Voltage controlled optical directional coupler

Information

  • Patent Grant
  • 9715157
  • Patent Number
    9,715,157
  • Date Filed
    Tuesday, December 8, 2015
    9 years ago
  • Date Issued
    Tuesday, July 25, 2017
    7 years ago
Abstract
A voltage controlled optical directional coupler (VCODC) having a coupling ratio that can be adjusted to any desired value through voltage tuning is disclosed. The VCODC may include a first optical hybrid coupler and a second optical hybrid coupler, which may be coupled with each other via one or more voltage controlled optical elements having a variable transparency depending on a voltage applied to the one or more voltage controlled optical elements. The VCODC may be configured to divert a portion of optical power received to a trunk input of the VCODC to a tap output of the VCODC based on the variable coupling ratio of the VCODC, which may be dependent on the variable transparency of the one or more voltage controlled optical elements.
Description
BACKGROUND

The disclosure relates generally to couplers that can be used in optical communication technology and more particularly to a voltage controlled optical directional coupler and associated systems and operating methods, which may be used in optical communication networks, such as fiber optic networks.


No admission is made that any reference cited herein constitutes prior art. Applicant expressly reserves the right to challenge the accuracy and pertinency of any cited reference.


SUMMARY

A first embodiment of the disclosure relates to a voltage controlled optical directional coupler. The voltage controlled optical directional coupler (VCODC) of this embodiment may include a first optical hybrid coupler, which may include a trunk input of the voltage controlled optical directional coupler. The VCODC of the first embodiment may further include a second optical hybrid coupler, which may be coupled with a tap output of the VCODC, and one or more voltage controlled optical elements configured to couple the first optical hybrid coupler to the second optical hybrid coupler. The one or more voltage controlled optical elements may have a variable transparency depending on a voltage applied to the one or more voltage controlled optical elements. The VCODC may be configured to divert a portion of optical power received to the trunk input to the tap output based on a variable coupling ratio of the VCODC. The portion of optical power that is diverted may be dependent on the variable transparency of the one or more voltage controlled optical elements.


A second embodiment relates to a method for operating a VCODC. The VCODC that may be used in the method of the second embodiment may include a first optical hybrid coupler, which may include a trunk input of the VCODC, and a second optical hybrid coupler coupled with a tap output of the VCODC. The first optical hybrid coupler may be coupled with the second optical hybrid coupler via one or more voltage controlled optical elements having a variable transparency depending on a voltage applied to the one or more voltage controlled optical elements. The method may include setting a target optical power at the tap output (POPT TAP) for the VCODC. A portion of optical power received to the trunk input may be diverted to the tap output based on a variable coupling ratio of the VCODC. The portion of optical power that is diverted may be dependent on the variable transparency of the one or more voltage controlled optical elements. The method may further include observing an actual POPT TAP during operation of the VCODC, and determining whether the actual POPT TAP is equal to the target POPT TAP. The method may also include adjusting the variable coupling ratio of the VCODC to achieve the POPT TAP by tuning the voltage applied to the one or more voltage controlled optical elements in an instance in which the actual POPT TAP is not equal to the target POPT TAP.


A third embodiment relates to a system including a VCODC. The system may be, for example, an optical network, such as a fiber optic network in which a VCODC in accordance with various embodiments may be implemented. The VCODC included in the system of the third embodiment may be the VCODC of the first embodiment. The system of the third embodiment may further include a control loop that may be configured to adjust the variable coupling ratio of the VCODC to achieve a target optical power at the tap output (POPT TAP) by tuning a voltage that may be applied to one or more voltage controlled optical elements of the VCODC in an instance in which an observed POPT TAP is not equal to the target POPT TAP. The system may additionally include processing circuitry configured to set the target POPT TAP.


Additional features and advantages will be set forth in the detailed description, and will be readily apparent to those skilled in the art.


The foregoing general description and the detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims.


The accompanying drawings constitute a part of this specification. The drawings each illustrate one or more embodiments, and together with the description serve to explain principles and operation of the various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an optical daisy chain power distribution system based on optical directional couplers (VCODC).



FIGS. 2A-2D illustrates the operation of an optical hybrid coupler.



FIG. 3 is a block diagram of a VCODC according to some example embodiments.



FIG. 4 is a block diagram of another VCODC according to some example embodiments.



FIG. 5 is a block diagram of a system including a VCODC according to some example embodiments.



FIG. 6 illustrates a flowchart according to an example method for operating a VCODC according to some example embodiments.





DETAILED DESCRIPTION

An optical directional coupler diverts a fixed amount of optical power determined by a coupling ratio of the optical directional coupler from a trunk to a branch or tap location. Optical directional couplers are used for signal distribution of optical signals in a variety of distribution topologies, such as in a daisy chain topology. FIG. 1 illustrates an optical daisy chain power distribution system based on optical directional couplers. The optical directional couplers 102 are configured in a daisy chain topology where each optical directional coupler 102 diverts an amount of power from the main trunk 104 to a respective tap 106. In most daisy chain networks it is required to have an equal power at each tap. Because conventional optical directional couplers have a fixed coupling ratio (e.g., 3 db, 6 db, 10 db, etc.), design and configuration of a daisy chain can be very complicated, and in most cases less than optimal. In this regard, as an amount of power is removed from the main trunk 104 by each optical directional coupler 102, there is less optical power reaching each subsequent optical directional coupler 102 in the daisy chain. Accordingly, in order for each respective tap 106 to have an equal power, each optical directional coupler 102 in the daisy chain must typically have a different coupling ratio, thus introducing complications in the design and configuration of a daisy chain using conventional optical directional couplers. Moreover, as, in some instances, it may not be possible to determine the exact coupling ratio needed for a given tap position without experimentation, the time and associated costs required to deploy a daisy chain using conventional optical directional couplers can be prohibitive. As such, network topologies using conventional optical directional couplers are often practically limited in terms of daisy chain length and/or the number of taps. This limitation can increase the amount of fiber required in an overall network deployment, as the limitation on daisy chain length can increase the number of trunk lines needed to accommodate the required amount of taps in the network.


Various example embodiments disclosed herein provide a voltage controlled optical coupler that can address the design limitations inherent with usage of conventional optical directional couplers. In this regard, the coupling ratio of a voltage controlled optical coupler disclosed herein can be adjusted through voltage tuning to achieve a desired tap output power. As such, voltage tuned optical directional couplers disclosed herein can reduce design complications in deployment of daisy chain topologies, allowing for deployment of longer daisy chains having more taps than possible when using conventional optical directional couplers. Moreover, the increased daisy chain length possible with use of voltage controlled optical couplers disclosed herein can reduce the amount of fiber needed for an overall network deployment, thus reducing costs for network deployment.



FIGS. 2A-2D illustrate the operation of an optical hybrid coupler, also referred to as an optical hybrid combiner, which may be used in a voltage controlled optical directional coupler in accordance with various example embodiments. The transfer function of a basic optical hybrid coupler as shown in FIG. 2A can be described by the following transfer matrix:






T
:=


(


-
1

2

)

·

(



0


J


1


0




J


0


0


1




1


0


0


J




0


1


J


0



)






In this operation, Ports 2 and 3 are assumed to have identical reflectors with reflection coefficient Γ, and optical power with a magnitude of P is injected to port 4. According to the transfer matrix, the optical power at port 2 will be one half of the input power and with an angle of 180 degrees, and the optical power at port 3 will be one half of the input power with an angle of 270 degrees (referring to the input). In this example, the phase shift between port 2 and port 3 optical powers is 90 degrees.


Since Ports 2 and 3 have identical reflectors with a reflection coefficient of 0<Γ<1,the same amount of optical power will be reflected from port 2 and port 3, as illustrated in FIG. 2B.


In a case where the reflected waves from ports 2 and 3 returns to port 4, (input port) the waves will return in a 180 degree phase shift between of them, and they will cancel each other as illustrated in FIG. 2C. In a case where one of the reflected waves from ports 2 and 3 returns to port 1, (output port) the waves will return in a 0° phase shift between them and they will sum, as illustrated in FIG. 2D. In a case of balanced reflectors in ports 2 and 3, the reflection will return to port 1 only. Since the reflection coefficient of the reflector







Γ
=


P
-


P
+



,





the magnitude of the reflected power to port 1 is PPORT1=Γ·P+.



FIG. 3 is a block diagram of a VCODC) 300 according to some example embodiments. The VCODC 300 has a coupling ratio that can be adjusted to any required coupling ratio through voltage tuning.


The VCODC 300 may include a first optical hybrid coupler 310 and a second optical hybrid coupler 314, which may be coupled (e.g., connected back-to-back) via one or more voltage controlled optical elements. The first optical hybrid coupler 310 and the second optical hybrid coupler 314 are coupled via two such voltage controlled optical elements—a first voltage controlled optical element 320 and a second voltage controlled optical element 324. It will be appreciated that while two voltage controlled optical elements are illustrated by way of example in FIG. 3, other arrangements are contemplated within the scope of the disclosure. For example, a single voltage controlled optical element may be used to span both coupled sets of ports between the first optical hybrid coupler 310 and the second optical hybrid coupler 314. As such, where reference is made herein to the first voltage controlled optical element 320 and the second voltage controlled optical element 324, it will be appreciated that such reference is by way of example, and not by way of limitation, such that other arrangements involving one or more voltage controlled optical elements may be substituted mutatis mutandis for the first voltage controlled optical element 320 and the second voltage controlled optical element 324 within the scope of the disclosure.


The voltage controlled optical element(s) (e.g., the first voltage controlled optical element 320 and the second voltage controlled optical element 324) used to couple the first optical hybrid coupler 310 and the second optical hybrid coupler 314 may be implemented via any optical element having a variable transparency depending on a voltage applied to the one voltage controlled optical elements. For example, a lens, such as a voltage controlled optical reflector may be used to implement the first voltage controlled optical element 320 and/or the second voltage controlled optical element 324.


An optical termination 330, such as may include black or opaque structure, may be connected to the lower output of the second optical hybrid coupler 314. The other port of the second optical hybrid coupler 324 may be coupled with a tap output of the VCODC 300. In the embodiment illustrated in FIG. 3, the second optical hybrid coupler 324 may be coupled with an optical coupler 340, which may provide the tap output 346 of the VCODC 300.


The first optical hybrid coupler 310 may include and/or otherwise be coupled with a trunk input 342, which may receive an input optical power, POPT IN. The VCODC 300 may be configured to divert a portion of power received to the tap input 342 (e.g., a portion of POPT IN) to the tap output 346. The portion of optical power diverted to the tap output 346 may be referred to as POPT TAP. The portion of optical power received to the trunk input 342 that is not diverted to the tap output 346 may be passed through to the trunk output 348, and may be referred to as POPT OUT.


The optical power value of POPT OUT our at the trunk output 348 varies with the coupling ratio of the VCODC 300, and may be described by the following equation:

POPT OUT=Γ·P+,

where the reflection coefficient Γ is correlated to the voltage controlled transparency of the voltage controlled optical element(s) (e.g., the first voltage controlled optical element 320 and the second voltage controlled optical element 324) used to couple the first optical hybrid coupler 310 and the second optical hybrid coupler 314.


The optical power value of POPT TAP likewise varies with the coupling ratio of the VCODC 300, and may be described by the following equation:

POPT TAP=POPT IN·(1−Γ).


The VCODC 300 may further include and/or otherwise be coupled with a control loop 348. The control loop 348 may be configured to adjust the variable coupling ratio of the VCODC 300 to maintain and/or otherwise achieve a target POPT TAP by tuning the voltage applied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 in an instance in which an actual POPT TAP observed during operation of the VCODC 300 is not equal to the target POPT TAP. In this regard, the control loop 348 may be configured to tune the voltage applied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 to increase transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 in an instance in which the observed POPT TAP is less than the target POPT TAP, and may be configured to tune the voltage applied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 to decrease transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 in an instance in which the observed POPT TAP is greater than the target POPT TAP.


The control loop 348 of some example embodiments may include a sensor 350 and a voltage controller 360. The sensor 350 may be embodied as any sensor configured to sense an actual POPT TAP during operation of the VCODC 300 and to generate a correction signal indicative of the value of the actual POPT TAP. The correction signal may comprise a correction voltage having a value corresponding to the optical power of the actual POPT TAP observed by the sensor 350. For example, such as that illustrated in and described below with respect to FIG. 4, the sensor 350 may be implemented as a photodiode, which may be positioned such that it may be illuminated by the tap output 346 (e.g., by output of the optical coupler 340), and may be configured to generate a correction voltage based on the illumination.


The correction signal generated by the sensor 350 may be passed to the voltage controller 360. The voltage controller 360 may also be provided with an indication of a target POPT TAP value 362. The target POPT TAP value 362 may be a tunable threshold, or setpoint, that may be adjusted based on a desired POPT TAP value. In some example embodiments, such as that illustrated in and described below with respect to FIG. 5, the target POPT TAP value 362 may be controlled by processing circuitry, which may be configured to control one or more VCODCs 300 implemented within a network.


The voltage controller 360 may be embodied as any circuit that may be configured to tune the voltage supplied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 based on the correction signal received from the sensor 350 to achieve the target POPT TAP value 362. In this regard, the voltage controller 360 may be configured to tune the voltage applied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 to increase transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 in an instance in which the observed POPT TAP is less than the target POPT TAP. In some embodiments, increasing the transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 may also decrease a reflectivity of the first voltage controlled optical element 320 and the second voltage controlled optical element 324. The voltage controller 360 may be further configured to tune the voltage applied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 to decrease transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 in an instance in which the observed POPT TAP is greater than the target POPT TAP. Decreasing the transparency of the first voltage controlled optical element 320 and the second voltage controlled optical element 324 may also increase a reflectivity of the first voltage controlled optical element 320 and the second voltage controlled optical element 324. The voltage controller 360 may accordingly be configured to close the control loop 348 by producing a voltage fed to the first voltage controlled optical element 320 and the second voltage controlled optical element 324.


In some embodiments, such as that illustrated in and described with respect to FIG. 4 below, the voltage controller 360 may comprise a loop filter. In such embodiments, the control signal that may be received from the sensor 350 may be a correction voltage, such as may be supplied by a photodiode, and the indication of the target POPT TAP value 362 that may be supplied to the voltage controller 360 may be a threshold voltage (e.g., a reference voltage) corresponding to the target POPT TAP. The voltage controller 360 may be configured to tune the voltage supplied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 based on a relationship between the correction voltage and the threshold voltage. In this regard, if the correction voltage and the threshold voltage are not equal, the voltage controller 360 may tune the voltage supplied to the first voltage controlled optical element 320 and the second voltage controlled optical element 324 until the correction voltage is substantially equivalent to the threshold voltage.


Accordingly the coupling ratio of the VCODC 300 can be adjusted through voltage tuning to achieve a target POPT TAP, which may be required and/or otherwise desired for deployment within a network topology. As such, a substantially constant POPT TAP may be maintained by the VCODC 300. According to one aspect, the VCODC 300 can be used to build optimized, easy to design daisy chain networks with reduced (e.g., minimal) power loss compared to conventional optical directional couplers.



FIG. 4 is a block diagram of another VCODC 400 according to some example embodiments. In this regard, the VCODC 400 can be an embodiment of the VCODC 300. In accordance with some embodiments, the VCODC 400 has a coupling ratio that can be adjusted to any required coupling ratio through voltage tuning.


The VCODC 400 may include a first optical hybrid coupler 410 and a second optical hybrid coupler 414, which may, respectively, be embodiments of the first optical hybrid coupler 310 and the second optical hybrid coupler 314. The first optical hybrid coupler 410 and the second optical hybrid coupler 414 may be coupled (e.g., connected back-to-back) via a first voltage controlled optical reflector 420 and a second voltage controlled optical reflector 424. The first voltage controlled optical reflector 420 and the second voltage controlled optical reflector 424 may, for example, be embodiments of the first voltage controlled optical element 320 and the second voltage controlled optical element 324.


An optical termination 430, such as may include black or opaque structure, may be connected to the lower output of the second optical hybrid coupler 414. The other port of the second optical hybrid coupler 424 may be coupled with an optical coupler 440, which may provide the tap output 446 of the VCODC 400.


The first optical hybrid coupler 410 may include and/or otherwise be coupled with a trunk input 442, which may receive an input optical power, POPT IN. The VCODC 400 may be configured to divert a portion of power received to the tap input 442 (e.g., a portion of POPT IN) to the tap output 446. The portion of optical power diverted to the tap output 446 may be referred to as POPT TAP.The portion of optical power received to the trunk input 442 that is not diverted to the tap output 446 may be passed through to the trunk output 448, and may be referred to as POPT OUT.


Similarly to the VCODC 300, the optical power value of POPT OUT at the trunk output 448 varies with the coupling ratio of the VCODC 400, and may be described by the following equation:








P

OPT





OUT


=

Γ
·

P
+



,





where the reflection coefficient 1′is correlated to the voltage controlled transparency of the first voltage controlled optical reflector 420 and the second voltage controlled optical reflector 424.


The optical power value of POPT TAP likewise varies with the coupling ratio of the VCODC 400, and may be described by the following equation:

POPT TAP=POPT IN·(1−Γ).


The VCODC 400 may further include a photodiode 450 and a loop filter 460, which may form a control loop that may be configured to tune the voltage applied to the first voltage controlled optical reflector 420 and the second voltage controlled optical reflector 424 to tune POPT TAP to a target value. The photodiode 450 may, for example, be an embodiment of the sensor 350. The loop filter 460 may, for example, be an embodiment of the voltage controller 360. In this regard, the photodiode 450 and the loop filter 460 may collectively form an embodiment of the control loop 348.


The output of the optical coupler 440 may illuminate the photo diode 450, which may be configured to produce a correction voltage related to the POPT TAP observed via the output of the optical coupler 440. The generated correction voltage may be passed to the loop filter 460, which may also be supplied with a tunable threshold voltage 462 (e.g., a reference voltage), which may correspond to a target POPT TAP. In some example embodiments, such as that illustrated in and described below with respect to FIG. 5, the threshold voltage 462 may be supplied and/or otherwise controlled by processing circuitry, which may be configured to control one or more VCODCs 400 implemented within a network.


The loop filter 460 may be configured to tune the voltage applied to the first voltage controlled optical reflector 420 and the second voltage controlled optical reflector 424 based at least in part on the relationship between the threshold voltage 462 and the correction voltage produced by the photodiode 450. The loop filter 460 can accordingly close the control loop for the VCODC 400 by producing the voltage fed to the first voltage controlled optical reflector 420 and the second voltage controlled optical reflector 424 based on the relationship between the threshold voltage 462 and the correction voltage produced by the photodiode 450.


The coupling ratio of the VCODC 400 can accordingly be adjusted through voltage tuning to achieve a target POPT TAP, which may be required and/or otherwise desired for deployment within a network topology. According to one aspect, the VCODC 400 can be used to build optimized, easy to design daisy chain networks with reduced (e.g., minimal) power loss compared to conventional optical directional couplers.



FIG. 5 is a block diagram of a system 500 including a VCODC 502 according to some example embodiments. The VCODC 502 may be embodied as any VCODC disclosed herein, such as the VCODC 300 or the VCODC 400. The VCODC 502 may include and/or otherwise be coupled with a control loop 548, which may, for example, comprise an embodiment of the control loop 348.


The control loop 548 may include a sensor 550 and a voltage controller 560. The sensor 550 may be configured to observe an actual POPT TAP of the VCODC 502 and generate a correction signal indicative of the actual POPT TAP. In this regard, the sensor 550 may, for example, be an embodiment of the sensor 350. The voltage controller 560 may be configured to receive the correction signal generated by the sensor 550. The voltage controller 560 may also be supplied with a tunable indication of a target POPT TAP 562, which may, for example, be a threshold voltage corresponding to the target POPT TAP. The voltage controller 560 may be configured to adjust a coupling ratio of the VCODC 502 through voltage tuning that may be performed based on the tunable indication of the target POPT TAP 562 and the correction signal to achieve the target POPT TAP. In this regard, the voltage controller 560 may, for example, be an embodiment of the voltage controller 360.


The target POPT TAP 562 may be supplied and/or otherwise controlled by processing circuitry 570. In some example embodiments, the processing circuitry 570 may include a processor 572 and, in some embodiments, such as that illustrated in FIG. 5, may further include memory 574.


The processor 572 may be embodied in a variety of forms. For example, the processor 572 may be embodied as various hardware processing means such as a microprocessor, a coprocessor, a controller or various other computing or processing devices including integrated circuits such as, for example, an ASIC (application specific integrated circuit), an FPGA (field programmable gate array), some combination thereof, or the like. Although illustrated as a single processor, it will be appreciated that the processor 572 may comprise a plurality of processors. In some example embodiments, the processor 572 may be configured to execute instructions that may be stored in the memory 574 and/or that may be otherwise accessible to the processor 572. As such, whether configured by hardware or by a combination of hardware and software, the processor 572 may be configured to control the target POPT TAP for one or more VCODCs 502 in accordance with various example embodiments.


In some example embodiments, the memory 574 may include one or more memory and/or other storage devices. Memory 574 may include fixed and/or removable memory devices. In some embodiments, the memory 574 may provide a non-transitory computer-readable storage medium that may store computer program instructions that may be executed by the processor 572. In this regard, the memory 574 may be configured to store information, data, applications, instructions and/or the like for enabling the processor 572 to control the target POPT TAP for one or more VCODCs 502.


The system 500 may be implemented within a network topology including one or more VCODCs. For example, in some deployments, the system 500 may be implemented within a daisy chain topology including a plurality of VCODCs 502. The processing circuitry 570 in such deployments may be interfaced with the control loops of multiple VCODCs 502 to control the target POPT TAP for each respective VCODC 502. In such deployments, the processing circuitry 570 may be configured to individually set a target POPT TAP for each respective VCODC 502, or may be configured to set a universal target POPT TAP for all of the VCODCs 502 depending on the particular network topology and/or other network design specifications/needs.



FIG. 6 illustrates a flowchart according to an example method for operating a VCODC, such as VCODCs 300400, and/or 500, having a variable coupling ratio.


Operation 600 may include setting a target optical power at the tap output (POPT TAP) for a VCODC, and may be performed by processing circuitry, such as circuitry 570. Operation 600 may include providing an indication of the target POPT TAP to an element of a control loop, such as a voltage controller (e.g., voltage controller 360, loop filter 460, and/or voltage controller 560) as a setpoint to enable the control loop to adjust the coupling ratio of the VCODC to achieve the target POPT TAP. For example, operation 600 may include supplying a threshold, or reference, voltage corresponding to the target POPT TAP to a voltage controller.


Operation 610 may include observing an actual POPT TAP at the tap output of the VCODC. Operation 610 may be performed by a sensor, such as sensor 350, photodiode 450, and/or sensor 550, which may be implemented within the control loop. Operation 610 may include the sensor generating a correction signal indicative of the actual POPT TAP.


Operation 620 may include determining whether the actual POPT TAP is equal to the target POPT TAP. Operation 620 may be performed by a voltage controller as, such voltage controller 360, loop filter 460, and/or voltage controller 560. Operation 620 may be performed based on a control signal indicative of the actual POPT TAP that may be supplied to the voltage controller attendant to performance of operation 610. For example, in embodiments in which the correction signal is a correction voltage and the target POPT TAP is indicated via a threshold voltage, operation 620 may be performed by determining a relationship between the correction voltage and the threshold voltage.


In an instance in which it is determined at operation 620 that the actual POPT TAP does not equal the target POPT TAP, the method may proceed to operation 630, which may include the control loop adjusting the variable coupling ratio of the VCODC to achieve the target POPT TAP. In this regard, operation 630 may include tuning a voltage applied to one or more voltage controlled optical elements (e.g., voltage controlled optical elements 320, 324; voltage controlled optical reflectors 420, 424; and/or the like) within the voltage controlled optical coupler to increase transparency of the voltage controlled optical elements in an instance in which the actual POPT TAP is less than the target POPT TAP, or to decrease transparency of the voltage controlled optical elements in an instance in which the actual POPT TAP is greater than the target POPT TAP. Operation 630 may be performed by a voltage controller, such as voltage controller 360, loop filter 460, and/or voltage controller 560, which may be implemented within the control loop.


If, however, it is determined at operation 620 that the actual POPT TAP is equal (e.g., substantially equal within a margin of error that may vary with design specifications) to the target POPT TAP, the method may instead proceed to operation 640, which may include maintaining the current coupling ratio of the VCODC.


In some embodiments, the method may return to operation 610 after performance of operation 630 and/or after operation 640. In this regard, operations 610-640 may be performed on an ongoing basis by the control loop during operation of the VCODC in order to maintain the target POPT TAP.


Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.


It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.

Claims
  • 1. A voltage controlled optical directional coupler, comprising: a first optical hybrid coupler comprising a trunk input;a second optical hybrid coupler coupled with a tap output; andone or more voltage controlled optical elements configured to couple the first optical hybrid coupler to the second optical hybrid coupler, the one or more voltage controlled optical elements having a variable transparency depending on a voltage applied to the one or more voltage controlled optical elements;wherein the voltage controlled optical directional coupler is configured to divert a portion of optical power received to the trunk input to the tap output based on a variable coupling ratio of the voltage controlled optical directional coupler, the variable coupling ratio being dependent on the variable transparency of the one or more voltage controlled optical elements; wherein a first output of the second optical hybrid coupler is coupled to the tap output, a second output of the second hybrid optical coupler is coupled to an optical termination, and the voltage controlled optical directional coupler is configured to pass through to a trunk output of the first hybrid optical coupler a remaining portion of optical power received to the trunk input and not diverted to the tap output.
  • 2. The voltage controlled optical directional coupler of claim 1, wherein the one or more voltage controlled optical elements comprise one or more voltage controlled optical reflectors.
  • 3. The voltage controlled optical directional coupler of claim 1, further comprising: a control loop configured to adjust the variable coupling ratio of the voltage controlled optical directional coupler to achieve a target optical power at the tap output (POPT TAP) by tuning the voltage applied to the one or more voltage controlled optical elements in an instance in which an observed POPT TAP is not equal to the target POPT TAP.
  • 4. The voltage controlled optical directional coupler of claim 3, wherein the control loop comprises: a sensor configured to generate a correction signal indicative of the observed POPT TAP; anda voltage controller configured to tune the voltage applied to the one or more voltage controlled optical elements based at least in part on the correction signal.
  • 5. The voltage controlled optical directional coupler of claim 4, wherein the correction signal comprises a correction voltage, and wherein the voltage controller is configured to tune the voltage applied to the one or more voltage controlled optical elements based at least in part on a relationship between the correction voltage and a threshold voltage corresponding to the target POPT TAP.
  • 6. The voltage controlled optical directional coupler of claim 5, wherein the voltage controller comprises a loop filter.
  • 7. The voltage controlled optical directional coupler of claim 4, wherein the sensor comprises a photodiode, the photodiode being positioned to be illuminated by output from the tap output and being configured to generate a correction voltage based on illumination from the tap output, and wherein the correction signal comprises the correction voltage generated by the photodiode.
  • 8. The voltage controlled optical directional coupler of claim 3, wherein the control loop is configured to tune the voltage applied to the one or more voltage controlled optical elements to increase transparency of the one or more voltage controlled optical elements in an instance in which the observed POPT TAP is less than the target POPT TAP.
  • 9. The voltage controlled optical directional coupler of claim 3, wherein the control loop is configured to tune the voltage applied to the one or more voltage controlled optical elements to decrease transparency of the one or more voltage controlled optical elements in an instance in which the observed POPT TAP is greater than the target POPT TAP.
  • 10. The voltage controlled optical directional coupler of claim 1, wherein the one or more voltage controlled optical elements comprises a plurality of voltage controlled optical elements.
  • 11. The voltage controlled optical directional coupler of claim 1, wherein the second optical hybrid coupler is coupled to a separate optical coupler, which is configured to provide the tap output.
  • 12. The voltage controlled optical directional coupler of claim 1, wherein at least one of the first optical hybrid coupler and the second optical hybrid coupler comprises four ports, a second port and a third port of the four ports having identical reflectors having reflection coefficient Γ, and wherein, when an optical power with a magnitude of P is injected to a fourth port, an optical power at a second port will be one half of the input power and with an angle of 180 degrees, and the optical power at a third port will be one half of the input power with an angle of 270 degrees, and a same amount of optical power will be reflected from the second port and the third port.
  • 13. A method for operating a voltage controlled optical directional coupler comprising: a first optical hybrid coupler comprising a trunk input; anda second optical hybrid coupler coupled with a tap output of the voltage controlled optical directional coupler, the first optical hybrid coupler being coupled with the second optical hybrid coupler via one or more voltage controlled optical elements having a variable transparency depending on a voltage applied to the one or more voltage controlled optical elements, the method comprising:setting a target optical power at the tap output (POPT TAP) for the voltage controlled optical directional coupler, wherein a portion of optical power received to the trunk input is diverted to the tap output based on a variable coupling ratio of the voltage controlled optical directional coupler, the variable coupling ratio being dependent on the variable transparency of the one or more voltage controlled optical elements;observing an actual POPT TAP;determining whether the actual POPT TAP is equal to the target POPT TAP; andadjusting the variable coupling ratio of the voltage controlled optical directional coupler to achieve the target POPT TAP by tuning the voltage applied to the one or more voltage controlled optical elements in an instance in which the actual POPT TAP is not equal to the target POPT TAP; and passing through to a trunk output of the first hybrid optical coupler a remaining portion of optical power received to the trunk input and not diverted to the tap output.
  • 14. The method of claim 13, wherein adjusting the variable coupling ratio of the voltage controlled optical directional coupler comprises: tuning the voltage applied to the one or more voltage controlled optical elements to increase transparency of the one or more voltage controlled optical elements in an instance in which the actual POPT TAP is less than the target POPT TAP; andtuning the voltage applied to the one or more voltage controlled optical elements to decrease transparency of the one or more voltage controlled optical elements in an instance in which the actual POPT TAP is greater than the target POPT TAP.
  • 15. The method of claim 13, wherein: observing the actual POPT TAP comprises a sensor detecting the actual POPT TAP and generating a correction signal indicative of the actual POPT TAP; andadjusting the variable coupling ratio of the voltage controlled optical directional coupler comprises a voltage controller tuning the voltage applied to the one or more voltage controlled optical elements based at least in part on the correction signal.
  • 16. The method of claim 15, wherein the correction signal comprises a correction voltage, and wherein adjusting the variable coupling ratio of the voltage controlled optical directional coupler comprises the voltage controller tuning the voltage applied to the one or more voltage controlled optical elements based at least in part on a relationship between the correction voltage and a threshold voltage corresponding to the target POPT TAP.
  • 17. The method of claim 13, wherein: setting the target POPT TAP comprises providing a target voltage corresponding to the target POPT TAP to a control loop; andadjusting the variable coupling ratio of the voltage controlled optical directional coupler comprises the control loop tuning the voltage applied to the one or more voltage controlled optical elements.
  • 18. The method of claim 13, wherein setting the target POPT TAP comprises processing circuitry setting the target POPT TAP for the voltage controlled optical directional coupler.
  • 19. A system comprising: a voltage controlled optical directional coupler comprising: a first optical hybrid coupler comprising a trunk input;a second optical hybrid coupler coupled with a tap output; andone or more voltage controlled optical elements configured to couple the first optical hybrid coupler to the second optical hybrid coupler, the one or more voltage controlled optical elements having a variable transparency depending on a voltage applied to the one or more voltage controlled optical elements;wherein the voltage controlled optical directional coupler is configured to divert a portion of optical power received to the trunk input to the tap output based on a variable coupling ratio of the voltage controlled optical directional coupler, the variable coupling ratio being dependent on the variable transparency of the one or more voltage controlled optical elements;a control loop configured to adjust the variable coupling ratio of the voltage controlled optical directional coupler to achieve a target optical power at the tap output (POPT TAP) by tuning the voltage applied to the one or more voltage controlled optical elements in an instance in which an observed POPT TAP is not equal to the target POPT TAP; andprocessing circuitry configured to set the target POPT TAP; wherein a first output of the second optical hybrid coupler is coupled to the tap output, a second output of the second hybrid optical coupler is coupled to an optical termination, and the voltage controlled optical directional coupler is configured to pass through to a trunk output of the first hybrid optical coupler a remaining portion of optical power received to the trunk input and not diverted to the tap output.
  • 20. The system of claim 19, wherein the control loop is configured to: tune the voltage applied to the one or more voltage controlled optical elements to increase transparency of the one or more voltage controlled optical elements in an instance in which the observed POPT TAP is less than the target POPT TAP; andtune the voltage applied to the one or more voltage controlled optical elements to decrease transparency of the one or more voltage controlled optical elements in an instance in which the observed POPT TAP is greater than the target POPT TAP.
  • 21. The system of claim 19, wherein the control loop comprises: a sensor configured to generate a correction signal indicative of the observed POPT TAP; anda voltage controller configured to tune the voltage applied to the one or more voltage controlled optical elements based at least in part on the correction signal.
  • 22. The system of claim 21, wherein the correction signal comprises a correction voltage, and wherein: the processing circuitry is configured to set a threshold voltage corresponding to the target POPT TAP; andthe voltage controller is configured to tune the voltage applied to the one or more voltage controlled optical elements based at least in part on a relationship between the correction voltage and the threshold voltage.
  • 23. The system of claim 22, wherein the sensor comprises a photodiode, the photodiode being positioned to be illuminated by output from the tap output and being configured to generate the correction voltage based on illumination from the tap output.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Application No. PCT/IL14/050535 filed on Jun. 12, 2014, which claims the benefit of priority to U.S. Provisional Application No. 61/834,066, filed on Jun. 12, 2013, and Provisional Application No. 61/894,129, filed on Oct. 22, 2013, the contents of which are relied upon and incorporated herein by reference in their entireties.

US Referenced Citations (817)
Number Name Date Kind
3824597 Berg Jul 1974 A
4302071 Winzer Nov 1981 A
4365865 Stiles Dec 1982 A
4449246 Seiler et al. May 1984 A
4573212 Lipsky Feb 1986 A
4665560 Lange May 1987 A
4867527 Dotti et al. Sep 1989 A
4889977 Haydon Dec 1989 A
4896939 O'Brien Jan 1990 A
4916460 Powell Apr 1990 A
4939852 Brenner Jul 1990 A
4972346 Kawano et al. Nov 1990 A
5039195 Jenkins et al. Aug 1991 A
5042086 Cole et al. Aug 1991 A
5056109 Gilhousen et al. Oct 1991 A
5059927 Cohen Oct 1991 A
5125060 Edmundson Jun 1992 A
5187803 Sohner et al. Feb 1993 A
5189718 Barrett et al. Feb 1993 A
5189719 Coleman et al. Feb 1993 A
5206655 Caille et al. Apr 1993 A
5208812 Dudek et al. May 1993 A
5210812 Nilsson et al. May 1993 A
5260957 Hakimi Nov 1993 A
5263108 Kurokawa et al. Nov 1993 A
5267122 Glover et al. Nov 1993 A
5268971 Nilsson et al. Dec 1993 A
5268980 Yuuki Dec 1993 A
5278690 Vella-Coleiro Jan 1994 A
5278923 Nazarathy et al. Jan 1994 A
5278989 Burke et al. Jan 1994 A
5280472 Gilhousen et al. Jan 1994 A
5299947 Barnard Apr 1994 A
5301056 O'Neill Apr 1994 A
5325223 Bears Jun 1994 A
5339058 Lique Aug 1994 A
5339184 Tang Aug 1994 A
5343320 Anderson Aug 1994 A
5377035 Wang et al. Dec 1994 A
5379455 Koschek Jan 1995 A
5381459 Lappington Jan 1995 A
5396224 Dukes et al. Mar 1995 A
5400391 Emura et al. Mar 1995 A
5420863 Taketsugu et al. May 1995 A
5424864 Emura Jun 1995 A
5444564 Newberg Aug 1995 A
5457557 Zarem et al. Oct 1995 A
5459727 Vannucci Oct 1995 A
5469523 Blew et al. Nov 1995 A
5519830 Opoczynski May 1996 A
5543000 Lique Aug 1996 A
5546443 Raith Aug 1996 A
5557698 Gareis et al. Sep 1996 A
5574815 Kneeland Nov 1996 A
5598288 Collar Jan 1997 A
5606725 Hart Feb 1997 A
5615034 Hori Mar 1997 A
5627879 Russell et al. May 1997 A
5640678 Ishikawa et al. Jun 1997 A
5642405 Fischer et al. Jun 1997 A
5644622 Russell et al. Jul 1997 A
5648961 Ebihara Jul 1997 A
5651081 Blew et al. Jul 1997 A
5657374 Russell et al. Aug 1997 A
5668562 Cutrer et al. Sep 1997 A
5677974 Elms et al. Oct 1997 A
5682256 Motley et al. Oct 1997 A
5694232 Parsay et al. Dec 1997 A
5703602 Casebolt Dec 1997 A
5708681 Malkemes et al. Jan 1998 A
5726984 Kubler et al. Mar 1998 A
5765099 Georges et al. Jun 1998 A
5790536 Mahany et al. Aug 1998 A
5790606 Dent Aug 1998 A
5793772 Burke et al. Aug 1998 A
5802173 Hamilton-Piercy et al. Sep 1998 A
5802473 Rutledge et al. Sep 1998 A
5805975 Green, Sr. et al. Sep 1998 A
5805983 Naidu et al. Sep 1998 A
5809395 Hamilton-Piercy et al. Sep 1998 A
5809431 Bustamante et al. Sep 1998 A
5812296 Tarusawa et al. Sep 1998 A
5818619 Medved et al. Oct 1998 A
5818883 Smith et al. Oct 1998 A
5821510 Cohen et al. Oct 1998 A
5825651 Gupta et al. Oct 1998 A
5838474 Stilling Nov 1998 A
5839052 Dean et al. Nov 1998 A
5852651 Fischer et al. Dec 1998 A
5854986 Dorren et al. Dec 1998 A
5859719 Dentai et al. Jan 1999 A
5862460 Rich Jan 1999 A
5867485 Chambers et al. Feb 1999 A
5867763 Dean et al. Feb 1999 A
5881200 Burt Mar 1999 A
5883882 Schwartz Mar 1999 A
5896568 Tseng et al. Apr 1999 A
5903834 Wallstedt et al. May 1999 A
5910776 Black Jun 1999 A
5913003 Arroyo et al. Jun 1999 A
5917636 Wake et al. Jun 1999 A
5930682 Schwartz et al. Jul 1999 A
5936754 Ariyavisitakul et al. Aug 1999 A
5943372 Gans et al. Aug 1999 A
5943453 Hodgson Aug 1999 A
5946622 Bojeryd Aug 1999 A
5949564 Wake Sep 1999 A
5953670 Newson Sep 1999 A
5959531 Gallagher, III et al. Sep 1999 A
5960344 Mahany Sep 1999 A
5969837 Farber et al. Oct 1999 A
5983070 Georges et al. Nov 1999 A
5987303 Dutta et al. Nov 1999 A
6005884 Cook et al. Dec 1999 A
6006069 Langston et al. Dec 1999 A
6006105 Rostoker et al. Dec 1999 A
6011980 Nagano et al. Jan 2000 A
6014546 Georges et al. Jan 2000 A
6016426 Bodell Jan 2000 A
6023625 Myers, Jr. Feb 2000 A
6037898 Parish et al. Mar 2000 A
6061161 Yang et al. May 2000 A
6069721 Oh et al. May 2000 A
6088381 Myers, Jr. Jul 2000 A
6118767 Shen et al. Sep 2000 A
6122529 Sabat, Jr. et al. Sep 2000 A
6127917 Tuttle Oct 2000 A
6128470 Naidu et al. Oct 2000 A
6128477 Freed Oct 2000 A
6148041 Dent Nov 2000 A
6150921 Werb et al. Nov 2000 A
6157810 Georges et al. Dec 2000 A
6192216 Sabat, Jr. et al. Feb 2001 B1
6194968 Winslow Feb 2001 B1
6212397 Langston et al. Apr 2001 B1
6222503 Gietema Apr 2001 B1
6222965 Smith Apr 2001 B1
6223201 Reznak Apr 2001 B1
6232870 Garber et al. May 2001 B1
6236789 Fitz May 2001 B1
6236863 Waldroup et al. May 2001 B1
6240274 Izadpanah May 2001 B1
6246500 Ackerman Jun 2001 B1
6268946 Larkin et al. Jul 2001 B1
6275990 Dapper et al. Aug 2001 B1
6279158 Geile et al. Aug 2001 B1
6286163 Trimble Sep 2001 B1
6292673 Maeda et al. Sep 2001 B1
6295451 Mimura Sep 2001 B1
6301240 Slabinski et al. Oct 2001 B1
6307869 Pawelski Oct 2001 B1
6314163 Acampora Nov 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6323980 Bloom Nov 2001 B1
6324391 Bodell Nov 2001 B1
6330241 Fort Dec 2001 B1
6330244 Swartz et al. Dec 2001 B1
6334219 Hill et al. Dec 2001 B1
6336021 Nukada Jan 2002 B1
6336042 Dawson et al. Jan 2002 B1
6337754 Imajo Jan 2002 B1
6340932 Rodgers et al. Jan 2002 B1
6353406 Lanzl et al. Mar 2002 B1
6353600 Schwartz et al. Mar 2002 B1
6359714 Imajo Mar 2002 B1
6370203 Boesch et al. Apr 2002 B1
6374078 Williams et al. Apr 2002 B1
6374124 Slabinski Apr 2002 B1
6389010 Kubler et al. May 2002 B1
6400318 Kasami et al. Jun 2002 B1
6400418 Wakabayashi Jun 2002 B1
6404775 Leslie et al. Jun 2002 B1
6405018 Reudink et al. Jun 2002 B1
6405058 Bobier Jun 2002 B2
6405308 Gupta et al. Jun 2002 B1
6414624 Endo et al. Jul 2002 B2
6415132 Sabat, Jr. Jul 2002 B1
6421327 Lundby et al. Jul 2002 B1
6438301 Johnson et al. Aug 2002 B1
6438371 Fujise et al. Aug 2002 B1
6448558 Greene Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6459519 Sasai et al. Oct 2002 B1
6459989 Kirkpatrick et al. Oct 2002 B1
6477154 Cheong et al. Nov 2002 B1
6480702 Sabat, Jr. Nov 2002 B1
6486907 Farber et al. Nov 2002 B1
6496290 Lee Dec 2002 B1
6501965 Lucidarme Dec 2002 B1
6504636 Seto et al. Jan 2003 B1
6504831 Greenwood et al. Jan 2003 B1
6512478 Chien Jan 2003 B1
6519395 Bevan et al. Feb 2003 B1
6519449 Zhang et al. Feb 2003 B1
6525855 Westbrook et al. Feb 2003 B1
6535330 Lelic et al. Mar 2003 B1
6535720 Kintis et al. Mar 2003 B1
6556551 Schwartz Apr 2003 B1
6577794 Currie et al. Jun 2003 B1
6577801 Broderick et al. Jun 2003 B2
6580402 Navarro et al. Jun 2003 B2
6580905 Naidu et al. Jun 2003 B1
6580918 Leickel et al. Jun 2003 B1
6583763 Judd Jun 2003 B2
6587514 Wright et al. Jul 2003 B1
6594496 Schwartz Jul 2003 B2
6597325 Judd et al. Jul 2003 B2
6598009 Yang Jul 2003 B2
6606430 Bartur et al. Aug 2003 B2
6615074 Mickle et al. Sep 2003 B2
6628732 Takaki Sep 2003 B1
6634811 Gertel et al. Oct 2003 B1
6636747 Harada et al. Oct 2003 B2
6640103 Inman et al. Oct 2003 B1
6643437 Park Nov 2003 B1
6652158 Bartur et al. Nov 2003 B2
6654590 Boros et al. Nov 2003 B2
6654616 Pope, Jr. et al. Nov 2003 B1
6657535 Magbie et al. Dec 2003 B1
6658269 Golemon et al. Dec 2003 B1
6665308 Rakib et al. Dec 2003 B1
6670930 Navarro Dec 2003 B2
6674966 Koonen Jan 2004 B1
6675294 Gupta et al. Jan 2004 B1
6678509 Skarman et al. Jan 2004 B2
6687437 Starnes et al. Feb 2004 B1
6690328 Judd Feb 2004 B2
6701137 Judd et al. Mar 2004 B1
6704298 Matsumiya et al. Mar 2004 B1
6704545 Wala Mar 2004 B1
6710366 Lee et al. Mar 2004 B1
6714706 Kambe Mar 2004 B2
6714800 Johnson et al. Mar 2004 B2
6731880 Westbrook et al. May 2004 B2
6745013 Porter et al. Jun 2004 B1
6758913 Tunney et al. Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6771862 Karnik et al. Aug 2004 B2
6771933 Eng et al. Aug 2004 B1
6775427 Evans Aug 2004 B2
6784802 Stanescu Aug 2004 B1
6785558 Stratford et al. Aug 2004 B1
6788666 Linebarger et al. Sep 2004 B1
6801767 Schwartz et al. Oct 2004 B1
6807374 Imajo et al. Oct 2004 B1
6812824 Goldinger et al. Nov 2004 B1
6812905 Thomas et al. Nov 2004 B2
6823174 Masenten et al. Nov 2004 B1
6826163 Mani et al. Nov 2004 B2
6826164 Mani et al. Nov 2004 B2
6826337 Linnell Nov 2004 B2
6836660 Wala Dec 2004 B1
6836673 Trott Dec 2004 B1
6838738 Costello Jan 2005 B1
6842433 West et al. Jan 2005 B2
6847856 Bohannon Jan 2005 B1
6850510 Kubler Feb 2005 B2
6865390 Goss et al. Mar 2005 B2
6873823 Hasarchi Mar 2005 B2
6876056 Tilmans et al. Apr 2005 B2
6879290 Toutain et al. Apr 2005 B1
6882311 Walker et al. Apr 2005 B2
6883710 Chung Apr 2005 B2
6885344 Mohamadi Apr 2005 B2
6885846 Panasik et al. Apr 2005 B1
6889060 Fernando et al. May 2005 B2
6909399 Zegelin et al. Jun 2005 B1
6915058 Pons Jul 2005 B2
6915529 Suematsu et al. Jul 2005 B1
6919858 Rofougaran Jul 2005 B2
6920330 Caronni et al. Jul 2005 B2
6924997 Chen et al. Aug 2005 B2
6930987 Fukuda et al. Aug 2005 B1
6931183 Panak et al. Aug 2005 B2
6931659 Kinemura Aug 2005 B1
6933849 Sawyer Aug 2005 B2
6934511 Lovinggood et al. Aug 2005 B1
6934541 Miyatani Aug 2005 B2
6941112 Hasegawa Sep 2005 B2
6946989 Vavik Sep 2005 B2
6961312 Kubler et al. Nov 2005 B2
6963289 Aljadeff et al. Nov 2005 B2
6963552 Sabat, Jr. et al. Nov 2005 B2
6965718 Koertel Nov 2005 B2
6967347 Estes et al. Nov 2005 B2
6968107 Belardi et al. Nov 2005 B2
6970652 Zhang et al. Nov 2005 B2
6973243 Koyasu et al. Dec 2005 B2
6974262 Rickenbach Dec 2005 B1
6977502 Hertz Dec 2005 B1
7002511 Ammar et al. Feb 2006 B1
7006465 Toshimitsu et al. Feb 2006 B2
7013087 Suzuki et al. Mar 2006 B2
7015826 Chan et al. Mar 2006 B1
7020473 Splett Mar 2006 B2
7020488 Bleile et al. Mar 2006 B1
7024166 Wallace Apr 2006 B2
7035512 Van Bijsterveld Apr 2006 B2
7039399 Fischer May 2006 B2
7043271 Seto et al. May 2006 B1
7047028 Cagenius et al. May 2006 B2
7050017 King et al. May 2006 B2
7053838 Judd May 2006 B2
7054513 Herz et al. May 2006 B2
7069577 Geile et al. Jun 2006 B2
7072586 Aburakawa et al. Jul 2006 B2
7082320 Kattukaran et al. Jul 2006 B2
7084769 Bauer et al. Aug 2006 B2
7093985 Lord et al. Aug 2006 B2
7103119 Matsuoka et al. Sep 2006 B2
7103377 Bauman et al. Sep 2006 B2
7106252 Smith et al. Sep 2006 B2
7106931 Sutehall et al. Sep 2006 B2
7110795 Doi Sep 2006 B2
7114859 Tuohimaa et al. Oct 2006 B1
7127175 Mani et al. Oct 2006 B2
7127176 Sasaki Oct 2006 B2
7142503 Grant et al. Nov 2006 B1
7142535 Kubler et al. Nov 2006 B2
7142619 Sommer et al. Nov 2006 B2
7146506 Hannah et al. Dec 2006 B1
7160032 Nagashima et al. Jan 2007 B2
7171244 Bauman Jan 2007 B2
7184728 Solum Feb 2007 B2
7190748 Kim et al. Mar 2007 B2
7194023 Norrell et al. Mar 2007 B2
7199443 Elsharawy Apr 2007 B2
7200305 Dion et al. Apr 2007 B2
7200391 Chung et al. Apr 2007 B2
7228072 Mickelsson et al. Jun 2007 B2
7263293 Ommodt et al. Aug 2007 B2
7269311 Kim et al. Sep 2007 B2
7280011 Bayar et al. Oct 2007 B2
7286843 Scheck Oct 2007 B2
7286854 Ferrato et al. Oct 2007 B2
7295119 Rappaport et al. Nov 2007 B2
7302140 Nashimoto Nov 2007 B2
7310430 Mallya et al. Dec 2007 B1
7313415 Wake et al. Dec 2007 B2
7315735 Graham Jan 2008 B2
7324730 Varkey et al. Jan 2008 B2
7343164 Kallstenius Mar 2008 B2
7348843 Qiu et al. Mar 2008 B1
7349633 Lee et al. Mar 2008 B2
7359408 Kim Apr 2008 B2
7359674 Markki et al. Apr 2008 B2
7366150 Lee et al. Apr 2008 B2
7366151 Kubler et al. Apr 2008 B2
7369526 Lechleider et al. May 2008 B2
7379669 Kim May 2008 B2
7388892 Nishiyama et al. Jun 2008 B2
7392025 Rooyen et al. Jun 2008 B2
7392029 Pronkine Jun 2008 B2
7394883 Funakubo et al. Jul 2008 B2
7403156 Coppi et al. Jul 2008 B2
7409159 Izadpanah Aug 2008 B2
7412224 Kotola et al. Aug 2008 B2
7424228 Williams et al. Sep 2008 B1
7444051 Tatat et al. Oct 2008 B2
7450853 Kim et al. Nov 2008 B2
7450854 Lee et al. Nov 2008 B2
7451365 Wang et al. Nov 2008 B2
7454222 Huang et al. Nov 2008 B2
7460507 Kubler et al. Dec 2008 B2
7460829 Utsumi et al. Dec 2008 B2
7460831 Hasarchi Dec 2008 B2
7466925 Iannelli Dec 2008 B2
7469105 Wake et al. Dec 2008 B2
7477597 Segel Jan 2009 B2
7483504 Shapira et al. Jan 2009 B2
7483711 Burchfiel Jan 2009 B2
7496070 Vesuna Feb 2009 B2
7496384 Seto et al. Feb 2009 B2
7505747 Solum Mar 2009 B2
7512419 Solum Mar 2009 B2
7522552 Fein et al. Apr 2009 B2
7539509 Bauman et al. May 2009 B2
7542452 Penumetsa Jun 2009 B2
7546138 Bauman Jun 2009 B2
7548138 Kamgaing Jun 2009 B2
7548695 Wake Jun 2009 B2
7551641 Pirzada et al. Jun 2009 B2
7557758 Rofougaran Jul 2009 B2
7580384 Kubler et al. Aug 2009 B2
7586861 Kubler et al. Sep 2009 B2
7590354 Sauer et al. Sep 2009 B2
7593704 Pinel et al. Sep 2009 B2
7599420 Forenza et al. Oct 2009 B2
7599672 Shoji et al. Oct 2009 B2
7610046 Wala Oct 2009 B2
7630690 Kaewell, Jr. et al. Dec 2009 B2
7633934 Kubler et al. Dec 2009 B2
7639982 Wala Dec 2009 B2
7646743 Kubler et al. Jan 2010 B2
7646777 Hicks, III et al. Jan 2010 B2
7653397 Pernu et al. Jan 2010 B2
7668565 Ylänen et al. Feb 2010 B2
7675936 Mizutani et al. Mar 2010 B2
7688811 Kubler et al. Mar 2010 B2
7693486 Kasslin et al. Apr 2010 B2
7697467 Kubler et al. Apr 2010 B2
7697574 Suematsu et al. Apr 2010 B2
7715375 Kubler et al. May 2010 B2
7720510 Pescod et al. May 2010 B2
7751374 Donovan Jul 2010 B2
7751838 Ramesh et al. Jul 2010 B2
7760703 Kubler et al. Jul 2010 B2
7761093 Sabat, Jr. et al. Jul 2010 B2
7768951 Kubler et al. Aug 2010 B2
7773573 Chung et al. Aug 2010 B2
7778603 Palin et al. Aug 2010 B2
7787823 George et al. Aug 2010 B2
7805073 Sabat, Jr. et al. Sep 2010 B2
7809012 Ruuska et al. Oct 2010 B2
7812766 Leblanc et al. Oct 2010 B2
7812775 Babakhani et al. Oct 2010 B2
7817969 Castaneda et al. Oct 2010 B2
7835328 Stephens et al. Nov 2010 B2
7848316 Kubler et al. Dec 2010 B2
7848770 Scheinert Dec 2010 B2
7853234 Afsahi Dec 2010 B2
7870321 Rofougaran Jan 2011 B2
7880677 Rofougaran et al. Feb 2011 B2
7881755 Mishra et al. Feb 2011 B1
7894423 Kubler et al. Feb 2011 B2
7899007 Kubler et al. Mar 2011 B2
7907972 Walton et al. Mar 2011 B2
7912043 Kubler et al. Mar 2011 B2
7912506 Lovberg et al. Mar 2011 B2
7916706 Kubler et al. Mar 2011 B2
7917177 Bauman Mar 2011 B2
7920553 Kubler et al. Apr 2011 B2
7920858 Sabat, Jr. et al. Apr 2011 B2
7924783 Mahany et al. Apr 2011 B1
7936713 Kubler et al. May 2011 B2
7949364 Kasslin et al. May 2011 B2
7957777 Vu et al. Jun 2011 B1
7962111 Solum Jun 2011 B2
7969009 Chandrasekaran Jun 2011 B2
7969911 Mahany et al. Jun 2011 B2
7990925 Tinnakornsrisuphap et al. Aug 2011 B2
7996020 Chhabra Aug 2011 B1
8018907 Kubler et al. Sep 2011 B2
8023886 Rofougaran Sep 2011 B2
8027656 Rofougaran et al. Sep 2011 B2
8036308 Rofougaran Oct 2011 B2
8082353 Huber et al. Dec 2011 B2
8086192 Rofougaran et al. Dec 2011 B2
8135102 Wiwel et al. Mar 2012 B2
8213401 Fischer et al. Jul 2012 B2
8223795 Cox et al. Jul 2012 B2
8238463 Arslan et al. Aug 2012 B1
8270387 Cannon et al. Sep 2012 B2
8290483 Sabat, Jr. et al. Oct 2012 B2
8306563 Zavadsky et al. Nov 2012 B2
8346278 Wala et al. Jan 2013 B2
8428201 McHann, Jr. et al. Apr 2013 B1
8428510 Stratford et al. Apr 2013 B2
8462683 Uyehara et al. Jun 2013 B2
8472579 Uyehara et al. Jun 2013 B2
8509215 Stuart Aug 2013 B2
8509850 Zavadsky et al. Aug 2013 B2
8526970 Wala et al. Sep 2013 B2
8532242 Fischer et al. Sep 2013 B2
8626245 Zavadsky et al. Jan 2014 B2
8737454 Wala et al. May 2014 B2
8743718 Grenier et al. Jun 2014 B2
8743756 Uyehara et al. Jun 2014 B2
8750173 Knox Jun 2014 B2
8837659 Uyehara et al. Sep 2014 B2
8837940 Smith et al. Sep 2014 B2
8873585 Oren et al. Oct 2014 B2
8929288 Stewart et al. Jan 2015 B2
20010024545 Sorin Sep 2001 A1
20010033710 Kim Oct 2001 A1
20010036163 Sabat, Jr. et al. Nov 2001 A1
20010036199 Terry Nov 2001 A1
20020003645 Kim et al. Jan 2002 A1
20020009070 Lindsay et al. Jan 2002 A1
20020012336 Hughes et al. Jan 2002 A1
20020012495 Sasai et al. Jan 2002 A1
20020016827 McCabe et al. Feb 2002 A1
20020045519 Watterson et al. Apr 2002 A1
20020048071 Suzuki et al. Apr 2002 A1
20020051434 Ozluturk et al. May 2002 A1
20020075906 Cole et al. Jun 2002 A1
20020085811 Kambe Jul 2002 A1
20020092347 Niekerk et al. Jul 2002 A1
20020097564 Struhsaker et al. Jul 2002 A1
20020103012 Kim et al. Aug 2002 A1
20020111149 Shoki Aug 2002 A1
20020111192 Thomas et al. Aug 2002 A1
20020114038 Arnon et al. Aug 2002 A1
20020123365 Thorson et al. Sep 2002 A1
20020126967 Panak et al. Sep 2002 A1
20020128009 Boch et al. Sep 2002 A1
20020130778 Nicholson Sep 2002 A1
20020181668 Masoian et al. Dec 2002 A1
20020190845 Moore Dec 2002 A1
20020197984 Monin et al. Dec 2002 A1
20030002604 Fifield et al. Jan 2003 A1
20030007214 Aburakawa et al. Jan 2003 A1
20030016418 Westbrook et al. Jan 2003 A1
20030045284 Copley et al. Mar 2003 A1
20030069922 Arunachalam Apr 2003 A1
20030078074 Sesay et al. Apr 2003 A1
20030112826 Ashwood Smith et al. Jun 2003 A1
20030141962 Barink Jul 2003 A1
20030161637 Yamamoto et al. Aug 2003 A1
20030165287 Krill et al. Sep 2003 A1
20030174099 Bauer et al. Sep 2003 A1
20030209601 Chung Nov 2003 A1
20040001719 Sasaki Jan 2004 A1
20040008114 Sawyer Jan 2004 A1
20040017785 Zelst Jan 2004 A1
20040037565 Young et al. Feb 2004 A1
20040041714 Forster Mar 2004 A1
20040043764 Bigham et al. Mar 2004 A1
20040047313 Rumpf et al. Mar 2004 A1
20040078151 Aljadeff et al. Apr 2004 A1
20040095907 Agee et al. May 2004 A1
20040100930 Shapira et al. May 2004 A1
20040106435 Bauman et al. Jun 2004 A1
20040126068 Van Bijsterveld Jul 2004 A1
20040126107 Jay et al. Jul 2004 A1
20040139477 Russell et al. Jul 2004 A1
20040146020 Kubler et al. Jul 2004 A1
20040149736 Clothier Aug 2004 A1
20040151164 Kubler et al. Aug 2004 A1
20040151503 Kashima et al. Aug 2004 A1
20040157623 Splett Aug 2004 A1
20040160912 Kubler et al. Aug 2004 A1
20040160913 Kubler et al. Aug 2004 A1
20040162084 Wang Aug 2004 A1
20040162115 Smith et al. Aug 2004 A1
20040162116 Han et al. Aug 2004 A1
20040165573 Kubler et al. Aug 2004 A1
20040175173 Deas Sep 2004 A1
20040196404 Loheit et al. Oct 2004 A1
20040202257 Mehta et al. Oct 2004 A1
20040203703 Fischer Oct 2004 A1
20040203704 Ommodt et al. Oct 2004 A1
20040203846 Caronni et al. Oct 2004 A1
20040204109 Hoppenstein Oct 2004 A1
20040208526 Mibu Oct 2004 A1
20040208643 Roberts et al. Oct 2004 A1
20040215723 Chadha Oct 2004 A1
20040218873 Nagashima et al. Nov 2004 A1
20040233877 Lee et al. Nov 2004 A1
20040258105 Spathas et al. Dec 2004 A1
20040267971 Seshadri Dec 2004 A1
20050052287 Whitesmith et al. Mar 2005 A1
20050058451 Ross Mar 2005 A1
20050068179 Roesner Mar 2005 A1
20050076982 Metcalf et al. Apr 2005 A1
20050078006 Hutchins Apr 2005 A1
20050093679 Zai et al. May 2005 A1
20050099343 Asrani et al. May 2005 A1
20050116821 Wilsey et al. Jun 2005 A1
20050123232 Piede et al. Jun 2005 A1
20050141545 Fein et al. Jun 2005 A1
20050143077 Charbonneau Jun 2005 A1
20050147067 Mani et al. Jul 2005 A1
20050147071 Karaoguz et al. Jul 2005 A1
20050148306 Hiddink Jul 2005 A1
20050159108 Fletcher Jul 2005 A1
20050174236 Brookner Aug 2005 A1
20050176458 Shklarsky et al. Aug 2005 A1
20050185884 Haus et al. Aug 2005 A1
20050201323 Mani et al. Sep 2005 A1
20050201761 Bartur et al. Sep 2005 A1
20050219050 Martin Oct 2005 A1
20050224585 Durrant et al. Oct 2005 A1
20050226625 Wake et al. Oct 2005 A1
20050232636 Durrant et al. Oct 2005 A1
20050242188 Vesuna Nov 2005 A1
20050252971 Howarth et al. Nov 2005 A1
20050266797 Utsumi et al. Dec 2005 A1
20050266854 Niiho et al. Dec 2005 A1
20050269930 Shimizu et al. Dec 2005 A1
20050271396 Iannelli Dec 2005 A1
20050272439 Picciriello et al. Dec 2005 A1
20060002326 Vesuna Jan 2006 A1
20060014548 Bolin Jan 2006 A1
20060017633 Pronkine Jan 2006 A1
20060028352 McNamara et al. Feb 2006 A1
20060045054 Utsumi et al. Mar 2006 A1
20060045524 Lee et al. Mar 2006 A1
20060045525 Lee et al. Mar 2006 A1
20060053324 Giat et al. Mar 2006 A1
20060056327 Coersmeier Mar 2006 A1
20060062579 Kim et al. Mar 2006 A1
20060083520 Healey et al. Apr 2006 A1
20060094470 Wake et al. May 2006 A1
20060104643 Lee et al. May 2006 A1
20060159388 Kawase et al. Jul 2006 A1
20060172775 Conyers et al. Aug 2006 A1
20060182446 Kim et al. Aug 2006 A1
20060182449 Iannelli et al. Aug 2006 A1
20060189354 Lee et al. Aug 2006 A1
20060209745 MacMullan et al. Sep 2006 A1
20060223439 Pinel et al. Oct 2006 A1
20060233506 Noonan et al. Oct 2006 A1
20060239630 Hase et al. Oct 2006 A1
20060257065 Coldren et al. Nov 2006 A1
20060257073 Nashimoto Nov 2006 A1
20060268738 Goerke et al. Nov 2006 A1
20060274704 Desai et al. Dec 2006 A1
20070009266 Bothwell Jan 2007 A1
20070050451 Caspi et al. Mar 2007 A1
20070054682 Fanning et al. Mar 2007 A1
20070058978 Lee et al. Mar 2007 A1
20070060045 Prautzsch Mar 2007 A1
20070060055 Desai et al. Mar 2007 A1
20070071128 Meir et al. Mar 2007 A1
20070076649 Lin et al. Apr 2007 A1
20070093273 Cai Apr 2007 A1
20070149250 Crozzoli et al. Jun 2007 A1
20070166042 Seeds et al. Jul 2007 A1
20070173288 Skarby et al. Jul 2007 A1
20070174889 Kim et al. Jul 2007 A1
20070224954 Gopi Sep 2007 A1
20070230328 Saitou Oct 2007 A1
20070243899 Hermel et al. Oct 2007 A1
20070248358 Sauer Oct 2007 A1
20070253714 Seeds et al. Nov 2007 A1
20070257796 Easton et al. Nov 2007 A1
20070263953 Thalliya et al. Nov 2007 A1
20070264009 Sabat, Jr. et al. Nov 2007 A1
20070264011 Sone et al. Nov 2007 A1
20070268846 Proctor et al. Nov 2007 A1
20070274279 Wood et al. Nov 2007 A1
20070292143 Yu et al. Dec 2007 A1
20070297005 Montierth et al. Dec 2007 A1
20080002652 Gupta et al. Jan 2008 A1
20080007453 Vassilakis et al. Jan 2008 A1
20080013909 Kostet et al. Jan 2008 A1
20080013956 Ware et al. Jan 2008 A1
20080013957 Akers et al. Jan 2008 A1
20080014948 Scheinert Jan 2008 A1
20080026765 Charbonneau Jan 2008 A1
20080031628 Dragas et al. Feb 2008 A1
20080043714 Pernu Feb 2008 A1
20080056167 Kim et al. Mar 2008 A1
20080058018 Scheinert Mar 2008 A1
20080063397 Hu et al. Mar 2008 A1
20080070502 George et al. Mar 2008 A1
20080080863 Sauer et al. Apr 2008 A1
20080098203 Master et al. Apr 2008 A1
20080118014 Reunamaki et al. May 2008 A1
20080119198 Hettstedt et al. May 2008 A1
20080124086 Matthews May 2008 A1
20080124087 Hartmann et al. May 2008 A1
20080129634 Pera et al. Jun 2008 A1
20080134194 Liu Jun 2008 A1
20080144989 Sakurai Jun 2008 A1
20080145061 Lee et al. Jun 2008 A1
20080150514 Codreanu et al. Jun 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080194226 Rivas et al. Aug 2008 A1
20080207253 Jaakkola et al. Aug 2008 A1
20080212969 Fasshauer et al. Sep 2008 A1
20080219670 Kim et al. Sep 2008 A1
20080232305 Oren et al. Sep 2008 A1
20080232799 Kim Sep 2008 A1
20080247716 Thomas Oct 2008 A1
20080253280 Tang et al. Oct 2008 A1
20080253351 Pernu et al. Oct 2008 A1
20080253773 Zheng Oct 2008 A1
20080260388 Kim et al. Oct 2008 A1
20080261656 Bella et al. Oct 2008 A1
20080268766 Narkmon et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080273844 Kewitsch Nov 2008 A1
20080279137 Pernu et al. Nov 2008 A1
20080280569 Hazani et al. Nov 2008 A1
20080291830 Pernu et al. Nov 2008 A1
20080292322 Daghighian et al. Nov 2008 A1
20080298813 Song et al. Dec 2008 A1
20080304831 Miller, II et al. Dec 2008 A1
20080310464 Schneider Dec 2008 A1
20080310848 Yasuda et al. Dec 2008 A1
20080311876 Leenaerts et al. Dec 2008 A1
20080311944 Hansen et al. Dec 2008 A1
20090022304 Kubler et al. Jan 2009 A1
20090028087 Nguyen et al. Jan 2009 A1
20090028317 Ling et al. Jan 2009 A1
20090041413 Hurley Feb 2009 A1
20090047023 Pescod et al. Feb 2009 A1
20090059903 Kubler et al. Mar 2009 A1
20090061796 Arkko et al. Mar 2009 A1
20090061939 Andersson et al. Mar 2009 A1
20090073916 Zhang et al. Mar 2009 A1
20090081985 Rofougaran et al. Mar 2009 A1
20090087179 Underwood et al. Apr 2009 A1
20090088071 Rofougaran Apr 2009 A1
20090088072 Rofougaran et al. Apr 2009 A1
20090135078 Lindmark et al. May 2009 A1
20090141780 Cruz-Albrecht et al. Jun 2009 A1
20090149221 Liu et al. Jun 2009 A1
20090154621 Shapira et al. Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090180407 Sabat et al. Jul 2009 A1
20090180426 Sabat et al. Jul 2009 A1
20090218407 Rofougaran Sep 2009 A1
20090218657 Rofougaran Sep 2009 A1
20090220240 Abhari Sep 2009 A1
20090237317 Rofougaran Sep 2009 A1
20090245084 Moffatt et al. Oct 2009 A1
20090245153 Li et al. Oct 2009 A1
20090245221 Piipponen Oct 2009 A1
20090247109 Rofougaran Oct 2009 A1
20090252136 Mahany et al. Oct 2009 A1
20090252139 Ludovico et al. Oct 2009 A1
20090252205 Rheinfelder et al. Oct 2009 A1
20090258652 Lambert et al. Oct 2009 A1
20090278596 Rofougaran et al. Nov 2009 A1
20090279593 Rofougaran et al. Nov 2009 A1
20090285147 Subasic et al. Nov 2009 A1
20090316608 Singh et al. Dec 2009 A1
20090319909 Hsueh et al. Dec 2009 A1
20100002626 Schmidt et al. Jan 2010 A1
20100002661 Schmidt et al. Jan 2010 A1
20100002662 Schmidt et al. Jan 2010 A1
20100014494 Schmidt et al. Jan 2010 A1
20100027443 LoGalbo et al. Feb 2010 A1
20100056200 Tolonen Mar 2010 A1
20100080154 Noh et al. Apr 2010 A1
20100080182 Kubler et al. Apr 2010 A1
20100091475 Toms et al. Apr 2010 A1
20100118864 Kubler et al. May 2010 A1
20100127937 Chandrasekaran et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100142598 Murray et al. Jun 2010 A1
20100142955 Yu et al. Jun 2010 A1
20100144285 Behzad et al. Jun 2010 A1
20100148373 Chandrasekaran Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100159859 Rofougaran Jun 2010 A1
20100188998 Pernu et al. Jul 2010 A1
20100189439 Novak et al. Jul 2010 A1
20100190509 Davis Jul 2010 A1
20100202326 Rofougaran et al. Aug 2010 A1
20100225413 Rofougaran et al. Sep 2010 A1
20100225520 Mohamadi et al. Sep 2010 A1
20100225556 Rofougaran et al. Sep 2010 A1
20100225557 Rofougaran et al. Sep 2010 A1
20100232323 Kubler et al. Sep 2010 A1
20100246558 Harel Sep 2010 A1
20100255774 Kenington Oct 2010 A1
20100258949 Henderson et al. Oct 2010 A1
20100260063 Kubler et al. Oct 2010 A1
20100261501 Behzad et al. Oct 2010 A1
20100266287 Adhikari et al. Oct 2010 A1
20100278530 Kummetz et al. Nov 2010 A1
20100284323 Tang et al. Nov 2010 A1
20100290355 Roy et al. Nov 2010 A1
20100309049 Reunamäki et al. Dec 2010 A1
20100311472 Rofougaran et al. Dec 2010 A1
20100311480 Raines et al. Dec 2010 A1
20100329161 Ylanen et al. Dec 2010 A1
20100329166 Mahany et al. Dec 2010 A1
20100329680 Presi et al. Dec 2010 A1
20110002687 Sabat, Jr. et al. Jan 2011 A1
20110007724 Mahany et al. Jan 2011 A1
20110007733 Kubler et al. Jan 2011 A1
20110008042 Stewart Jan 2011 A1
20110019999 George et al. Jan 2011 A1
20110021146 Pernu Jan 2011 A1
20110021224 Koskinen et al. Jan 2011 A1
20110026932 Yeh et al. Feb 2011 A1
20110045767 Rofougaran et al. Feb 2011 A1
20110065450 Kazmi Mar 2011 A1
20110066774 Rofougaran Mar 2011 A1
20110069668 Chion et al. Mar 2011 A1
20110071734 Van Wiemeersch et al. Mar 2011 A1
20110086614 Brisebois et al. Apr 2011 A1
20110116393 Hong et al. May 2011 A1
20110116572 Lee et al. May 2011 A1
20110122912 Benjamin et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110158298 Djadi et al. Jun 2011 A1
20110182230 Ohm et al. Jul 2011 A1
20110194475 Kim et al. Aug 2011 A1
20110200328 In De Betou et al. Aug 2011 A1
20110201368 Faccin et al. Aug 2011 A1
20110204504 Henderson et al. Aug 2011 A1
20110206383 Chien et al. Aug 2011 A1
20110211439 Manpuria et al. Sep 2011 A1
20110215901 Van Wiemeersch et al. Sep 2011 A1
20110222415 Ramamurthi et al. Sep 2011 A1
20110222434 Chen Sep 2011 A1
20110222619 Ramamurthi et al. Sep 2011 A1
20110227795 Lopez et al. Sep 2011 A1
20110244887 Dupray et al. Oct 2011 A1
20110256878 Zhu et al. Oct 2011 A1
20110268033 Boldi et al. Nov 2011 A1
20110274021 He et al. Nov 2011 A1
20110281536 Lee et al. Nov 2011 A1
20120052892 Braithwaite Mar 2012 A1
20120177026 Uyehara et al. Jul 2012 A1
20130012195 Sabat, Jr. et al. Jan 2013 A1
20130070816 Aoki et al. Mar 2013 A1
20130071112 Melester et al. Mar 2013 A1
20130089332 Sauer et al. Apr 2013 A1
20130095870 Phillips et al. Apr 2013 A1
20130210490 Fischer et al. Aug 2013 A1
20130252651 Zavadsky et al. Sep 2013 A1
20130260705 Stratford Oct 2013 A1
20140016583 Smith Jan 2014 A1
20140140225 Wala May 2014 A1
20140146797 Zavadsky et al. May 2014 A1
20140146905 Zavadsky et al. May 2014 A1
20140146906 Zavadsky et al. May 2014 A1
20140219140 Uyehara et al. Aug 2014 A1
Foreign Referenced Citations (120)
Number Date Country
645192 Oct 1992 AU
731180 Mar 1998 AU
2065090 Feb 1998 CA
2242707 Jan 1999 CA
101389148 Mar 2009 CN
101547447 Sep 2009 CN
20104862 Aug 2001 DE
10249414 May 2004 DE
0477952 Apr 1992 EP
0477952 Apr 1992 EP
0461583 Mar 1997 EP
851618 Jul 1998 EP
0687400 Nov 1998 EP
0964290 May 1999 EP
0993124 Apr 2000 EP
1037411 Sep 2000 EP
1179895 Feb 2002 EP
1241515 Mar 2002 EP
1267447 Dec 2002 EP
1347584 Sep 2003 EP
1363352 Nov 2003 EP
1391897 Feb 2004 EP
1443687 Aug 2004 EP
1455550 Sep 2004 EP
1501206 Jan 2005 EP
1503451 Feb 2005 EP
1530316 May 2005 EP
1511203 Mar 2006 EP
1267447 Aug 2006 EP
1693974 Aug 2006 EP
1742388 Jan 2007 EP
1227605 Jan 2008 EP
1954019 Aug 2008 EP
1968250 Sep 2008 EP
1056226 Apr 2009 EP
1357683 May 2009 EP
2276298 Jan 2011 EP
1570626 Nov 2013 EP
2095419 Sep 1982 GB
2323252 Sep 1998 GB
2370170 Jun 2002 GB
2399963 Sep 2004 GB
2428149 Jan 2007 GB
H4189036 Jul 1992 JP
05260018 Oct 1993 JP
09083450 Mar 1997 JP
09162810 Jun 1997 JP
09200840 Jul 1997 JP
11068675 Mar 1999 JP
2000152300 May 2000 JP
2000341744 Dec 2000 JP
2002264617 Sep 2002 JP
2002353813 Dec 2002 JP
2003148653 May 2003 JP
2003172827 Jun 2003 JP
2004172734 Jun 2004 JP
2004245963 Sep 2004 JP
2004247090 Sep 2004 JP
2004264901 Sep 2004 JP
2004265624 Sep 2004 JP
2004317737 Nov 2004 JP
2004349184 Dec 2004 JP
2005018175 Jan 2005 JP
2005087135 Apr 2005 JP
2005134125 May 2005 JP
2007065227 Mar 2007 JP
2007228603 Sep 2007 JP
2008172597 Jul 2008 JP
20010055088 Jul 2001 KR
9603823 Feb 1996 WO
9810600 Mar 1998 WO
0042721 Jul 2000 WO
0072475 Nov 2000 WO
0178434 Oct 2001 WO
0184760 Nov 2001 WO
0221183 Mar 2002 WO
0230141 Apr 2002 WO
02102102 Dec 2002 WO
03024027 Mar 2003 WO
03098175 Nov 2003 WO
2004030154 Apr 2004 WO
2004047472 Jun 2004 WO
2004056019 Jul 2004 WO
2004059934 Jul 2004 WO
2004086795 Oct 2004 WO
2004093471 Oct 2004 WO
2005062505 Jul 2005 WO
2005069203 Jul 2005 WO
2005073897 Aug 2005 WO
2005079386 Sep 2005 WO
2005101701 Oct 2005 WO
2005111959 Nov 2005 WO
2006011778 Feb 2006 WO
2006018592 Feb 2006 WO
2006019392 Feb 2006 WO
2006039941 Apr 2006 WO
2006046088 May 2006 WO
2006051262 May 2006 WO
2006060754 Jun 2006 WO
2006077569 Jul 2006 WO
2006105185 Oct 2006 WO
2006133609 Dec 2006 WO
2006136811 Dec 2006 WO
2007048427 May 2007 WO
2007077451 Jul 2007 WO
2007088561 Aug 2007 WO
2007091026 Aug 2007 WO
2008008249 Jan 2008 WO
2008027213 Mar 2008 WO
2008033298 Mar 2008 WO
2008039830 Apr 2008 WO
2008116014 Sep 2008 WO
2010090999 Aug 2010 WO
2010132739 Nov 2010 WO
2011023592 Mar 2011 WO
2011100095 Aug 2011 WO
2011139939 Nov 2011 WO
2012148938 Nov 2012 WO
2012148940 Nov 2012 WO
2013122915 Aug 2013 WO
Non-Patent Literature Citations (47)
Entry
Patent Cooperation Treaty International Search Report for application No. PCT/IL2014/050535, dated Sep. 30, 2014, 4 pages.
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041.
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages.
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3.
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720.
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages.
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3.
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26.
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5.
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2.
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2.
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8.
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710.
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168.
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985.
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208.
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011.
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58.
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages.
Author Unknown, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 20 pages.
Author Unknown, RFID Technology Overview, Date Unknown, 11 pages.
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages.
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages.
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282.
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709.
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design.
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56.
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118.
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406.
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages.
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751.
Yu et al., “A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480.
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages.
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages.
Chang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages.
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Quantum Electronics, Optical Society of America, May 2008, 2 pages.
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages.
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613.
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages.
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages.
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages.
Pleros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967.
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals Via Equalized Carrier/ Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages.
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Applications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209.
Author Unknown, “VCSEL Chaotic Synchronization and Modulation Characteristics,” Master's Thesis, Southwest Jiatong University, Professor Pan Wei, Apr. 2006, 8 pages (machine translation).
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Wireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3.
Examination Report for European Patent Application No. 14734911.2, mailed Mar. 21, 2017, 6 pages.
Related Publications (1)
Number Date Country
20160085136 A1 Mar 2016 US
Provisional Applications (2)
Number Date Country
61834066 Jun 2013 US
61894129 Oct 2013 US
Continuations (1)
Number Date Country
Parent PCT/IL2014/050535 Jun 2014 US
Child 14962383 US