Claims
- 1. A computer system, comprising:a data input device; a data output device; a processor coupled to the data input and output devices; and a memory device coupled to the processor, the memory device comprising: an address bus; a control bus; a data bus; an address decoder coupled to the address bus; a read/write circuit coupled to the data bus; a memory-cell array coupled to the address decoder, control circuit, and read/write circuit; and a voltage converter for converting a first voltage to an output voltage, the output voltage having a lower voltage than the first voltage and used internally to the memory device, the voltage converter comprising: a voltage conversion circuit having an input node to which the first voltage is provided, an output node at which the output voltage is provided, and a control node to which a control signal having a control voltage is provided, the voltage conversion circuit generating an output voltage having a voltage relative to the first voltage based on the voltage of the control signal; and a feedback circuit having a sense node coupled to the output node, a supply node coupled to the input node, and a feedback node coupled to the control node, the feedback circuit generating a feedback signal at the feedback node to compensate for a decrease in the output voltage in response to the voltage of the output voltage falling below a trigger voltage.
- 2. The computer system of claim 1 wherein the feedback circuit of the voltage converter comprises a switch having a control terminal coupled to the output node, the switch coupling the first voltage of the input node to the control node in response to the voltage of the output voltage falling below the trigger voltage.
- 3. The computer system of claim 2 wherein the feedback circuit further comprises a voltage divider circuit coupled to the supply node and ground, the voltage divider circuit having a bias node coupled to the control terminal of the switch and the output node to maintain a bias on the control terminal of the switch to isolate the input node and the control node of the voltage conversion circuit until the voltage of the output voltage falls below the trigger voltage.
- 4. The computer system of claim 3 wherein the voltage divider circuit comprises active load elements.
- 5. The computer system of claim 1 wherein the voltage converter further comprises a capacitor having a first node coupled to the output node of the voltage conversion circuit and a second node coupled to the sense node of the feedback circuit.
- 6. The computer system of claim 1 wherein the voltage converter further comprises a control circuit for generating a control signal for the voltage conversion circuit, the control circuit having a supply terminal coupled to the input node, a first reference voltage terminal to which a reference voltage is applied, an output terminal coupled to the control node of the voltage conversion circuit, and a second reference voltage terminal coupled to the output terminal, the control circuit generating an output signal from the first voltage having a voltage based on the reference voltage and the output signal.
CROSS-REFERENCE TO RELATED APPLICATION
This application is a divisional of pending U.S. patent application Ser. No. 10/076,982, filed Feb. 15, 2002.
US Referenced Citations (13)