Voltage controlled pulse sequences for irreversible electroporation ablations

Information

  • Patent Grant
  • 12343071
  • Patent Number
    12,343,071
  • Date Filed
    Monday, January 24, 2022
    3 years ago
  • Date Issued
    Tuesday, July 1, 2025
    3 months ago
Abstract
At least some embodiments of the present disclosure are directed to an electroporation ablation system for treating targeted tissue in a patient. The electroporation ablation system comprises an ablation catheter including catheter electrodes configured to generate electric fields in the targeted tissue in response to a plurality of electrical pulse sequences delivered in a plurality of therapy sections; a controller configured to receive a first pulse voltage of a first electrical pulse sequence measured during a first therapy section of the plurality of therapy sections; and determine a charge voltage based on the first pulse voltage; and an electroporation generator. The electroporation generator is operatively coupled to the catheter electrodes and the controller and configured to deliver a second electrical pulse sequence at a controlled pulse voltage for a second therapy section of the plurality of therapy sections.
Description
TECHNICAL FIELD

The present disclosure relates to medical apparatus, systems, and methods for ablating tissue in a patient. More specifically, the present disclosure relates to medical apparatus, systems, and methods for ablation of tissue by electroporation.


BACKGROUND

Ablation procedures are used to treat many different conditions in patients. Ablation may be used to treat cardiac arrhythmias, benign tumors, cancerous tumors, and to control bleeding during surgery. Usually, ablation is accomplished through thermal ablation techniques including radio-frequency (RF) ablation and cryoablation. In RF ablation, a probe is inserted into the patient and radio frequency waves are transmitted through the probe to the surrounding tissue. The radio frequency waves generate heat, which destroys surrounding tissue and cauterizes blood vessels. In cryoablation, a hollow needle or cryoprobe is inserted into the patient and cold, thermally conductive fluid is circulated through the probe to freeze and kill the surrounding tissue. RF ablation and cryoablation techniques indiscriminately kill tissue through cell necrosis, which may damage or kill otherwise healthy tissue, such as tissue in the esophagus, phrenic nerve cells, and tissue in the coronary arteries.


Another ablation technique uses electroporation. In electroporation, or electro-permeabilization, an electric field is applied to cells to increase the permeability of the cell membrane. The electroporation may be reversible or irreversible, depending on the strength of the electric field. If the electroporation is reversible, the increased permeability of the cell membrane may be used to introduce chemicals, drugs, and/or deoxyribonucleic acid (DNA) into the cell, prior to the cell healing and recovering. If the electroporation is irreversible, the affected cells are killed through apoptosis.


Irreversible electroporation (IRE) may be used as a nonthermal ablation technique. In IRE, trains of short, high voltage pulses are used to generate electric fields that are strong enough to kill cells through apoptosis. In ablation of cardiac tissue, IRE may be a safe and effective alternative to the indiscriminate killing of thermal ablation techniques, such as RF ablation and cryoablation. IRE may be used to kill targeted tissue, such as myocardium tissue, by using an electric field strength and duration that kills the targeted tissue but does not permanently damage other cells or tissue, such as non-targeted myocardium tissue, red blood cells, vascular smooth muscle tissue, endothelium tissue, and nerve cells.


SUMMARY

As recited in examples, Example 1 is an electroporation ablation system for treating targeted tissue in a patient. The electroporation ablation system comprises an ablation catheter including: catheter electrodes configured to generate electric fields in the targeted tissue in response to a plurality of electrical pulse sequences delivered in a plurality of therapy sections; a controller configured to: receive a first pulse voltage of a first electrical pulse sequence measured during a first therapy section of the plurality of therapy sections; determine a charge voltage based on the first pulse voltage; and an electroporation generator. The electroporation generator is operatively coupled to the catheter electrodes and the controller and configured to deliver a second electrical pulse sequence at a controlled pulse voltage for a second therapy section of the plurality of therapy sections, the second therapy section being after the first therapy section, the controlled pulse voltage being associated with the charge voltage.


Example 2 is the electroporation ablation system of Example 1, wherein the electroporation generator comprises a capacitor bank and the electroporation generator is configured to charge the capacitor bank to a voltage level of the charge voltage before a start of the second therapy section.


Example 3 is the electroporation ablation system of Example 1 or 2, wherein the first electrical pulse sequence comprises a plurality of first electrical pulses.


Example 4 is the electroporation ablation system of Example 3, wherein the first pulse voltage comprises one or more pulse voltages of the plurality of first electrical pulses measured during the first therapy section.


Example 5 is the electroporation ablation system of any one of Examples 1-4, wherein the controller is further configured to receive a first pulse current of the first electrical pulse sequence delivered during the first therapy section, wherein the controller is further configured to determine the charge voltage based on the first pulse voltage and the first pulse current.


Example 6 is the electroporation ablation system of Example 5, wherein the controller is further configured to determine a first tissue impedance based on the first pulse voltage and the first pulse current.


Example 7 is the electroporation ablation system of Example 6, wherein the controlled pulse voltage is a portion of the charge voltage.


Example 8 is the electroporation ablation system of Example 7, wherein a ratio of the controlled pulse voltage and the charge voltage is associated with the first tissue impedance.


Example 9 is the electroporation ablation system of any one of Examples 1-8, wherein the electroporation generator is further configured to deliver a scan electrical pulse sequence at a scan voltage during a scan section prior to the plurality of therapy sections, wherein the controller is further configured to determine an initial tissue impedance based on an initial pulse voltage of the scan electrical pulse sequence and an initial pulse current of the scan electrical pulse sequence measured during the scan section, wherein the controller is further configured to determine an initial charge voltage based on the initial tissue impedance.


Example 10 is the electroporation ablation system of Example 9, wherein the scan voltage is less than the controlled pulse voltage.


Example 11 is the electroporation ablation system of Example 9, wherein the scan electrical pulse sequence includes a single non-ablative electrical pulse.


Example 12 is method of using an electroporation ablation device. The method includes the steps of: disposing a catheter of the electroporation ablation device anatomically proximate to a target ablation location, the catheter comprising one or more catheter electrodes and configured to generate electric fields in response to a plurality of electrical pulse sequences delivered in a plurality of therapy sections; receiving a first pulse voltage of a first electrical pulse sequence measured during a first therapy section of the plurality of therapy sections; determining a charge voltage based on the first pulse voltage; and delivering a second electrical pulse sequence at a controlled pulse voltage for a second therapy section of the plurality of therapy sections, the second therapy section being after the first therapy section, the controlled pulse voltage being associated with the charge voltage.


Example 13 is the method of Example 12, further comprising: receiving a first pulse current of first electrical pulse sequence measured during the first therapy section, wherein determining a charge voltage comprises determining the charge voltage based on the first pulse voltage and the first pulse current.


Example 14 is the method of Example 13, further comprising: determining a first tissue impedance based on the first pulse voltage and the first pulse current, wherein determining a charge voltage comprises determining the charge voltage based on the first tissue impedance.


Example 15 is the method of any one of Examples 12-14, further comprising: delivering a scan electrical pulse sequence during a scan section; receiving an initial pulse voltage of the scan electrical pulse sequence measured during the scan section; receiving an initial pulse current of the scan electrical pulse sequence measured during the scan section; and determining an initial tissue impedance based on the initial pulse voltage and the initial pulse current measured, wherein the scan section is before the first therapy section, wherein the scan electrical pulse sequence is at a scan pulse voltage lower than the controlled pulse voltage.


Example 16 is an electroporation ablation system for treating targeted tissue in a patient. The electroporation ablation system comprising: an ablation catheter including: catheter electrodes configured to generate electric fields in the targeted tissue in response to a plurality of electrical pulse sequences delivered in a plurality of therapy sections; a controller configured to receive a first pulse voltage of a first electrical pulse sequence measured during a first therapy section of the plurality of therapy sections; determine a charge voltage based on the first pulse voltage; and an electroporation generator. The electroporation generator is operatively coupled to the catheter electrodes and the controller and configured to deliver a second electrical pulse sequence at a controlled pulse voltage for a second therapy section of the plurality of therapy sections, the second therapy section being after the first therapy section, the controlled pulse voltage being associated with the charge voltage.


Example 17 is the electroporation ablation system of Example 16, wherein the electroporation generator comprises a capacitor bank and the electroporation generator is configured to charge the capacitor bank to a voltage level of the charge voltage before a start of the second therapy section.


Example 18 is the electroporation ablation system of Example 16, wherein the first electrical pulse sequence comprises a plurality of first electrical pulses.


Example 19 is the electroporation ablation system of Example 18, wherein the first pulse voltage comprises one or more pulse voltages of the plurality of first electrical pulses measured during the first therapy section.


Example 20 is the electroporation ablation system of Example 16, wherein the controller is further configured to receive a first pulse current of a first electrical pulse sequence delivered during the first therapy section, wherein the controller is further configured to determine the charge voltage based on the first pulse voltage and the first pulse current.


Example 21 is the electroporation ablation system of Example 20, wherein the controller is further configured to determine a first tissue impedance based on the first pulse voltage and the first pulse current.


Example 22 is the electroporation ablation system of Example 21, wherein the controlled pulse voltage is a portion of the charge voltage.


Example 23 is the electroporation ablation system of Example 22, wherein a ratio of the controlled pulse voltage and the charge voltage is associated with the first tissue impedance.


Example 24 is the electroporation ablation system of Example 16, wherein the electroporation generator is further configured to deliver a scan electrical pulse sequence at a scan voltage during a scan section prior to the plurality of therapy sections, wherein the controller is further configured to determine an initial tissue impedance based on an initial pulse voltage of the scan electrical pulse sequence and an initial pulse current of the scan electrical pulse sequence measured during the scan section, wherein the controller is further configured to determine an initial charge voltage based on the initial tissue impedance.


Example 25 is the electroporation ablation system of Example 24, wherein the scan voltage is less than the controlled pulse voltage.


Example 26 is the electroporation ablation system of Example 24, wherein the scan electrical pulse sequence includes a single non-ablative electrical pulse.


Example 27 is the electroporation ablation system of Example 16, wherein the electroporation generator comprises a plurality of capacitor banks, wherein the electroporation generator is configured to charge at least one of the plurality of capacitor banks to a voltage level individually.


Example 28 is the electroporation ablation system of Example 27, wherein the electroporation generator is configured to use a first capacitor bank of the plurality of capacitor banks to deliver a pulse sequence for a specific therapy section of the plurality of therapy sections and charge a second capacitor bank of the plurality of capacitor banks to a voltage level of a determined charge voltage before a start of a therapy section immediately after the specific therapy section of the plurality of therapy sections.


Example 29 is the electroporation ablation system of Example 27, wherein the catheter electrodes comprise a plurality of electrode pairs, wherein each capacitor bank of the plurality of capacitor banks is operatively coupled to one or more electrode pairs of the plurality of electrode pairs.


Example 30 is the electroporation ablation system of Example 29, wherein the controller is configured to determine a bank charge voltage for each capacitor bank of the plurality of capacitor banks.


Example 31 is a method of using an electroporation ablation device. The method includes the step of: disposing a catheter of the electroporation ablation device anatomically proximate to a target ablation location, the catheter comprising one or more catheter electrodes and configured to generate electric fields in response to a plurality of electrical pulse sequences delivered in a plurality of therapy sections; receiving a first pulse voltage of a first electrical pulse sequence measured during a first therapy section of the plurality of therapy sections; determining a charge voltage based on the first pulse voltage; and delivering a second electrical pulse sequence at a controlled pulse voltage for a second therapy section of the plurality of therapy sections, the second therapy section being after the first therapy section, the controlled pulse voltage being associated with the charge voltage.


Example 32 is the method of Example 31, further comprising: receiving a first pulse current of first electrical pulse sequence measured during the first therapy section, wherein determining a charge voltage comprises determining the charge voltage based on the first pulse voltage and the first pulse current.


Example 33 is the method of Example 32, further comprising: determining a first tissue impedance based on the first pulse voltage and the first pulse current, wherein determining a charge voltage comprises determining the charge voltage based on the first tissue impedance.


Example 34 is the method of Example 30, further comprising: delivering a scan electrical pulse sequence during a scan section; receiving an initial pulse voltage of the scan electrical pulse sequence measured during the scan section; receiving an initial pulse current of the scan electrical pulse sequence measured during the scan section; and determining an initial tissue impedance based on the initial pulse voltage and the initial pulse current measured, wherein the scan section is before the first therapy section, wherein the scan electrical pulse sequence is at a scan pulse voltage lower than the controlled pulse voltage.


Example 35 is the method of Example 34, wherein the scan pulse voltage is at a non-ablative voltage level.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an illustrative system diagram for an electroporation ablation system, in accordance with embodiments of the subject matter of the disclosure.



FIG. 2A is an illustrative graph of the pulse voltages changing over a number of therapy sections without adjusting the charge voltage.



FIG. 2B is an illustrative graph of the pulse currents changing over a number of therapy sections without adjusting the charge voltage.



FIG. 2C is an illustrative graph of the tissue impedances changing over a number of therapy sections.



FIG. 3 is an illustrative example of a plurality of scan and therapy sections related to the cardiac beats.



FIG. 4 is an illustrative schematic circuit diagram of an electroporation generator in use for an electroporation ablation section, in accordance with certain embodiments of the present disclosure.



FIGS. 5A and 5B are diagrams illustrating example embodiments of catheters that can be used for electroporation, including ablation by irreversible electroporation, in accordance with embodiments of the subject matter of the disclosure.



FIG. 6 is an example flow diagram depicting an illustrative method of using an electroporation ablation device, in accordance with some embodiments of the present disclosure.





While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION

As the terms are used herein with respect to measurements (e.g., dimensions, characteristics, attributes, components, etc.), and ranges thereof, of tangible things (e.g., products, inventory, etc.) and/or intangible things (e.g., data, electronic representations of currency, accounts, information, portions of things (e.g., percentages, fractions), calculations, data models, dynamic system models, algorithms, parameters, etc.), “about” and “approximately” may be used, interchangeably, to refer to a measurement that includes the stated measurement and that also includes any measurements that are reasonably close to the stated measurement, but that may differ by a reasonably small amount such as will be understood, and readily ascertained, by individuals having ordinary skill in the relevant arts to be attributable to measurement error; differences in measurement and/or manufacturing equipment calibration; human error in reading and/or setting measurements; adjustments made to optimize performance and/or structural parameters in view of other measurements (e.g., measurements associated with other things); particular implementation scenarios; imprecise adjustment and/or manipulation of things, settings, and/or measurements by a person, a computing device, and/or a machine; system tolerances; control loops; machine-learning; foreseeable variations (e.g., statistically insignificant variations, chaotic variations, system and/or model instabilities, etc.); preferences; and/or the like.


Although illustrative methods may be represented by one or more drawings (e.g., flow diagrams, communication flows, etc.), the drawings should not be interpreted as implying any requirement of, or particular order among or between, various steps disclosed herein. However, certain some embodiments may require certain steps and/or certain orders between certain steps, as may be explicitly described herein and/or as may be understood from the nature of the steps themselves (e.g., the performance of some steps may depend on the outcome of a previous step). Additionally, a “set,” “subset,” or “group” of items (e.g., inputs, algorithms, data values, etc.) may include one or more items, and, similarly, a subset or subgroup of items may include one or more items. A “plurality” means more than one.


As used herein, the term “based on” is not meant to be restrictive, but rather indicates that a determination, identification, prediction, calculation, and/or the like, is performed by using, at least, the term following “based on” as an input. For example, predicting an outcome based on a particular piece of information may additionally, or alternatively, base the same determination on another piece of information.


Cryo energy and radio-frequency (RF) energy kill tissues indiscriminately through cell necrosis, which can damage the esophagus, the phrenic nerve, coronary arteries, in addition to other undesired effects. Irreversible electroporation (IRE) uses high voltage, short (e.g., 100 microseconds or shorter) pulses to kill cells through apoptosis. IRE can be targeted to kill myocardium, sparing other adjacent tissues including the esophageal vascular smooth muscle and endothelium. After IRE ablation commences, pore are induced in cell membranes and intracellular fluids are released into the extracellular matrix, such that tissue conductivity is increased and tissue impedance is decreased. Changes in tissue impedance occur rapidly, within the course of multiple IRE therapy sections, also referred to as therapy bursts or therapy sections. A therapy section (e.g., for a duration of 10 milliseconds) may include a plurality of electrical pulses (e.g., 20 pulses, 30 pulses, etc.) generated and delivered by an electroporation generator. If the electroporation generator does not adjust its charge voltage provided by source component(s), the therapeutic pulse voltage drops over the course of the IRE ablation by as much as 40%. Since the IRE treatment depends on the electric field, the drop of the pulse voltage can potentially impact the effectiveness of the IRE treatment.


The present disclosure describes systems, devices and methods for implementing ablation with voltage controlled electrical pulse sequences. In some embodiments, the pulse voltage and/or pulse current are measured during therapy sections and used to determine a charge voltage for the next therapy section, such that electrical pulses each has a voltage close to a target pulse voltage during the next therapy section. As used herein, the charge voltage refers to the voltage generated by the electroporation generator, which can be the voltage of one or more capacitor banks or other power source. In some embodiments, the tissue impedance is computed based on the pulse voltage and pulse current. In some cases, the tissue impedance is used to determine the charge voltage.



FIG. 1 depicts an illustrative system diagram for an electroporation ablation system 100, in accordance with embodiments of the subject matter of the disclosure. The electroporation ablation system 100 includes one or more electroporation ablation catheters 110, a controller 120, one or more sensors 130, an electroporation generator 140, and a memory 160. In embodiments, the electroporation ablation system 100 is configured to deliver electric field energy to target tissue in a patient's heart to create tissue apoptosis, rendering the tissue incapable of conducting electrical signals. In some cases, the electroporation ablation system 100 may connect with other system(s) 170, for example, a mapping system, an electrophysiology system, and/or the like.


In some embodiments, the catheter(s) 110 can be various types and forms of electroporation catheter such as, for example, linear ablation catheters, focal ablation catheters, circumferential catheters, and/or the like. In embodiments, the electroporation ablation system 100 includes an introducer sheath (not shown) operable to provide a delivery conduit through which the electroporation ablation catheter 110 can be deployed to specific target sites within a patient's cardiac chamber. In some cases, the electroporation ablation catheter 110 includes a shaft having a distal end and catheter electrodes situated at the distal end of the shaft and spatially arranged to generate electric fields in the targeted tissue in response to a plurality of electrical pulse sequences delivered in a plurality of therapy sections. In some cases, the catheter(s) 110 include deflectable catheter(s).


In some cases, the catheter(s) 110 includes one or more electrodes to generate an electric field for ablation. The electroporation generator 140, also referred to as a pulse generator, is configured to generate ablative pulse/energy, or referred to as electroporation pulse/energy, to be delivered to electrodes of the catheter(s) 110. The electroporation pulse is typically high voltage and short pulse. The controller 120 is configured to control functional aspects of the electroporation ablation system 100. In embodiments, the electroporation controller 120 is configured to control the electroporation generator 140 on the generation and delivery of ablative energy to electrodes of the catheter(s) 110 is individually addressable. In one case, each of the one or more electrodes of the catheter(s) 110. In such case, the controller 120 may control the ablative energy delivery to each electrode.


In some embodiments, the electroporation controller 120 can control an output voltage (i.e. the pulse voltage of pulse sequences) generated by the electroporation generator 140. In some embodiments, the electroporation generator 140 includes a capacitor bank 145, which can be charged and discharged for the generation of the charge voltage to generate electrical pulses. In some cases, the electroporation controller 120 can determine a charge voltage of the capacitor bank 145 in response to the sensing data. In some implementations, the charge voltage is the voltage generated by the electricity source component(s) (e.g., the capacitor bank 145) of the electroporation generator 140. In some cases, the capacitor bank 145 includes one or more capacitor banks such that at least one capacitor bank is to provide the charge voltage for the current therapy section (e.g., the current therapy burst) of the electrical pulses and at least one capacitor bank is to be charged for providing the charge voltage for the next therapy section (e.g., the next therapy burst) of electrical pulses. In some embodiments, the electroporation generator 140 has an internal impedance, or referred to as generator impedance. In some cases, the electroporation generator 140 can generate electrical pulses at a pulse voltage, or referred to as an output voltage, which is lower than the charge voltage because of the generator impedance. In some cases, the pulse voltage is a portion of the charge voltage. In some cases, a user can set up a target pulse voltage via an interface to the controller (e.g., a user interface, a software interface, a system interface).


In some embodiments, the electroporation controller 120 receives sensor data collected by sensor(s) of catheter(s) and/or sensors 130 placed proximate to the ablation location. In some cases, the controller 120 is configured to determine a tissue impedance based upon the measured pulse voltage and/or pulse current proximate to the electroporation location. In some cases, the controller 120 is configured to determine a charge voltage based on the measured pulse voltage and/or the tissue impedance. In some cases, the controller 120 is configured to determine a charge voltage based on the target pulse voltage, the generator impedance, and/or the tissue impedance. In some cases, the controller 120 is configured to control the capacitor bank 145 based on the determined charge voltage.


In some embodiments, the controller 120 is configured to receive a first pulse voltage and/or a first pulse current of a first electrical pulse sequence delivered during a first therapy section of a plurality of therapy sections. In some implementations, an electrical pulse sequence includes a plurality of the electrical/electroporation pulses for a therapy section. In some cases, the first pulse voltage and/or the first pulse current are measured for a last electrical pulse in a therapy section. In some cases, the first pulse voltage and/or the first pulse current are measured for a first electrical pulse in a therapy section. In some cases, the first pulse voltage and/or the first pulse current are determined based on measurements of a plurality of electrical pulses in a therapy section. In one example, the first pulse voltage and/or the first pulse current are an average voltage and/or current measured for a plurality of electrical pulses in a therapy section respectively. In one example, the first pulse voltage and/or the first pulse current are an average voltage and/or current measured for all the electrical pulses in the therapy section respectively.


In some embodiments, the controller 120 determines a charge voltage based on the first pulse voltage. In some cases, the controller 120 determines a charge voltage difference between the determined charge voltage and the current charge level of the capacitor bank 145. In some cases, the controller 120 determines a charge voltage difference based on a percentage difference between the measured pulse voltage and the target pulse voltage. For example, the charge voltage difference is determined by the current charge voltage multiplied by a percentage difference between the measured pulse voltage and the target pulse voltage. In some cases, the controller 120 controls or sets the capacitor bank 145 based on the determined charge voltage and/or the charge voltage difference. In some embodiments, the electroporation generator 140 is operatively coupled to the catheter electrodes and the controller 120 and configured to deliver a second electrical pulse sequence at a controlled pulse voltage for a second therapy section of the plurality of therapy sections, where the second therapy section is after the first therapy section. In some cases, the controlled pulse voltage is based at least in part on a determined charge voltage. In some cases, the capacitor bank 145 is set at the level of the determined charge voltage.


In some embodiments, the controller 120 is configured to determine the charge voltage for the second therapy section based on the first pulse voltage and the first pulse current. In some cases, the controller 120 is configured to determine a first tissue impedance based on the first pulse voltage and the first pulse current. In some cases, the controller 120 is configured to determine the charge voltage based on the first tissue impedance and the target pulse voltage. In some cases, the controller 120 is configured to determine the charge voltage based on the first tissue impedance, the target pulse voltage, and the generator impedance. In some embodiments, the electroporation generator 140 is configured to receive the signal indicative of the determined charge voltage and charge the capacitor bank 145 to the level of the determined charged voltage before the start of the next therapy section. In some cases, the controlled pulse voltage is a portion of the determined charge voltage. In some cases, the ratio of the controlled pulse voltage and the determined charge voltage is associated with the first tissue impedance.


In embodiments, the controller 120 is configured to measure pulse voltages and/or pulse currents during each or some of the therapy sections to determine the charge voltages for the subsequent therapy sections. In some embodiments, the controller 120 is configured to store pulse voltages, pulse currents, charge voltages, generator impedance(s), and/or tissue impedances in the data repository 165. FIG. 2A is an illustrative graph of the pulse voltages changing over a number of therapy sections without adjusting the charge voltage. As shown, the pulse voltage decreases over the sequence of therapy sections. FIG. 2B is an illustrative graph of the pulse currents changing over a number of therapy sections without adjusting the charge voltage. As shown, the pulse current increases over the sequence of therapy sections. FIG. 2C is an illustrative graph of the tissue impedances changing over a number of therapy sections. As shown, the tissue impedance decreases over the sequence of therapy sections.


In some embodiments, the electroporation generator 140 is configured to deliver a scan electrical pulse sequence at a scan voltage during a scan section prior to the plurality of therapy sections, where the scan voltage is lower than the therapeutic voltage (e.g., the target pulse voltage). In some cases, the scan voltage is a non-ablative voltage level. In some cases, the scan electrical pulse sequence is a single non-ablative electrical pulse. In some cases, the controller 120 is configured to determine an initial tissue impedance based on an initial pulse voltage of the scan electrical pulse sequence and an initial pulse current of the scan electrical pulse sequence measured during the scan section. In some cases, the controller 120 is configured to determine an initial charge voltage based on the initial tissue impedance. In some cases, the controller 120 is configured to determine an initial charge voltage based on the initial tissue impedance and the target pulse voltage. In some cases, the controller 120 is configured to determine an initial charge voltage based on the initial tissue impedance, the target pulse voltage, and the generator impedance.



FIG. 3 is an illustrative example of a plurality of scan and therapy sections related to the cardiac beats. As illustrated, the therapy sections 330 are provided between cardiac beats shown in the waveform 310. In this example, the scan section 320 is prior to the therapy sections 330. In some embodiments, the electroporation generator 140 is configured to charge the capacitor bank 145 to the determined charge voltage before the start of a respective therapy section. For example, with a cardiac beat rate of 90 BPM (beat-per-minute), the electroporation generator 140 is configured to charge the capacitor bank 145 to the level of the determined charge voltage within 667 milliseconds. In some cases, the electroporation controller 120 is configured to model the electric fields that can be generated by the catheter 110, which often includes consideration of the physical characteristics of the electroporation ablation catheter 110 including the electrodes and spatial relationships of the electrodes on the electroporation ablation catheter 110. In embodiments, the electroporation controller 120 is configured to control the electric field strength of the electric field formed by the electrodes of the catheter 110 to be no higher than 1500 volts per centimeter.


In some embodiments, the catheter 110 includes two or more electrode pairs of and the capacitor bank 145 includes two or more capacitor banks, where each capacitor bank in the capacitor bank 145 (e.g., a group of capacitor banks) is configured to charge one or more electrode pairs. In some cases, the electroporation controller 120 is configured to receive measured pulse voltages from the electrode pairs and determine a charge voltage for each respective capacitor bank for charging the electrode pairs. By way of an example, the capacitor bank 145 includes two capacitor banks (e.g., Bank A, Bank B), each capacitor bank is configured to charge two electrode pairs (e.g., Bank A for charging Electrode Pairs 1 & 2, Bank B for charging Electrode Pairs 3 & 4). In this example, the electroporation controller 120 is configured to determine a charge voltage for Bank A based on the measured pulse voltage of the Electrode Pairs 1 & 2, and determine a charge voltage for Bank B based on the measured pulse voltage of the Electrode Pairs 3 & 4.


In embodiments, the electroporation controller 120 includes one or more controllers, microprocessors, and/or computers that execute code out of memory 160, for example, non-transitory machine readable medium, to control and/or perform the functional aspects of the electroporation ablation system 100. In embodiments, the memory 160 can be part of the one or more controllers, microprocessors, and/or computers, and/or part of memory capacity accessible through a network, such as the world wide web. In embodiments, the memory 160 comprises a data repository 165, which is configured to store ablation data (e.g., location, energy, etc.), measured pulse voltages, measured pulse currents, tissue impedances, generator impedance, sensed data, treatment plan data, charge voltages, and/or the like.


In embodiments, the other systems 170 includes an electro-anatomical mapping (EAM) system. In some cases, the EAM system is operable to track the location of the various functional components of the electroporation ablation system 100, and to generate high-fidelity three-dimensional anatomical and electro-anatomical maps of the cardiac chambers of interest. In embodiments, the EAM system can be the RHYTHMIA™ HDx mapping system marketed by Boston Scientific Corporation. Also, in embodiments, the mapping and navigation controller of the EAM system includes one or more controllers, microprocessors, and/or computers that execute code out of memory to control and/or perform functional aspects of the EAM system.


The EAM system generates a localization field, via a field generator, to define a localization volume about the heart, and one or more location sensors or sensing elements on the tracked device(s), e.g., the electroporation ablation catheter 110, generate an output that can be processed by a mapping and navigation controller to track the location of the sensor, and consequently, the corresponding device, within the localization volume. In one embodiment, the device tracking is accomplished using magnetic tracking techniques, whereby the field generator is a magnetic field generator that generates a magnetic field defining the localization volume, and the location sensors on the tracked devices are magnetic field sensors.


In some embodiments, impedance tracking methodologies may be employed to track the locations of the various devices. In such embodiments, the localization field is an electric field generated, for example, by an external field generator arrangement, e.g., surface electrodes, by intra-body or intra-cardiac devices, e.g., an intracardiac catheter, or both. In these embodiments, the location sensing elements can constitute electrodes on the tracked devices that generate outputs received and processed by the mapping and navigation controller to track the location of the various location sensing electrodes within the localization volume.


In embodiments, the EAM system is equipped for both magnetic and impedance tracking capabilities. In such embodiments, impedance tracking accuracy can, in some instances be enhanced by first creating a map of the electric field induced by the electric field generator within the cardiac chamber of interest using a probe equipped with a magnetic location sensor, as is possible using the aforementioned RHYTHMIA HDx™ mapping system. One exemplary probe is the INTELLAMAP ORION™ mapping catheter marketed by Boston Scientific Corporation.


Regardless of the tracking methodology employed, the EAM system utilizes the location information for the various tracked devices, along with cardiac electrical activity acquired by, for example, the electroporation ablation catheter 110 or another catheter or probe equipped with sensing electrodes, to generate, and display via a display, detailed three-dimensional geometric anatomical maps or representations of the cardiac chambers as well as electro-anatomical maps in which cardiac electrical activity of interest is superimposed on the geometric anatomical maps. Furthermore, the EAM system can generate a graphical representation of the various tracked devices within the geometric anatomical map and/or the electro-anatomical map.


According to embodiments, various components (e.g., the controller 120) of the electroporation ablation system 100 may be implemented on one or more computing devices. A computing device may include any type of computing device suitable for implementing embodiments of the disclosure. Examples of computing devices include specialized computing devices or general-purpose computing devices such as workstations, servers, laptops, portable devices, desktop, tablet computers, hand-held devices, general-purpose graphics processing units (GPGPUs), and the like, all of which are contemplated within the scope of FIG. 1 with reference to various components of the system 100.


In some embodiments, a computing device includes a bus that, directly and/or indirectly, couples the following devices: a processor, a memory, an input/output (I/O) port, an I/O component, and a power supply. Any number of additional components, different components, and/or combinations of components may also be included in the computing device. The bus represents what may be one or more busses (such as, for example, an address bus, data bus, or combination thereof). Similarly, in some embodiments, the computing device may include a number of processors, a number of memory components, a number of I/O ports, a number of I/O components, and/or a number of power supplies. Additionally, any number of these components, or combinations thereof, may be distributed and/or duplicated across a number of computing devices.


In some embodiments, the memory 160 includes computer-readable media in the form of volatile and/or nonvolatile memory, transitory and/or non-transitory storage media and may be removable, nonremovable, or a combination thereof. Media examples include Random Access Memory (RAM); Read Only Memory (ROM); Electronically Erasable Programmable Read Only Memory (EEPROM); flash memory; optical or holographic media; magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices; data transmissions; and/or any other medium that can be used to store information and can be accessed by a computing device such as, for example, quantum state memory, and/or the like. In some embodiments, the memory 160 stores computer-executable instructions for causing a processor (e.g., the controller 120) to implement aspects of embodiments of system components discussed herein and/or to perform aspects of embodiments of methods and procedures discussed herein.


Computer-executable instructions may include, for example, computer code, machine-useable instructions, and the like such as, for example, program components capable of being executed by one or more processors associated with a computing device. Program components may be programmed using any number of different programming environments, including various languages, development kits, frameworks, and/or the like. Some or all of the functionality contemplated herein may also, or alternatively, be implemented in hardware and/or firmware.


The data repository 165 may be implemented using any one of the configurations described below. A data repository may include random access memories, flat files, XML files, and/or one or more database management systems (DBMS) executing on one or more database servers or a data center. A database management system may be a relational (RDBMS), hierarchical (HDBMS), multidimensional (MDBMS), object oriented (ODBMS or OODBMS) or object relational (ORDBMS) database management system, and the like. The data repository may be, for example, a single relational database. In some cases, the data repository may include a plurality of databases that can exchange and aggregate data by data integration process or software application. In an exemplary embodiment, at least part of the data repository 165 may be hosted in a cloud data center. In some cases, a data repository may be hosted on a single computer, a server, a storage device, a cloud server, or the like. In some other cases, a data repository may be hosted on a series of networked computers, servers, or devices. In some cases, a data repository may be hosted on tiers of data storage devices including local, regional, and central.


Various components of the system 100 can communicate via or be coupled to via a communication interface, for example, a wired or wireless interface. The communication interface includes, but not limited to, any wired or wireless short-range and long-range communication interfaces. The wired interface can use cables, umbilicals, and the like. The short-range communication interfaces may be, for example, local area network (LAN), interfaces conforming known communications standard, such as Bluetooth® standard, IEEE 802 standards (e.g., IEEE 802.11), a ZigBee® or similar specification, such as those based on the IEEE 802.15.4 standard, or other public or proprietary wireless protocol. The long-range communication interfaces may be, for example, wide area network (WAN), cellular network interfaces, satellite communication interfaces, etc. The communication interface may be either within a private computer network, such as intranet, or on a public computer network, such as the internet.



FIG. 4 is an illustrative schematic circuit diagram 400 of an electroporation generator 430 in use for an electroporation ablation section, in accordance with certain embodiments of the present disclosure. In some implementations, other components can be included in the circuit diagram 400. In the circuit diagram 400, the electroporation generator 430 delivers electric pulse sequences at pulse_voltage 420 to target tissues. The target tissues have a tissue impedance 440, which is changing during the electroporation ablation section. In the simplified schematic diagram, the electroporation generator 430 includes a voltage source 432, a bulk capacitance 435 (e.g., a capacitor bank), and the generator impedance 437. In this example, the generator impedance 437 represents the overall impedance of the electroporation generator 430. In embodiments, the electroporation ablation section includes a plurality of therapy sections. In some embodiments, the voltage source 432 can charge the bulk capacitance 435 between therapy sections to adjust the charge_voltage 410 and thereby adjust the pulse_voltage 420 to reach the target pulse voltage.


In some embodiments, during a therapy section, a pulse_voltage or a plurality of pulse voltages are measured. In one example, the pulse_voltage 420 has a relation with the charge_voltage 410 represented in equation (1) below:











V

o

l

t

a

g


e
Pulse


=



Voltage
Charge

*

Impedance

T

i

s

s

u

e





Impedance

G

e

n

e

r

a

t

o

r


+

Impedance

T

i

s

s

u

e





,




(
1
)







where VoltagePulse is the pulse_voltage 420, Voltagecharge is the charge_voltage 410, ImpedanceTissue represents the tissue impedance 440, and ImpedanceGenerator is the generator impedance 437. Additionally, in one example, the charge_voltage 410 can be determined by the pulse_voltage 420 measured during the therapy sections, according the equation (2) below:











Voltage
Charge

=






Volta


ge
Pulse

*

Impedance

G

e

n

e

r

a

t

o

r



+






Impedance

T

i

s

s

u

e






Impedance

T

i

s

s

u

e




,




(
2
)







where VoltageCharge is the voltage generated from the voltage source 432 and the bulk capacitance 435, VoltagePulse is the pulse_voltage 420, ImpedanceTissue represents the tissue impedance 440, and ImpedanceGenerator is the generator impedance 437.


In some embodiments, a controller (e.g., the controller 120 of FIG. 1) is configured to determine and control the electroporation generator 430 using the equation (2) above. In some embodiments, a controller (e.g., the controller 120 of FIG. 1) is configured to determine and control the electroporation generator 430 using the other approaches to determine the charge_voltage. In some implementations, the electroporation generator 430 is configured to generate an electrical pulse sequence having a plurality of electrical/electroporation pulses (e.g., 2 microseconds electrical pulses with 500 microseconds between two adjacent pulses) during a therapy section (e.g., a therapy section of 10 milliseconds, a therapy section of 20 milliseconds etc.) during a cardiac beat.



FIGS. 5A and 5B are diagrams illustrating example embodiments of catheters 200 and 250 that can be used for electroporation (e.g., catheter 110 in FIG. 1), including ablation by irreversible electroporation, in accordance with embodiments of the subject matter of the disclosure. The catheters 200 and 250 include electrodes, as described below, that are spaced apart from one another and configured to conduct electricity. Catheter characteristics are used to model electric fields that can be produced by the catheter. In embodiments, the characteristics used to model the electric fields can include: the type of catheter, such as a basket catheter that has a constant profile after being opened and a spline catheter that has a variable profile, which can be opened and closed by degree; the form factor of the catheter, such as a balloon catheter, a basket catheter, and a spline catheter; the number of electrodes; the inter-electrode spacing on the catheter; the spatial relationships and orientation of the electrodes, especially in relation to other electrodes on the same catheter; the type of material that the electrodes are made of; and the shape of the electrodes. In embodiments, the type of catheter and/or the form factor of the catheter includes catheters, such as linear ablation catheters and focal ablation catheters. In some cases, the type of catheter and/or the form factor of the catheter is not limited to those mentioned herein.



FIG. 5A is a diagram illustrating the catheter 200, in accordance with embodiments of the subject matter of the disclosure. The catheter 200 includes a catheter shaft 202 and a catheter basket 204 connected to the catheter shaft 202 at the distal end 206 of the catheter shaft 202. The catheter basket 204 includes a first group of electrodes 208 disposed at the circumference of the catheter basket 204 and a second group of electrodes 210 disposed adjacent the distal end 212 of the catheter basket 204. Each of the electrodes in the first group of electrodes 208 and each of the electrodes in the second group of electrodes 210 is configured to conduct electricity and to be operably connected to a controller (e.g., the controller 120 in FIG. 1) and an ablative energy generator (e.g., the electroporation generator 140 of FIG. 1). In embodiments, one or more of the electrodes in the first group of electrodes 208 and the second group of electrodes 210 includes metal.


Electrodes in the first group of electrodes 208 are spaced apart from electrodes in the second group of electrodes 210. The first group of electrodes 208 includes electrodes 208a-208f and the second group of electrodes 210 includes electrodes 210a-210f. Also, electrodes in the first group of electrodes 208, such as electrodes 208a-208f, are spaced apart from one another and electrodes in the second of electrodes 210, such as electrodes 210a-210f, are spaced apart from one another.


The spatial relationships and orientation of the electrodes in the first group of electrodes 208 and the spatial relationships and orientation of the electrodes in the second group of electrodes 210 in relation to other electrodes on the same catheter 200 is known or can be determined. In embodiments, the spatial relationships and orientation of the electrodes in the first group of electrodes 208 and the spatial relationships and orientation of the electrodes in the second group of electrodes 210 in relation to other electrodes on the same catheter 200 is constant, once the catheter is deployed.


As to electric fields, in embodiments, each of the electrodes in the first group of electrodes 208 and each of the electrodes in the second group of electrodes 210 can be selected to be an anode or a cathode, such that electric fields can be set up between any two or more of the electrodes in the first and second groups of electrodes 208 and 210. Also, in embodiments, each of the electrodes in the first group of electrodes 208 and each of the electrodes in the second group of electrodes 210 can be selected to be a biphasic pole, such that the electrodes switch or take turns between being an anode and a cathode. Also, in embodiments, groups of the electrodes in the first group of electrodes 208 and groups of the electrodes in the second group of electrodes 210 can be selected to be an anode or a cathode or a biphasic pole, such that electric fields can be set up between any two or more groups of the electrodes in the first and second groups of electrodes 208 and 210.


In embodiments, electrodes in the first group of electrodes 208 and the second group of electrodes 210 can be selected to be biphasic pole electrodes, such that during a pulse train including a biphasic pulse train, the selected electrodes switch or take turns between being an anode and a cathode, and the electrodes are not relegated to monophasic delivery where one is always an anode and another is always a cathode. In some cases, the electrodes in the first and second group of electrodes 208 and 210 can form electric fields with electrode(s) of another catheter. In such cases, the electrodes in the first and second group of electrodes 208 and 210 can be anodes of the fields, or cathodes of the fields.


Further, as described herein, the electrodes are selected to be one of an anode and a cathode, however, it is to be understood without stating it that throughout this disclosure the electrodes can be selected to be biphasic poles, such that they switch or take turns between being anodes and cathodes. In some cases, one or more of the electrodes in the first group of electrodes 208 are selected to be cathodes and one or more of the electrodes in the second group of electrodes 210 are selected to be anodes. Also, in embodiments, one or more of the electrodes in the first group of electrodes 208 can be selected as a cathode and another one or more of the electrodes in the first group of electrodes 208 can be selected as an anode. In embodiments, one or more of the electrodes in the second group of electrodes 210 can be selected as a cathode and another one or more of the electrodes in the second group of electrodes 210 can be selected as an anode.



FIG. 5B is a diagram illustrating the catheter 250, in accordance with embodiments of the subject matter of the disclosure. The catheter 250 includes a catheter shaft 252 and catheter splines 254 connected to the catheter shaft 252 at the distal end 256 of the catheter shaft 252. The catheter splines 254 includes a first group of electrodes 258 disposed proximal the maximum circumference of the catheter splines 254 and a second group of electrodes 260 disposed distal the maximum circumference of the catheter splines 254. Each of the electrodes in the first group of electrodes 258 and each of the electrodes in the second group of electrodes 260 is configured to conduct electricity and to be operably connected to the electroporation console (not shown). In embodiments, one or more of the electrodes in the first group of electrodes 258 and the second group of electrodes 260 includes metal.


Electrodes in the first group of electrodes 258 are spaced apart from electrodes in the second group of electrodes 260. The first group of electrodes 258 includes electrodes 258a-258f and the second group of electrodes 260 includes electrodes 260a-260f. Also, electrodes in the first group of electrodes 258, such as electrodes 258a-258f, are spaced apart from one another and electrodes in the second of electrodes 260, such as electrodes 260a-260f, are spaced apart from one another.


The spatial relationships and orientation of the electrodes in the first group of electrodes 258 and the spatial relationships and orientation of the electrodes in the second group of electrodes 260 in relation to other electrodes on the same catheter 250 are known or can be determined. In embodiments, the spatial relationships and orientation of the electrodes in the first group of electrodes 258 and the spatial relationships and orientation of the electrodes in the second group of electrodes 260 in relation to other electrodes on the same catheter 250 are variable, where the distal end 262 of the catheter 250 can be extended and retracted which changes the spatial relationships and orientation of the electrodes 258 and 260. In some embodiments, the spatial relationships and orientation of the electrodes in the first group of electrodes 258 and the spatial relationships and orientation of the electrodes in the second group of electrodes 260 on the same catheter 250 is constant, once the catheter 250 is deployed.


As to electric fields, in embodiments, each of the electrodes in the first group of electrodes 258 and each of the electrodes in the second group of electrodes 260 can be selected to be an anode or a cathode, such that electric fields can be set up between any two or more of the electrodes in the first and second groups of electrodes 258 and 260. Also, in embodiments, groups of the electrodes in the first group of electrodes 258 and groups of the electrodes in the second group of electrodes 260 can be selected to be an anode or a cathode, such that electric fields can be set up between any two or more groups of the electrodes in the first and second groups of electrodes 258 and 260. In some cases, the electrodes in the first and second group of electrodes 258 and 260 can form electric fields with electrode(s) of another catheter. In such cases, the electrodes in the first and second group of electrodes 258 and 260 can be anodes of the fields, or cathodes of the fields.


In some embodiments, one or more of the electrodes in the first group of electrodes 258 are selected to be cathodes and one or more of the electrodes in the second group of electrodes 260 are selected to be anodes. Also, in embodiments, one or more of the electrodes in the first group of electrodes 258 can be selected as a cathode and another one or more of the electrodes in the first group of electrodes 258 can be selected as an anode. In addition, in embodiments, one or more of the electrodes in the second group of electrodes 260 can be selected as a cathode and another one or more of the electrodes in the second group of electrodes 260 can be selected as an anode. Using the characteristics of the catheter 250 and the surrounding tissue, an electroporation controller (e.g., the controller 120 of FIG. 1) can determine models for the various electric fields that can be produced by the catheter 250.



FIG. 6 is an example flow diagram depicting an illustrative method 600 of using an electroporation ablation device, in accordance with some embodiments of the present disclosure. Aspects of embodiments of the method 600 may be performed, for example, by an electroporation ablation system (e.g., the system 100 depicted in FIG. 1). One or more steps of method 600 are optional and/or can be modified by one or more steps of other embodiments described herein. Additionally, one or more steps of other embodiments described herein may be added to the method 600. First, the electroporation ablation system deploys the electroporation ablation catheter(s) proximate to target tissues (605).


In some cases, the electroporation ablation system is configured to conduct a scan section to determine an initial tissue impedance (610). In some cases, the scan section is conducted before therapy sections. In some cases, the scan section includes a scan electrical pulse sequence at a scan voltage lower than the therapeutic pulse voltage. In one embodiment, the scan electrical pulse sequence includes a single non-ablative electrical pulse during the scan section. In some embodiments, the initial pulse voltage of the scan electrical pulse sequence and the initial pulse current of the scan electrical pulse sequence are measured during the scan section. In some cases, the initial pulse voltage and the initial pulse current are measured for a last electrical pulse in the scan electrical pulse sequence. In some cases, the initial pulse voltage and/or initial first pulse current is measured for a first electrical pulse of the scan electrical pulse sequence. In some cases, the initial pulse voltage and/or the initial pulse current are determined based on measurements of a plurality of electrical pulses in the scan electrical pulse sequence.


In one example, the initial pulse voltage and/or the initial pulse current are an average voltage and/or current measured for a plurality of electrical pulses in the scan section respectively. In one example, the initial pulse voltage and/or the initial pulse current are an average voltage and/or current measured for all the electrical pulses in the scan section respectively. In some embodiments, the initial tissue impedance is determined to be the initial pulse voltage divided by the initial pulse current. In some cases, the generator impedance can be determined by the charge voltage output from the capacitor bank (e.g., capacitor bank 145 of FIG. 1) and the measured pulse voltage, for example, using equation (1).


In some embodiments, the electroporation ablation system is configured to measure one or more pulse voltages (615), for example, during a therapy section. In some embodiments, the electroporation ablation system is configured to measure one or more pulse currents (620), for example, corresponding to the one or more pulse voltages. In some cases, a controller (e.g., the controller 120 in FIG. 1) of the electroporation ablation system is configured to determine a current tissue impedance using the one or more measured pulse voltages and/or the one or more measured pulse currents. In one implementation, the current tissue impedance is determined to be the pulse voltage divided by the pulse current. In one implementation, the current tissue impedance is determined to be the pulse voltage divided by the pulse current measured at the first electrical pulse during the therapy section.


In one implementation, the current tissue impedance is determined to be the pulse voltage divided by the pulse current measured at the last electrical pulse during the therapy section. In one implementation, the current tissue impedance is determined to be the pulse voltage divided by the pulse current. In one implementation, the current tissue impedance is determined based on a plurality of pulse voltages and a plurality of pulse currents measured during the therapy section. In some cases, the current tissue impedance is used to determine the charge voltage of the electroporation generator (i.e. the voltage generated by the electroporation generator). In some cases, the pulse voltage and/or pulse current are measured by sensors (e.g., sensors 130 in FIG. 1) deployed proximate to the target tissues. In some cases, the pulse voltage and/or pulse current are measured by sensors deployed with the catheter(s).


In some embodiments, the electroporation ablation system is configured to determine a charge voltage of the electroporation generator (e.g., electroporation generator 140 in FIG. 4) (625). In one example, the charge voltage is computed using equation (2). For example, if the measured pulse voltage of a prior therapy section is low by 100 volts from the target pulse voltage and assuming the generator impedance equal to the tissue impedance, the charge voltage is to be increased by 200 volts. In one implementation, the electroporation ablation system can set the capacitor bank (e.g., capacitor bank 145 in FIG. 4) with a 200-volt increase in the setting, such that the electrical pulse sequence is delivered at a voltage close to the target pulse voltage in the next therapy section.


In one embodiment, the electric field generated by electrodes of the deployed catheter(s) has a field strength no higher than 1500 volts per centimeter. In one embodiment, the electric field generated by electrodes of the deployed catheter(s) has a field strength higher than 500 volts per centimeter. In some embodiments, the electroporation ablation system is configured to control the power source based on the determined charge voltage (630), for example, by charging the capacitor bank based on the determined charge voltage. In some embodiments, the electroporation ablation system is configured to set the capacitor bank based on a voltage difference between the determined charge voltage and the current charge voltage of the power source.


In some embodiments, the electroporation ablation system is configured to deliver an electrical pulse sequence (635) for a next therapy section, for example, using the power source. In some cases, if the ablation therapy section has not ended, the electroporation ablation system goes back to step 615 to measure the one or more pulse voltages during the electrical pulse sequence (e.g., a plurality of electrical pulses delivered during a burst period) being delivered. In embodiments, the electroporation ablation system configured to measure pulse voltages and/or pulse currents during each or some of the therapy sections to determine the charge voltages for the subsequent therapy sections.


Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present disclosure. For example, while the embodiments described above refer to particular features, the scope of the present disclosure also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.

Claims
  • 1. An electroporation ablation system for treating targeted tissue in a patient, the electroporation ablation system comprising: an ablation catheter including: catheter electrodes configured to generate electric fields in the targeted tissue in response to a plurality of electrical pulse sequences delivered in a plurality of therapy sections;a controller configured to: receive a first pulse voltage of a first electrical pulse sequence measured during a first therapy section of the plurality of therapy sections;determine a charge voltage based on the first pulse voltage; andan electroporation generator operatively coupled to the catheter electrodes and the controller and configured to deliver a second electrical pulse sequence at a controlled pulse voltage for a second therapy section of the plurality of therapy sections, the second therapy section being after the first therapy section, the controlled pulse voltage being associated with the charge voltagewherein the electroporation generator is further configured to deliver a scan electrical pulse sequence at a scan voltage during a scan section prior to the plurality of therapy sections; andwherein the controller is further configured to determine an initial tissue impedance based on an initial pulse voltage of the scan electrical pulse sequence and an initial pulse current of the scan electrical pulse sequence measured during the scan section, and determine an initial charge voltage based on the initial tissue impedance.
  • 2. The electroporation ablation system of claim 1, wherein the electroporation generator comprises a capacitor bank and the electroporation generator is configured to charge the capacitor bank to a voltage level of the charge voltage before a start of the second therapy section.
  • 3. The electroporation ablation system of claim 1, wherein the first electrical pulse sequence comprises a plurality of first electrical pulses.
  • 4. The electroporation ablation system of claim 3, wherein the first pulse voltage comprises one or more pulse voltages of the plurality of first electrical pulses measured during the first therapy section.
  • 5. The electroporation ablation system of claim 1, wherein the controller is further configured to receive a first pulse current of a first electrical pulse sequence delivered during the first therapy section, wherein the controller is further configured to determine the charge voltage based on the first pulse voltage and the first pulse current.
  • 6. The electroporation ablation system of claim 5, wherein the controller is further configured to determine a first tissue impedance based on the first pulse voltage and the first pulse current.
  • 7. The electroporation ablation system of claim 6, wherein the controlled pulse voltage is a portion of the charge voltage.
  • 8. The electroporation ablation system of claim 7, wherein a ratio of the controlled pulse voltage and the charge voltage is associated with the first tissue impedance.
  • 9. The electroporation ablation system of claim 1, wherein the scan voltage is less than the controlled pulse voltage.
  • 10. The electroporation ablation system of claim 1, wherein the scan electrical pulse sequence includes a single non-ablative electrical pulse.
  • 11. The electroporation ablation system of claim 1, wherein the electroporation generator comprises a plurality of capacitor banks, wherein the electroporation generator is configured to charge at least one of the plurality of capacitor banks to a voltage level individually.
  • 12. The electroporation ablation system of claim 11, wherein the electroporation generator is configured to use a first capacitor bank of the plurality of capacitor banks to deliver a pulse sequence for a specific therapy section of the plurality of therapy sections and charge a second capacitor bank of the plurality of capacitor banks to a voltage level of a determined charge voltage before a start of a therapy section immediately after the specific therapy section of the plurality of therapy sections.
  • 13. The electroporation ablation system of claim 11, wherein the catheter electrodes comprise a plurality of electrode pairs, wherein each capacitor bank of the plurality of capacitor banks is operatively coupled to one or more electrode pairs of the plurality of electrode pairs.
  • 14. The electroporation ablation system of claim 13, wherein the controller is configured to determine a bank charge voltage for each capacitor bank of the plurality of capacitor banks.
  • 15. A method of using an electroporation ablation device, the method comprising: disposing a catheter of the electroporation ablation device anatomically proximate to a target ablation location, the catheter comprising one or more catheter electrodes and configured to generate electric fields in response to a plurality of electrical pulse sequences delivered in a plurality of therapy sections;receiving a first pulse voltage of a first electrical pulse sequence measured during a first therapy section of the plurality of therapy sections;determining a charge voltage based on the first pulse voltage; anddelivering a second electrical pulse sequence at a controlled pulse voltage for a second therapy section of the plurality of therapy sections, the second therapy section being after the first therapy section, the controlled pulse voltage being associated with the charge voltagedelivering a scan electrical pulse sequence during a scan section;receiving an initial pulse voltage of the scan electrical pulse sequence measured during the scan section;receiving an initial pulse current of the scan electrical pulse sequence measured during the scan section; anddetermining an initial tissue impedance based on the initial pulse voltage and the initial pulse current measured,wherein the scan section is before the first therapy section,wherein the scan electrical pulse sequence is at a scan pulse voltage lower than the controlled pulse voltage.
  • 16. The method of claim 15, further comprising: receiving a first pulse current of first electrical pulse sequence measured during the first therapy section,wherein determining a charge voltage comprises determining the charge voltage based on the first pulse voltage and the first pulse current.
  • 17. The method of claim 15, further comprising: determining a first tissue impedance based on the first pulse voltage and the first pulse current,wherein determining a charge voltage comprises determining the charge voltage based on the first tissue impedance.
  • 18. The method of claim 15, wherein the scan pulse voltage is at a non-ablative voltage level.
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to Provisional Application No. 63/142,133, filed Jan. 27, 2021, which is herein incorporated by reference in its entirety.

US Referenced Citations (708)
Number Name Date Kind
4200104 Harris Apr 1980 A
4470407 Hussein Sep 1984 A
4739759 Rexroth et al. Apr 1988 A
5234004 Hascoet et al. Aug 1993 A
5242441 Avitall Sep 1993 A
5257635 Langberg Nov 1993 A
5281213 Milder et al. Jan 1994 A
5304214 Deford et al. Apr 1994 A
5306296 Wright et al. Apr 1994 A
5334183 Wuchinich Aug 1994 A
5334193 Nardella Aug 1994 A
5341807 Nardella Aug 1994 A
5342301 Saab Aug 1994 A
5398683 Edwards et al. Mar 1995 A
5443463 Stern et al. Aug 1995 A
5454370 Avitall Oct 1995 A
5515848 Corbett et al. May 1996 A
5531685 Hemmer et al. Jul 1996 A
5545161 Imran Aug 1996 A
5578040 Smith Nov 1996 A
5617854 Munsif Apr 1997 A
5624430 Eton et al. Apr 1997 A
5667491 Pliquett et al. Sep 1997 A
5672170 Cho et al. Sep 1997 A
5700243 Narciso, Jr. Dec 1997 A
5702438 Avitall Dec 1997 A
5706823 Wodlinger Jan 1998 A
5722400 Ockuly et al. Mar 1998 A
5722402 Swanson et al. Mar 1998 A
5749914 Janssen May 1998 A
5779699 Lipson Jul 1998 A
5788692 Campbell et al. Aug 1998 A
5810762 Hofmann Sep 1998 A
5833710 Jacobson Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5836942 Netherly et al. Nov 1998 A
5836947 Fleischman et al. Nov 1998 A
5843154 Osypka Dec 1998 A
5849028 Chen Dec 1998 A
5860974 Abele Jan 1999 A
5863291 Schaer Jan 1999 A
5868736 Swanson et al. Feb 1999 A
5871523 Fleischman et al. Feb 1999 A
5876336 Swanson et al. Mar 1999 A
5885278 Fleischman Mar 1999 A
5895404 Ruiz Apr 1999 A
5899917 Edwards et al. May 1999 A
5904709 Arndt et al. May 1999 A
5916158 Webster, Jr. Jun 1999 A
5916213 Haissaguerre et al. Jun 1999 A
5921924 Avitall Jul 1999 A
5928269 Alt Jul 1999 A
5928270 Ramsey, III Jul 1999 A
5938660 Swartz et al. Aug 1999 A
6002955 Willems et al. Dec 1999 A
6006131 Cooper et al. Dec 1999 A
6009351 Flachman Dec 1999 A
6014579 Pomeranz et al. Jan 2000 A
6029671 Stevens et al. Feb 2000 A
6033403 Tu et al. Mar 2000 A
6035238 Ingle et al. Mar 2000 A
6045550 Simpson et al. Apr 2000 A
6068653 LaFontaine May 2000 A
6071274 Thompson et al. Jun 2000 A
6071281 Burnside et al. Jun 2000 A
6074389 Levine et al. Jun 2000 A
6076012 Swanson et al. Jun 2000 A
6090104 Webster, Jr. Jul 2000 A
6096036 Bowe et al. Aug 2000 A
6113595 Muntermann Sep 2000 A
6119041 Pomeranz et al. Sep 2000 A
6120500 Bednarek et al. Sep 2000 A
6142993 Whayne et al. Nov 2000 A
6146381 Bowe et al. Nov 2000 A
6164283 Lesh Dec 2000 A
6167291 Barajas et al. Dec 2000 A
6171305 Sherman Jan 2001 B1
6216034 Hofmann et al. Apr 2001 B1
6219582 Hofstad et al. Apr 2001 B1
6223085 Dann et al. Apr 2001 B1
6231518 Grabek et al. May 2001 B1
6245064 Lesh et al. Jun 2001 B1
6251107 Schaer Jun 2001 B1
6251109 Hassett et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6270476 Santoianni et al. Aug 2001 B1
6272384 Simon et al. Aug 2001 B1
6287306 Kroll et al. Sep 2001 B1
6314963 Vaska et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6350263 Wetzig et al. Feb 2002 B1
6370412 Armoundas et al. Apr 2002 B1
6391024 Sun et al. May 2002 B1
6447505 McGovern et al. Sep 2002 B2
6464699 Swanson Oct 2002 B1
6470211 Ideker et al. Oct 2002 B1
6502576 Lesh Jan 2003 B1
6503247 Swartz et al. Jan 2003 B2
6517534 McGovern et al. Feb 2003 B1
6527724 Fenici Mar 2003 B1
6527767 Wang et al. Mar 2003 B2
6592581 Bowe Jul 2003 B2
6595991 Toellner et al. Jul 2003 B2
6607520 Keane Aug 2003 B2
6613046 Jenkins et al. Sep 2003 B1
6623480 Kuo et al. Sep 2003 B1
6638278 Falwell et al. Oct 2003 B2
6666863 Wentzel et al. Dec 2003 B2
6669693 Friedman Dec 2003 B2
6702811 Stewart et al. Mar 2004 B2
6719756 Muntermann Apr 2004 B1
6723092 Brown et al. Apr 2004 B2
6728563 Rashidi Apr 2004 B2
6743225 Sanchez et al. Jun 2004 B2
6743226 Cosman et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6764486 Natale Jul 2004 B2
6780181 Kroll et al. Aug 2004 B2
6805128 Pless et al. Oct 2004 B1
6807447 Griffin, III Oct 2004 B2
6892091 Ben-Haim et al. May 2005 B1
6893438 Hall et al. May 2005 B2
6926714 Sra Aug 2005 B1
6955173 Lesh Oct 2005 B2
6960206 Keane Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6972016 Hill et al. Dec 2005 B2
6973339 Govari Dec 2005 B2
6979331 Hintringer et al. Dec 2005 B2
6984232 Vanney et al. Jan 2006 B2
6985776 Kane et al. Jan 2006 B2
7001383 Keidar Feb 2006 B2
7041095 Wang et al. May 2006 B2
7113831 Hooven Sep 2006 B2
7171263 Darvish et al. Jan 2007 B2
7182725 Bonan et al. Feb 2007 B2
7195628 Falkenberg Mar 2007 B2
7207988 Leckrone et al. Apr 2007 B2
7207989 Pike et al. Apr 2007 B2
7229402 Diaz et al. Jun 2007 B2
7229437 Johnson et al. Jun 2007 B2
7250049 Roop et al. Jul 2007 B2
7285116 De et al. Oct 2007 B2
7285119 Stewart et al. Oct 2007 B2
7326208 Vanney et al. Feb 2008 B2
7346379 Eng et al. Mar 2008 B2
7367974 Haemmerich et al. May 2008 B2
7374567 Heuser May 2008 B2
7387629 Vanney et al. Jun 2008 B2
7387630 Mest Jun 2008 B2
7387636 Cohn et al. Jun 2008 B2
7416552 Paul et al. Aug 2008 B2
7419477 Simpson et al. Sep 2008 B2
7419489 Vanney et al. Sep 2008 B2
7422591 Phan Sep 2008 B2
7429261 Kunis et al. Sep 2008 B2
7435248 Taimisto et al. Oct 2008 B2
7513896 Orszulak Apr 2009 B2
7527625 Knight et al. May 2009 B2
7578816 Boveja et al. Aug 2009 B2
7588567 Boveja et al. Sep 2009 B2
7623899 Worley et al. Nov 2009 B2
7678108 Chrisitian et al. Mar 2010 B2
7681579 Schwartz Mar 2010 B2
7771421 Stewart et al. Aug 2010 B2
7805182 Weese et al. Sep 2010 B2
7842031 Abboud et al. Nov 2010 B2
7850642 Moll et al. Dec 2010 B2
7850685 Kunis et al. Dec 2010 B2
7857808 Oral et al. Dec 2010 B2
7857809 Drysen Dec 2010 B2
7869865 Govari et al. Jan 2011 B2
7896873 Hiller et al. Mar 2011 B2
7917211 Zacouto Mar 2011 B2
7918819 Karmarkar et al. Apr 2011 B2
7918850 Govari et al. Apr 2011 B2
7922714 Stevens-Wright Apr 2011 B2
7955827 Rubinsky et al. Jun 2011 B2
8048067 Davalos et al. Nov 2011 B2
8048072 Verin et al. Nov 2011 B2
8100895 Panos et al. Jan 2012 B2
8100900 Prinz et al. Jan 2012 B2
8108069 Stahler et al. Jan 2012 B2
8133220 Lee et al. Mar 2012 B2
8137342 Crossman Mar 2012 B2
8145289 Calabro′ et al. Mar 2012 B2
8147486 Honour et al. Apr 2012 B2
8160690 Wilfley et al. Apr 2012 B2
8175680 Panescu May 2012 B2
8182477 Orszulak et al. May 2012 B2
8206384 Falwell et al. Jun 2012 B2
8206385 Stangenes et al. Jun 2012 B2
8216221 Ibrahim et al. Jul 2012 B2
8221411 Francischelli et al. Jul 2012 B2
8226648 Paul et al. Jul 2012 B2
8228065 Wirtz et al. Jul 2012 B2
8235986 Kulesa et al. Aug 2012 B2
8235988 Davis et al. Aug 2012 B2
8251986 Chornenky et al. Aug 2012 B2
8282631 Davalos et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8414508 Thapliyal et al. Apr 2013 B2
8430875 Ibrahim et al. Apr 2013 B2
8433394 Harlev et al. Apr 2013 B2
8449535 Deno et al. May 2013 B2
8454594 Demarais et al. Jun 2013 B2
8463368 Harlev et al. Jun 2013 B2
8475450 Govari et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8500733 Watson Aug 2013 B2
8535304 Sklar et al. Sep 2013 B2
8538501 Venkatachalam et al. Sep 2013 B2
8562588 Hobbs et al. Oct 2013 B2
8568406 Harlev et al. Oct 2013 B2
8568410 Vakharia et al. Oct 2013 B2
8571635 McGee Oct 2013 B2
8571647 Harlev et al. Oct 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8585695 Shih Nov 2013 B2
8588885 Hall et al. Nov 2013 B2
8597288 Christian Dec 2013 B2
8608735 Govari et al. Dec 2013 B2
8628522 Ibrahim et al. Jan 2014 B2
8632534 Pearson et al. Jan 2014 B2
8647338 Chornenky et al. Feb 2014 B2
8708952 Cohen et al. Apr 2014 B2
8734442 Cao et al. May 2014 B2
8771267 Kunis et al. Jul 2014 B2
8795310 Fung et al. Aug 2014 B2
8808273 Caples et al. Aug 2014 B2
8808281 Emmons et al. Aug 2014 B2
8834461 Werneth et al. Sep 2014 B2
8834464 Stewart et al. Sep 2014 B2
8868169 Narayan et al. Oct 2014 B2
8876817 Avitall et al. Nov 2014 B2
8880195 Azure Nov 2014 B2
8886309 Luther et al. Nov 2014 B2
8903488 Callas et al. Dec 2014 B2
8920411 Gelbart et al. Dec 2014 B2
8926589 Govari Jan 2015 B2
8932287 Gelbart et al. Jan 2015 B2
8945117 Bencini Feb 2015 B2
8979841 Kunis et al. Mar 2015 B2
8986278 Fung et al. Mar 2015 B2
8996091 De et al. Mar 2015 B2
9002442 Harley et al. Apr 2015 B2
9005189 Davalos et al. Apr 2015 B2
9005194 Oral et al. Apr 2015 B2
9011425 Fischer et al. Apr 2015 B2
9044245 Condie et al. Jun 2015 B2
9055959 Vaska et al. Jun 2015 B2
9072518 Swanson Jul 2015 B2
9078667 Besser et al. Jul 2015 B2
9101374 Hoch et al. Aug 2015 B1
9113911 Sherman Aug 2015 B2
9119533 Ghaffari Sep 2015 B2
9119634 Gelbart et al. Sep 2015 B2
9131897 Harada et al. Sep 2015 B2
9155590 Mathur Oct 2015 B2
9162037 Belson et al. Oct 2015 B2
9179972 Olson Nov 2015 B2
9186481 Avitall et al. Nov 2015 B2
9192769 Donofrio et al. Nov 2015 B2
9204916 Lalonde Dec 2015 B2
9211405 Mahapatra et al. Dec 2015 B2
9216055 Spence et al. Dec 2015 B2
9233248 Luther et al. Jan 2016 B2
9237926 Nollert et al. Jan 2016 B2
9262252 Kirkpatrick et al. Feb 2016 B2
9277957 Long et al. Mar 2016 B2
9282910 Narayan et al. Mar 2016 B2
9289258 Cohen Mar 2016 B2
9289606 Paul et al. Mar 2016 B2
9295516 Pearson et al. Mar 2016 B2
9301801 Scheib Apr 2016 B2
9351789 Novichenok et al. May 2016 B2
9375268 Long Jun 2016 B2
9387031 Stewart et al. Jul 2016 B2
9414881 Callas et al. Aug 2016 B2
9468495 Kunis et al. Oct 2016 B2
9474486 Eliason et al. Oct 2016 B2
9474574 Brahim et al. Oct 2016 B2
9480525 Lopes et al. Nov 2016 B2
9486272 Bonyak et al. Nov 2016 B2
9486273 Lopes et al. Nov 2016 B2
9492227 Lopes et al. Nov 2016 B2
9492228 Lopes et al. Nov 2016 B2
9510888 Lalonde Dec 2016 B2
9517103 Panescu et al. Dec 2016 B2
9526573 Lopes et al. Dec 2016 B2
9532831 Reinders et al. Jan 2017 B2
9539010 Gagner et al. Jan 2017 B2
9554848 Stewart et al. Jan 2017 B2
9554851 Sklar et al. Jan 2017 B2
9700368 Callas et al. Jul 2017 B2
9724170 Mickelsen Aug 2017 B2
9757193 Zarins et al. Sep 2017 B2
9782099 Williams et al. Oct 2017 B2
9795442 Salahieh et al. Oct 2017 B2
9801681 Laske et al. Oct 2017 B2
9808304 Lalonde Nov 2017 B2
9861802 Mickelsen Jan 2018 B2
9913685 Clark et al. Mar 2018 B2
9931487 Quinn et al. Apr 2018 B2
9987081 Bowers et al. Jun 2018 B1
9999465 Long et al. Jun 2018 B2
10010368 Laske et al. Jul 2018 B2
10016232 Bowers et al. Jul 2018 B1
10130423 Viswanathan et al. Nov 2018 B1
10172673 Viswanathan et al. Jan 2019 B2
10194818 Williams et al. Feb 2019 B2
10285755 Stewart et al. May 2019 B2
10322286 Viswanathan et al. Jun 2019 B2
10433906 Mickelsen Oct 2019 B2
10433908 Viswanathan et al. Oct 2019 B2
10512505 Viswanathan Dec 2019 B2
10512779 Viswanathan et al. Dec 2019 B2
10517672 Long Dec 2019 B2
10617467 Viswanathan et al. Apr 2020 B2
10660702 Viswanathan et al. May 2020 B2
20010000791 Suorsa et al. May 2001 A1
20010007070 Stewart et al. Jul 2001 A1
20010044624 Seraj et al. Nov 2001 A1
20020022839 Stewart et al. Feb 2002 A1
20020052602 Wang et al. May 2002 A1
20020058933 Christopherson et al. May 2002 A1
20020077627 Johnson et al. Jun 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020091384 Hooven et al. Jul 2002 A1
20020095176 Prestel Jul 2002 A1
20020111618 Stewart et al. Aug 2002 A1
20020156526 Hlavka et al. Oct 2002 A1
20020161323 Miller et al. Oct 2002 A1
20020169445 Jain et al. Nov 2002 A1
20020177765 Bowe et al. Nov 2002 A1
20020183638 Swanson Dec 2002 A1
20030014098 Quijano et al. Jan 2003 A1
20030018374 Paulos Jan 2003 A1
20030023287 Edwards et al. Jan 2003 A1
20030028189 Woloszko et al. Feb 2003 A1
20030050637 Maguire et al. Mar 2003 A1
20030060856 Chornenky et al. Mar 2003 A1
20030114849 Ryan Jun 2003 A1
20030125729 Hooven et al. Jul 2003 A1
20030130598 Manning et al. Jul 2003 A1
20030130711 Pearson et al. Jul 2003 A1
20030204161 Ferek-Petric Oct 2003 A1
20030229379 Ramsey Dec 2003 A1
20040039382 Kroll et al. Feb 2004 A1
20040049181 Stewart et al. Mar 2004 A1
20040049182 Koblish et al. Mar 2004 A1
20040082859 Schaer Apr 2004 A1
20040082948 Stewart et al. Apr 2004 A1
20040087939 Eggers et al. May 2004 A1
20040111087 Stern et al. Jun 2004 A1
20040199157 Palanker et al. Oct 2004 A1
20040231683 Eng et al. Nov 2004 A1
20040236360 Cohn et al. Nov 2004 A1
20040254607 Wittenberger et al. Dec 2004 A1
20040267337 Hayzelden Dec 2004 A1
20050033282 Hooven Feb 2005 A1
20050187545 Hooven et al. Aug 2005 A1
20050222632 Obino Oct 2005 A1
20050251130 Boveja et al. Nov 2005 A1
20050261672 Deem et al. Nov 2005 A1
20060009755 Sra Jan 2006 A1
20060009759 Chrisitian et al. Jan 2006 A1
20060015095 Desinger et al. Jan 2006 A1
20060015165 Bertolero et al. Jan 2006 A1
20060024359 Walker et al. Feb 2006 A1
20060058781 Long Mar 2006 A1
20060111702 Oral et al. May 2006 A1
20060142801 Demarais et al. Jun 2006 A1
20060161148 Behnke Jul 2006 A1
20060167448 Kozel Jul 2006 A1
20060217703 Chornenky et al. Sep 2006 A1
20060241734 Marshall et al. Oct 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060270900 Chin et al. Nov 2006 A1
20060287648 Schwartz Dec 2006 A1
20060293730 Rubinsky et al. Dec 2006 A1
20060293731 Rubinsky et al. Dec 2006 A1
20070005053 Dando Jan 2007 A1
20070021744 Creighton Jan 2007 A1
20070060989 Deem et al. Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070129721 Phan et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070156135 Rubinsky et al. Jul 2007 A1
20070167740 Grunewald et al. Jul 2007 A1
20070167940 Stevens-Wright Jul 2007 A1
20070173878 Heuser Jul 2007 A1
20070208329 Ward et al. Sep 2007 A1
20070225589 Viswanathan Sep 2007 A1
20070249923 Keenan Oct 2007 A1
20070260223 Scheibe et al. Nov 2007 A1
20070270792 Hennemann et al. Nov 2007 A1
20080009855 Hamou Jan 2008 A1
20080033426 Machell Feb 2008 A1
20080065061 Viswanathan Mar 2008 A1
20080086120 Mirza et al. Apr 2008 A1
20080091195 Sliwa et al. Apr 2008 A1
20080103545 Bolea et al. May 2008 A1
20080132885 Rubinsky et al. Jun 2008 A1
20080161789 Thao et al. Jul 2008 A1
20080172048 Martin et al. Jul 2008 A1
20080200913 Viswanathan Aug 2008 A1
20080208118 Goldman Aug 2008 A1
20080243214 Koblish Oct 2008 A1
20080281322 Sherman et al. Nov 2008 A1
20080300574 Belson et al. Dec 2008 A1
20080300588 Groth et al. Dec 2008 A1
20090024084 Khosla et al. Jan 2009 A1
20090048591 Ibrahim et al. Feb 2009 A1
20090062788 Long et al. Mar 2009 A1
20090076496 Azure Mar 2009 A1
20090076500 Azure Mar 2009 A1
20090105654 Kurth et al. Apr 2009 A1
20090138009 Viswanathan et al. May 2009 A1
20090149917 Whitehurst et al. Jun 2009 A1
20090163905 Winkler et al. Jun 2009 A1
20090228003 Sinelnikov Sep 2009 A1
20090240248 Deford et al. Sep 2009 A1
20090275827 Aiken et al. Nov 2009 A1
20090281477 Mikus et al. Nov 2009 A1
20090306651 Schneider Dec 2009 A1
20100004623 Hamilton et al. Jan 2010 A1
20100023004 Francischelli et al. Jan 2010 A1
20100137861 Soroff et al. Jun 2010 A1
20100185140 Kassab et al. Jul 2010 A1
20100185186 Longoria Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100191232 Boveda Jul 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100261994 Davalos et al. Oct 2010 A1
20100274238 Klimovitch Oct 2010 A1
20100280513 Juergen et al. Nov 2010 A1
20100280539 Miyoshi et al. Nov 2010 A1
20100292687 Kauphusman et al. Nov 2010 A1
20100312096 Guttman et al. Dec 2010 A1
20100312300 Ryu et al. Dec 2010 A1
20110028962 Werneth et al. Feb 2011 A1
20110028964 Edwards Feb 2011 A1
20110040199 Hopenfeld Feb 2011 A1
20110098694 Long Apr 2011 A1
20110106221 Neal et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110144524 Fish et al. Jun 2011 A1
20110144633 Govari Jun 2011 A1
20110160785 Mori et al. Jun 2011 A1
20110190659 Long et al. Aug 2011 A1
20110190727 Edmunds et al. Aug 2011 A1
20110213231 Hall et al. Sep 2011 A1
20110276047 Sklar et al. Nov 2011 A1
20110276075 Fung et al. Nov 2011 A1
20110288544 Verin et al. Nov 2011 A1
20110288547 Morgan et al. Nov 2011 A1
20110313417 De et al. Dec 2011 A1
20120029512 Willard et al. Feb 2012 A1
20120046570 Villegas et al. Feb 2012 A1
20120053581 Wittkampf et al. Mar 2012 A1
20120059255 Paul et al. Mar 2012 A1
20120071872 Rubinsky et al. Mar 2012 A1
20120078320 Schotzko et al. Mar 2012 A1
20120078343 Fish Mar 2012 A1
20120089089 Swain et al. Apr 2012 A1
20120095459 Callas et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120158021 Morrill Jun 2012 A1
20120165667 Altmann et al. Jun 2012 A1
20120172859 Condie et al. Jul 2012 A1
20120172867 Ryu et al. Jul 2012 A1
20120197100 Razavi et al. Aug 2012 A1
20120209260 Lambert et al. Aug 2012 A1
20120220998 Long et al. Aug 2012 A1
20120265198 Crow et al. Oct 2012 A1
20120283582 Mahapatra et al. Nov 2012 A1
20120303019 Zhao et al. Nov 2012 A1
20120310052 Mahapatra et al. Dec 2012 A1
20120310230 Willis Dec 2012 A1
20120310237 Swanson Dec 2012 A1
20120316557 Sartor et al. Dec 2012 A1
20130030430 Stewart et al. Jan 2013 A1
20130060247 Sklar et al. Mar 2013 A1
20130060248 Sklar et al. Mar 2013 A1
20130079768 De et al. Mar 2013 A1
20130090651 Smith Apr 2013 A1
20130096655 Moffitt et al. Apr 2013 A1
20130103027 Sklar et al. Apr 2013 A1
20130103064 Arenson et al. Apr 2013 A1
20130131662 Wittkampf May 2013 A1
20130158538 Govari Jun 2013 A1
20130158621 Ding et al. Jun 2013 A1
20130172715 Just et al. Jul 2013 A1
20130172864 Ibrahim et al. Jul 2013 A1
20130172875 Govari et al. Jul 2013 A1
20130184702 Neal et al. Jul 2013 A1
20130218157 Callas et al. Aug 2013 A1
20130226174 Ibrahim et al. Aug 2013 A1
20130237984 Sklar Sep 2013 A1
20130253415 Sano et al. Sep 2013 A1
20130296679 Condie et al. Nov 2013 A1
20130310829 Cohen Nov 2013 A1
20130317385 Sklar et al. Nov 2013 A1
20130331831 Werneth et al. Dec 2013 A1
20130338467 Grasse et al. Dec 2013 A1
20140005664 Govari et al. Jan 2014 A1
20140024911 Harlev et al. Jan 2014 A1
20140039288 Hue-Teh Feb 2014 A1
20140051993 McGee Feb 2014 A1
20140052118 Laske et al. Feb 2014 A1
20140052126 Long et al. Feb 2014 A1
20140052216 Long et al. Feb 2014 A1
20140058377 Deem et al. Feb 2014 A1
20140081113 Cohen et al. Mar 2014 A1
20140100563 Govari et al. Apr 2014 A1
20140107644 Falwell et al. Apr 2014 A1
20140142408 De et al. May 2014 A1
20140148804 Ward et al. May 2014 A1
20140163480 Govari et al. Jun 2014 A1
20140163546 Govari et al. Jun 2014 A1
20140171942 Werneth et al. Jun 2014 A1
20140180035 Anderson Jun 2014 A1
20140187916 Clark et al. Jul 2014 A1
20140194716 Diep et al. Jul 2014 A1
20140194867 Fish et al. Jul 2014 A1
20140200567 Cox et al. Jul 2014 A1
20140235986 Harlev et al. Aug 2014 A1
20140235988 Ghosh Aug 2014 A1
20140235989 Wodlinger et al. Aug 2014 A1
20140243851 Cohen et al. Aug 2014 A1
20140253140 Gilbert Sep 2014 A1
20140276760 Bonyak et al. Sep 2014 A1
20140276782 Paskar Sep 2014 A1
20140276791 Ku et al. Sep 2014 A1
20140288556 Ibrahim et al. Sep 2014 A1
20140303721 Fung et al. Oct 2014 A1
20140343549 Spear et al. Nov 2014 A1
20140364797 Schoenbach Dec 2014 A1
20140364845 Rashidi Dec 2014 A1
20140371613 Narayan et al. Dec 2014 A1
20150005767 Werneth et al. Jan 2015 A1
20150011995 Avitall et al. Jan 2015 A1
20150066108 Shi et al. Mar 2015 A1
20150119674 Fischell et al. Apr 2015 A1
20150126840 Thakur et al. May 2015 A1
20150133914 Koblish May 2015 A1
20150138977 Dacosta May 2015 A1
20150141978 Subramaniam et al. May 2015 A1
20150141982 Lee May 2015 A1
20150142041 Kendale et al. May 2015 A1
20150148796 Bencini May 2015 A1
20150150472 Harlev et al. Jun 2015 A1
20150157402 Kunis et al. Jun 2015 A1
20150157412 Wallace et al. Jun 2015 A1
20150164584 Davalos et al. Jun 2015 A1
20150173824 Davalos et al. Jun 2015 A1
20150173828 Avitall Jun 2015 A1
20150174404 Rousso et al. Jun 2015 A1
20150182740 Mickelsen Jul 2015 A1
20150196217 Harlev et al. Jul 2015 A1
20150223726 Harlev et al. Aug 2015 A1
20150230699 Berul et al. Aug 2015 A1
20150258344 Tandri et al. Sep 2015 A1
20150265342 Long et al. Sep 2015 A1
20150265344 Aktas et al. Sep 2015 A1
20150272656 Chen Oct 2015 A1
20150272664 Cohen Oct 2015 A9
20150272667 Govari et al. Oct 2015 A1
20150282729 Harlev et al. Oct 2015 A1
20150289923 Davalos et al. Oct 2015 A1
20150304879 Dacosta Oct 2015 A1
20150320481 Cosman et al. Nov 2015 A1
20150321021 Tandri et al. Nov 2015 A1
20150342532 Basu et al. Dec 2015 A1
20150343212 Rousso et al. Dec 2015 A1
20150351836 Prutchi Dec 2015 A1
20150359583 Swanson Dec 2015 A1
20160000500 Salahieh et al. Jan 2016 A1
20160008061 Fung et al. Jan 2016 A1
20160008065 Gliner et al. Jan 2016 A1
20160029960 Toth et al. Feb 2016 A1
20160038772 Thapliyal et al. Feb 2016 A1
20160051204 Harlev et al. Feb 2016 A1
20160051324 Stewart et al. Feb 2016 A1
20160058493 Neal et al. Mar 2016 A1
20160058506 Spence et al. Mar 2016 A1
20160066993 Avitall et al. Mar 2016 A1
20160074679 Thapliyal et al. Mar 2016 A1
20160095531 Narayan et al. Apr 2016 A1
20160095642 Deno et al. Apr 2016 A1
20160095653 Lambert et al. Apr 2016 A1
20160100797 Mahapatra et al. Apr 2016 A1
20160100879 Long Apr 2016 A1
20160100884 Fay et al. Apr 2016 A1
20160106498 Highsmith et al. Apr 2016 A1
20160106500 Olson Apr 2016 A1
20160113709 Maor Apr 2016 A1
20160113712 Cheung et al. Apr 2016 A1
20160120564 Kirkpatrick et al. May 2016 A1
20160128770 Afonso et al. May 2016 A1
20160166167 Narayan et al. Jun 2016 A1
20160166310 Stewart et al. Jun 2016 A1
20160166311 Long et al. Jun 2016 A1
20160174865 Stewart et al. Jun 2016 A1
20160183877 Williams et al. Jun 2016 A1
20160184003 Srimathveeravalli et al. Jun 2016 A1
20160184004 Hull et al. Jun 2016 A1
20160213282 Leo et al. Jul 2016 A1
20160220307 Miller et al. Aug 2016 A1
20160235470 Callas et al. Aug 2016 A1
20160249972 Klink Sep 2016 A1
20160256682 Paul et al. Sep 2016 A1
20160287314 Arena et al. Oct 2016 A1
20160310211 Long Oct 2016 A1
20160324564 Gerlach et al. Nov 2016 A1
20160324573 Mickelson et al. Nov 2016 A1
20160331441 Konings Nov 2016 A1
20160331459 Townley et al. Nov 2016 A1
20160338770 Bar-Tal et al. Nov 2016 A1
20160354142 Pearson et al. Dec 2016 A1
20160361109 Weaver et al. Dec 2016 A1
20170001016 De Ridder Jan 2017 A1
20170035499 Stewart et al. Feb 2017 A1
20170042449 Deno et al. Feb 2017 A1
20170042615 Salahieh et al. Feb 2017 A1
20170056648 Syed et al. Mar 2017 A1
20170065330 Mickelsen et al. Mar 2017 A1
20170065339 Mickelsen Mar 2017 A1
20170065340 Long Mar 2017 A1
20170065343 Mickelsen Mar 2017 A1
20170071543 Basu et al. Mar 2017 A1
20170095291 Harrington et al. Apr 2017 A1
20170105793 Cao et al. Apr 2017 A1
20170120048 He et al. May 2017 A1
20170146584 Daw et al. May 2017 A1
20170151014 Perfler Jun 2017 A1
20170151029 Mickelsen Jun 2017 A1
20170172654 Wittkampf et al. Jun 2017 A1
20170181795 Debruyne Jun 2017 A1
20170189097 Viswanathan et al. Jul 2017 A1
20170215953 Long et al. Aug 2017 A1
20170245928 Xiao et al. Aug 2017 A1
20170246455 Athos et al. Aug 2017 A1
20170312024 Harlev et al. Nov 2017 A1
20170312025 Harlev et al. Nov 2017 A1
20170312027 Harlev et al. Nov 2017 A1
20170319851 Athos Nov 2017 A1
20180001056 Leeflang et al. Jan 2018 A1
20180028252 Lalonde Feb 2018 A1
20180042674 Mickelsen Feb 2018 A1
20180042675 Long Feb 2018 A1
20180043153 Viswanathan et al. Feb 2018 A1
20180064488 Long et al. Mar 2018 A1
20180085160 Viswanathan et al. Mar 2018 A1
20180093088 Mickelsen Apr 2018 A1
20180133460 Townley et al. May 2018 A1
20180161093 Basu et al. Jun 2018 A1
20180168511 Hall et al. Jun 2018 A1
20180184982 Basu et al. Jul 2018 A1
20180193090 De et al. Jul 2018 A1
20180200497 Mickelsen Jul 2018 A1
20180235496 Wu et al. Aug 2018 A1
20180256109 Wu et al. Sep 2018 A1
20180280080 Govari et al. Oct 2018 A1
20180303488 Hill Oct 2018 A1
20180303543 Stewart et al. Oct 2018 A1
20180311497 Viswanathan et al. Nov 2018 A1
20180344202 Bar-Tal et al. Dec 2018 A1
20180344393 Gruba et al. Dec 2018 A1
20180360531 Holmes et al. Dec 2018 A1
20180360534 Teplitsky et al. Dec 2018 A1
20190015007 Rottmann et al. Jan 2019 A1
20190015638 Gruba et al. Jan 2019 A1
20190030328 Stewart et al. Jan 2019 A1
20190046791 Ebbers et al. Feb 2019 A1
20190069950 Viswanathan et al. Mar 2019 A1
20190076179 Babkin et al. Mar 2019 A1
20190125439 Rohl et al. May 2019 A1
20190125788 Gruba et al. May 2019 A1
20190143106 Dewitt et al. May 2019 A1
20190151015 Viswanathan et al. May 2019 A1
20190175263 Altmann et al. Jun 2019 A1
20190183378 Mosesov et al. Jun 2019 A1
20190183567 Govari et al. Jun 2019 A1
20190192223 Rankin Jun 2019 A1
20190201089 Waldstreicher et al. Jul 2019 A1
20190201688 Olson Jul 2019 A1
20190209235 Stewart et al. Jul 2019 A1
20190223948 Stewart et al. Jul 2019 A1
20190231421 Viswanathan et al. Aug 2019 A1
20190231425 Waldstreicher et al. Aug 2019 A1
20190254735 Stewart et al. Aug 2019 A1
20190269912 Viswanathan et al. Sep 2019 A1
20190298442 Ogata et al. Oct 2019 A1
20190307500 Byrd et al. Oct 2019 A1
20190350647 Ramberg et al. Nov 2019 A1
20190350649 Sutermeister et al. Nov 2019 A1
20200008869 Byrd Jan 2020 A1
20200008870 Gruba et al. Jan 2020 A1
20200009378 Stewart et al. Jan 2020 A1
20200038104 Mickelsen Feb 2020 A1
20200046423 Viswanathan et al. Feb 2020 A1
20200093539 Long et al. Mar 2020 A1
20200129233 Viswanathan Apr 2020 A1
20200289827 Forsyth et al. Sep 2020 A1
20210393327 Eyster Dec 2021 A1
20220133405 Mickelsen May 2022 A1
Foreign Referenced Citations (103)
Number Date Country
741167 Nov 2001 AU
1042990 Oct 2000 EP
1125549 Aug 2001 EP
0797956 Jun 2003 EP
1340469 Sep 2003 EP
1127552 Jun 2006 EP
1803411 Jul 2007 EP
1009303 Jun 2009 EP
2213729 Aug 2010 EP
2382935 Nov 2011 EP
2425871 Mar 2012 EP
2532320 Dec 2012 EP
2587275 May 2013 EP
2663227 Nov 2013 EP
1909678 Jan 2014 EP
2217165 Mar 2014 EP
2376193 Mar 2014 EP
2708181 Mar 2014 EP
2777579 Sep 2014 EP
2777585 Sep 2014 EP
2934307 Oct 2015 EP
3056242 Aug 2016 EP
3111871 Jan 2017 EP
3151773 Apr 2018 EP
06-507797 Sep 1994 JP
2000-508196 Jul 2000 JP
2005-516666 Jun 2005 JP
2006-506184 Feb 2006 JP
2008-538997 Nov 2008 JP
2009-500129 Jan 2009 JP
2011-509158 Mar 2011 JP
2012-050538 Mar 2012 JP
2018-510015 Apr 2018 JP
2018-089431 Jun 2018 JP
2020-516371 Jun 2020 JP
9207622 May 1992 WO
9221278 Dec 1992 WO
9221285 Dec 1992 WO
9407413 Apr 1994 WO
9724073 Jul 1997 WO
9725917 Jul 1997 WO
9737719 Oct 1997 WO
9904851 Feb 1999 WO
9922659 May 1999 WO
9956650 Nov 1999 WO
9959486 Nov 1999 WO
0256782 Jul 2002 WO
0353289 Jul 2003 WO
0365916 Aug 2003 WO
2004045442 Jun 2004 WO
2004086994 Oct 2004 WO
2005046487 May 2005 WO
2006115902 Nov 2006 WO
2007006055 Jan 2007 WO
2007079438 Jul 2007 WO
2009082710 Jul 2009 WO
2009089343 Jul 2009 WO
2009137800 Nov 2009 WO
2010014480 Feb 2010 WO
2011028310 Mar 2011 WO
2011154805 Dec 2011 WO
2012051433 Apr 2012 WO
2012097067 Jul 2012 WO
2012153928 Nov 2012 WO
2013019385 Feb 2013 WO
2014025394 Feb 2014 WO
2014031800 Feb 2014 WO
2014036439 Mar 2014 WO
2014100579 Jun 2014 WO
2014160832 Oct 2014 WO
2015066322 May 2015 WO
2015099786 Jul 2015 WO
2015103530 Jul 2015 WO
2015103574 Jul 2015 WO
2015130824 Sep 2015 WO
2015140741 Sep 2015 WO
2015143327 Sep 2015 WO
2015171921 Nov 2015 WO
2015175944 Nov 2015 WO
2015192018 Dec 2015 WO
2015192027 Dec 2015 WO
2016059027 Apr 2016 WO
2016060983 Apr 2016 WO
2016081650 May 2016 WO
2016090175 Jun 2016 WO
2017093926 Jun 2017 WO
2017119934 Jul 2017 WO
2017120169 Jul 2017 WO
2017192477 Nov 2017 WO
2017192495 Nov 2017 WO
2017201504 Nov 2017 WO
2017218734 Dec 2017 WO
2018005511 Jan 2018 WO
2018106569 Jun 2018 WO
2018200800 Nov 2018 WO
2019023259 Jan 2019 WO
2019023280 Jan 2019 WO
2019035071 Feb 2019 WO
2019133606 Jul 2019 WO
2019133608 Jul 2019 WO
2019136218 Jul 2019 WO
2019181612 Sep 2019 WO
2019234133 Dec 2019 WO
Non-Patent Literature Citations (13)
Entry
Du Pre, B.C. et al., “Minimal coronary artery damage by myocardial electroporation ablation,” Europace, 15(1):144-149 (2013).
Hobbs, E. P., “Investor Relations Update: Tissue Ablation via Irreversible Electroporation (IRE),” Powerpoint (2004), 16 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2022/013512, mailed on May 4, 2022, 12 pages.
Lavee, J. et al., “A Novel Nonthermal Energy Source for Surgical Epicardial Atrial Ablation: Irreversible Electroporation,” The Heart Surgery Forum #2006-1202, 10(2), 2007 [Epub Mar. 2007].
Madhavan, M. et al., “Novel Percutaneous Epicardial Autonomic Modulation in the Canine for Atrial Fibrillation: Results of an Efficacy and Safety Study,” Pace, 00:1-11 (2016).
Neven, K. et al., “Epicardial linear electroporation ablation and lesion size,” Heart Rhythm, 11:1465-1470 (2014).
Neven, K. et al., “Myocardial Lesion Size After Epicardial Electroporation Catheter Ablation After Subxiphoid Puncture,” Circ Arrhythm Electrophysiol., 7(4):728-733 (2014).
Neven, K. et al., “Safety and Feasibility of Closed Chest Epicardial Catheter Ablation Using Electroporation,” Circ Arrhythm Electrophysiol., 7:913-919 (2014).
Van Driel, V.J.H.M. et al., “Low vulnerability of the right phrenic nerve to electroporation ablation,” Heart Rhythm, 12:1838-1844 (2015).
Van Driel, V.J.H.M. et al., “Pulmonary Vein Stenosis After Catheter Ablation Electroporation Versus Radiofrequency,” Circ Arrhythm Electrophysiol., 7(4):734-738 (2014).
Wittkampf, F.H. et al., “Feasibility of Electroporation for the Creation of Pulmonary Vein Ostial Lesions,” J Cardiovasc Electrophysiol, 22(3):302-309 (Mar. 2011).
Wittkampf, F.H. et al., “Myocardial Lesion Depth With Circular Electroporation Ablation,” Circ. Arrhythm Electrophysiol., 5(3):581-586 (2012).
Notice of Reasons for Refusal received for Japanese Patent Application No. 2023-545295, mailed on May 21, 2024, 12 pages (6 pages of English Translation and 6 pages of Original Document).
Related Publications (1)
Number Date Country
20220233237 A1 Jul 2022 US
Provisional Applications (1)
Number Date Country
63142133 Jan 2021 US