
20080291830 | Pernu et al. | Nov 2008 | A1 |
20080292322 | Daghighian et al. | Nov 2008 | A1 |
20080298813 | Song et al. | Dec 2008 | A1 |
20080304831 | Miller, II et al. | Dec 2008 | A1 |
20080310464 | Schneider | Dec 2008 | A1 |
20080310848 | Yasuda et al. | Dec 2008 | A1 |
20080311876 | Leenaerts et al. | Dec 2008 | A1 |
20080311944 | Hansen et al. | Dec 2008 | A1 |
20090022304 | Kubler et al. | Jan 2009 | A1 |
20090028087 | Nguyen et al. | Jan 2009 | A1 |
20090028317 | Ling et al. | Jan 2009 | A1 |
20090041413 | Hurley | Feb 2009 | A1 |
20090047023 | Pescod et al. | Feb 2009 | A1 |
20090059903 | Kubler et al. | Mar 2009 | A1 |
20090061796 | Arkko et al. | Mar 2009 | A1 |
20090061939 | Andersson et al. | Mar 2009 | A1 |
20090073916 | Zhang et al. | Mar 2009 | A1 |
20090081985 | Rofougaran et al. | Mar 2009 | A1 |
20090087179 | Underwood et al. | Apr 2009 | A1 |
20090088071 | Rofougaran | Apr 2009 | A1 |
20090088072 | Rofougaran et al. | Apr 2009 | A1 |
20090135078 | Lindmark et al. | May 2009 | A1 |
20090141780 | Cruz-Albrecht et al. | Jun 2009 | A1 |
20090149221 | Liu et al. | Jun 2009 | A1 |
20090154621 | Shapira et al. | Jun 2009 | A1 |
20090169163 | Abbott, III et al. | Jul 2009 | A1 |
20090175214 | Sfar et al. | Jul 2009 | A1 |
20090180407 | Sabat et al. | Jul 2009 | A1 |
20090180426 | Sabat et al. | Jul 2009 | A1 |
20090218407 | Rofougaran | Sep 2009 | A1 |
20090218657 | Rofougaran | Sep 2009 | A1 |
20090220240 | Abhari | Sep 2009 | A1 |
20090237317 | Rofougaran | Sep 2009 | A1 |
20090245084 | Moffatt et al. | Oct 2009 | A1 |
20090245153 | Li et al. | Oct 2009 | A1 |
20090245221 | Piipponen | Oct 2009 | A1 |
20090247109 | Rofougaran | Oct 2009 | A1 |
20090252136 | Mahany et al. | Oct 2009 | A1 |
20090252139 | Ludovico et al. | Oct 2009 | A1 |
20090252205 | Rheinfelder et al. | Oct 2009 | A1 |
20090258652 | Lambert et al. | Oct 2009 | A1 |
20090278596 | Rofougaran et al. | Nov 2009 | A1 |
20090279593 | Rofougaran et al. | Nov 2009 | A1 |
20090285147 | Subasic et al. | Nov 2009 | A1 |
20090316608 | Singh et al. | Dec 2009 | A1 |
20090319909 | Hsueh et al. | Dec 2009 | A1 |
20100002626 | Schmidt et al. | Jan 2010 | A1 |
20100002661 | Schmidt et al. | Jan 2010 | A1 |
20100002662 | Schmidt et al. | Jan 2010 | A1 |
20100014494 | Schmidt et al. | Jan 2010 | A1 |
20100027443 | LoGalbo et al. | Feb 2010 | A1 |
20100056200 | Tolonen | Mar 2010 | A1 |
20100080154 | Noh et al. | Apr 2010 | A1 |
20100080182 | Kubler et al. | Apr 2010 | A1 |
20100091475 | Toms et al. | Apr 2010 | A1 |
20100118864 | Kubler et al. | May 2010 | A1 |
20100127937 | Chandrasekaran et al. | May 2010 | A1 |
20100134257 | Puleston et al. | Jun 2010 | A1 |
20100142598 | Murray et al. | Jun 2010 | A1 |
20100142955 | Yu et al. | Jun 2010 | A1 |
20100144285 | Behzad et al. | Jun 2010 | A1 |
20100148373 | Chandrasekaran | Jun 2010 | A1 |
20100156721 | Alamouti et al. | Jun 2010 | A1 |
20100159859 | Rofougaran | Jun 2010 | A1 |
20100188998 | Pernu et al. | Jul 2010 | A1 |
20100189439 | Novak et al. | Jul 2010 | A1 |
20100190509 | Davis | Jul 2010 | A1 |
20100202326 | Rofougaran et al. | Aug 2010 | A1 |
20100225413 | Rofougaran et al. | Sep 2010 | A1 |
20100225520 | Mohamadi et al. | Sep 2010 | A1 |
20100225556 | Rofougaran et al. | Sep 2010 | A1 |
20100225557 | Rofougaran et al. | Sep 2010 | A1 |
20100232323 | Kubler et al. | Sep 2010 | A1 |
20100246558 | Harel | Sep 2010 | A1 |
20100255774 | Kenington | Oct 2010 | A1 |
20100258949 | Henderson et al. | Oct 2010 | A1 |
20100260063 | Kubler et al. | Oct 2010 | A1 |
20100261501 | Behzad et al. | Oct 2010 | A1 |
20100266287 | Adhikari et al. | Oct 2010 | A1 |
20100278530 | Kummetz et al. | Nov 2010 | A1 |
20100284323 | Tang et al. | Nov 2010 | A1 |
20100290355 | Roy et al. | Nov 2010 | A1 |
20100309049 | Reunamäki et al. | Dec 2010 | A1 |
20100311472 | Rofougaran et al. | Dec 2010 | A1 |
20100311480 | Raines et al. | Dec 2010 | A1 |
20100329161 | Ylanen et al. | Dec 2010 | A1 |
20100329166 | Mahany et al. | Dec 2010 | A1 |
20100329680 | Presi et al. | Dec 2010 | A1 |
20110002687 | Sabat, Jr. et al. | Jan 2011 | A1 |
20110007724 | Mahany et al. | Jan 2011 | A1 |
20110007733 | Kubler et al. | Jan 2011 | A1 |
20110008042 | Stewart | Jan 2011 | A1 |
20110019999 | George et al. | Jan 2011 | A1 |
20110021146 | Pernu | Jan 2011 | A1 |
20110021224 | Koskinen et al. | Jan 2011 | A1 |
20110026932 | Yeh et al. | Feb 2011 | A1 |
20110045767 | Rofougaran et al. | Feb 2011 | A1 |
20110065450 | Kazmi | Mar 2011 | A1 |
20110066774 | Rofougaran | Mar 2011 | A1 |
20110069668 | Chion et al. | Mar 2011 | A1 |
20110071734 | Van Wiemeersch et al. | Mar 2011 | A1 |
20110086614 | Brisebois et al. | Apr 2011 | A1 |
20110116393 | Hong et al. | May 2011 | A1 |
20110116572 | Lee et al. | May 2011 | A1 |
20110122912 | Benjamin et al. | May 2011 | A1 |
20110126071 | Han et al. | May 2011 | A1 |
20110149879 | Noriega et al. | Jun 2011 | A1 |
20110158298 | Djadi et al. | Jun 2011 | A1 |
20110182230 | Ohm et al. | Jul 2011 | A1 |
20110194475 | Kim et al. | Aug 2011 | A1 |
20110200328 | In De Betou et al. | Aug 2011 | A1 |
20110201368 | Faccin et al. | Aug 2011 | A1 |
20110204504 | Henderson et al. | Aug 2011 | A1 |
20110206383 | Chien et al. | Aug 2011 | A1 |
20110211439 | Manpuria et al. | Sep 2011 | A1 |
20110215901 | Van Wiemeersch et al. | Sep 2011 | A1 |
20110222415 | Ramamurthi et al. | Sep 2011 | A1 |
20110222434 | Chen | Sep 2011 | A1 |
20110222619 | Ramamurthi et al. | Sep 2011 | A1 |
20110227795 | Lopez et al. | Sep 2011 | A1 |
20110244887 | Dupray et al. | Oct 2011 | A1 |
20110256878 | Zhu et al. | Oct 2011 | A1 |
20110268033 | Boldi et al. | Nov 2011 | A1 |
20110274021 | He et al. | Nov 2011 | A1 |
20110281536 | Lee et al. | Nov 2011 | A1 |
20120052892 | Braithwaite | Mar 2012 | A1 |
20120177026 | Uyehara et al. | Jul 2012 | A1 |
20130012195 | Sabat, Jr. et al. | Jan 2013 | A1 |
20130070816 | Aoki et al. | Mar 2013 | A1 |
20130071112 | Melester et al. | Mar 2013 | A1 |
20130089332 | Sauer et al. | Apr 2013 | A1 |
20130095870 | Phillips et al. | Apr 2013 | A1 |
20130210490 | Fischer et al. | Aug 2013 | A1 |
20130252651 | Zavadsky et al. | Sep 2013 | A1 |
20130260705 | Stratford | Oct 2013 | A1 |
20140016583 | Smith | Jan 2014 | A1 |
20140140225 | Wala | May 2014 | A1 |
20140146797 | Zavadsky et al. | May 2014 | A1 |
20140146905 | Zavadsky et al. | May 2014 | A1 |
20140146906 | Zavadsky et al. | May 2014 | A1 |
20140219140 | Uyehara et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
645192 | Oct 1992 | AU |
731180 | Mar 1998 | AU |
2065090 | Feb 1998 | CA |
2242707 | Jan 1999 | CA |
101389148 | Mar 2009 | CN |
101547447 | Sep 2009 | CN |
20104862 | Aug 2001 | DE |
10249414 | May 2004 | DE |
0477952 | Apr 1992 | EP |
0477952 | Apr 1992 | EP |
0461583 | Mar 1997 | EP |
851618 | Jul 1998 | EP |
0687400 | Nov 1998 | EP |
0964290 | May 1999 | EP |
0993124 | Apr 2000 | EP |
1037411 | Sep 2000 | EP |
1179895 | Feb 2002 | EP |
1241515 | Mar 2002 | EP |
1267447 | Dec 2002 | EP |
1347584 | Sep 2003 | EP |
1363352 | Nov 2003 | EP |
1391897 | Feb 2004 | EP |
1443687 | Aug 2004 | EP |
1455550 | Sep 2004 | EP |
1501206 | Jan 2005 | EP |
1503451 | Feb 2005 | EP |
1530316 | May 2005 | EP |
1511203 | Mar 2006 | EP |
1267447 | Aug 2006 | EP |
1693974 | Aug 2006 | EP |
1742388 | Jan 2007 | EP |
1227605 | Jan 2008 | EP |
1954019 | Aug 2008 | EP |
1968250 | Sep 2008 | EP |
1056226 | Apr 2009 | EP |
1357683 | May 2009 | EP |
2276298 | Jan 2011 | EP |
1570626 | Nov 2013 | EP |
2095419 | Sep 1982 | GB |
2323252 | Sep 1998 | GB |
2370170 | Jun 2002 | GB |
2399963 | Sep 2004 | GB |
2428149 | Jan 2007 | GB |
H4189036 | Jul 1992 | JP |
05260018 | Oct 1993 | JP |
09083450 | Mar 1997 | JP |
09162810 | Jun 1997 | JP |
09200840 | Jul 1997 | JP |
11068675 | Mar 1999 | JP |
2000152300 | May 2000 | JP |
2000341744 | Dec 2000 | JP |
2002264617 | Sep 2002 | JP |
2002353813 | Dec 2002 | JP |
2003148653 | May 2003 | JP |
2003172827 | Jun 2003 | JP |
2004172734 | Jun 2004 | JP |
2004245963 | Sep 2004 | JP |
2004247090 | Sep 2004 | JP |
2004264901 | Sep 2004 | JP |
2004265624 | Sep 2004 | JP |
2004317737 | Nov 2004 | JP |
2004349184 | Dec 2004 | JP |
2005018175 | Jan 2005 | JP |
2005087135 | Apr 2005 | JP |
2005134125 | May 2005 | JP |
2007065227 | Mar 2007 | JP |
2007228603 | Sep 2007 | JP |
2008172597 | Jul 2008 | JP |
20010055088 | Jul 2001 | KR |
9603823 | Feb 1996 | WO |
9810600 | Mar 1998 | WO |
0042721 | Jul 2000 | WO |
0072475 | Nov 2000 | WO |
0178434 | Oct 2001 | WO |
0184760 | Nov 2001 | WO |
0221183 | Mar 2002 | WO |
0230141 | Apr 2002 | WO |
02102102 | Dec 2002 | WO |
03024027 | Mar 2003 | WO |
03098175 | Nov 2003 | WO |
2004030154 | Apr 2004 | WO |
2004047472 | Jun 2004 | WO |
2004056019 | Jul 2004 | WO |
2004059934 | Jul 2004 | WO |
2004086795 | Oct 2004 | WO |
2004093471 | Oct 2004 | WO |
2005062505 | Jul 2005 | WO |
2005069203 | Jul 2005 | WO |
2005073897 | Aug 2005 | WO |
2005079386 | Sep 2005 | WO |
2005101701 | Oct 2005 | WO |
2005111959 | Nov 2005 | WO |
2006011778 | Feb 2006 | WO |
2006018592 | Feb 2006 | WO |
2006019392 | Feb 2006 | WO |
2006039941 | Apr 2006 | WO |
2006046088 | May 2006 | WO |
2006051262 | May 2006 | WO |
2006060754 | Jun 2006 | WO |
2006077569 | Jul 2006 | WO |
2006105185 | Oct 2006 | WO |
2006133609 | Dec 2006 | WO |
2006136811 | Dec 2006 | WO |
2007048427 | May 2007 | WO |
2007077451 | Jul 2007 | WO |
2007088561 | Aug 2007 | WO |
2007091026 | Aug 2007 | WO |
2008008249 | Jan 2008 | WO |
2008027213 | Mar 2008 | WO |
2008033298 | Mar 2008 | WO |
2008039830 | Apr 2008 | WO |
2008116014 | Sep 2008 | WO |
2010090999 | Aug 2010 | WO |
2010132739 | Nov 2010 | WO |
2011023592 | Mar 2011 | WO |
2011100095 | Aug 2011 | WO |
2011139939 | Nov 2011 | WO |
2012148938 | Nov 2012 | WO |
2012148940 | Nov 2012 | WO |
2013122915 | Aug 2013 | WO |
Entry |
---|
Patent Cooperation Treaty International Search Report for application No. PCT/IL2014/050535, dated Sep. 30, 2014, 4 pages. |
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041. |
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages. |
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3. |
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720. |
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages. |
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3. |
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26. |
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5. |
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2. |
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2. |
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8. |
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710. |
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168. |
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985. |
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208. |
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011. |
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58. |
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages. |
Author Unknown, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 20 pages. |
Author Unknown, RFID Technology Overview, Date Unknown, 11 pages. |
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages. |
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages. |
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282. |
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709. |
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design. |
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56. |
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118. |
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406. |
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages. |
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751. |
Yu et al., “A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480. |
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages. |
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages. |
Chang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages. |
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Quantum Electronics, Optical Society of America, May 2008, 2 pages. |
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages. |
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613. |
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages. |
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages. |
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages. |
Pleros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967. |
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals Via Equalized Carrier/ Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages. |
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Applications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209. |
Author Unknown, “VCSEL Chaotic Synchronization and Modulation Characteristics,” Master's Thesis, Southwest Jiatong University, Professor Pan Wei, Apr. 2006, 8 pages (machine translation). |
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Wireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3. |
Examination Report for European Patent Application No. 14734911.2, mailed Mar. 21, 2017, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20160085136 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
61834066 | Jun 2013 | US | |
61894129 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IL2014/050535 | Jun 2014 | US |
Child | 14962383 | US |