This application claims priority to German Patent Application Serial No. 10 2007 009 838.5, which was filed Feb. 28, 2007, and is incorporated herein by reference in its entirety.
A large number of options are known today for transmitting data in a digital radio communication system, for example in RFID system. Depending on the respective system, this involves the data being transmitted between a transponder, for example in the form of a radio tag, and a reader. The transition medium used in this context is an electromagnetic field. Specifically in passive radio communication systems (RFID tags), the DC supply voltage for operating the transponder is obtained from the electromagnetic field. This manner of obtaining voltage means that no separate power supply, for example in form of a battery, needs to be accommodated on the transponder. It is therefore possible to make the transponder smaller and more lightweight and hence to acquire a broader field of use for the transponders.
To obtain a supply voltage, energy is accordingly drawn from the electromagnetic field. The energy in the electromagnetic field propagates in the form of electromagnetic waves. An electromagnetic wave is a wave of coupled electrical and magnetic fields which has a carrier frequency defined as an oscillation of the electromagnetic field. An input unit in a transponder converts this oscillation of the electromagnetic field into an electrical AC voltage. By way of example, this is achieved by means of an input resonant circuit in which two energy stores are designed and tuned with one another such that they resonate when excited by means of an electromagnetic wave which has a particular carrier frequency and convert the electromagnetic wave into an electrical AC voltage. To obtain a DC supply voltage, this AC voltage is converted into a stable DC voltage. In this case, a person skilled in the art refers to rectification of an AC voltage signal. To rectify an AC voltage, bridge rectifier arrangements are used, for example. These bridge rectifiers have components which have a diode characteristic and are conducting or non-conducting according to the applied AC voltage half-cycle. A pulsating DC voltage produced in this manner is leveled by means of a large capacitance. A person skilled in the art refers to smoothing this pulsating DC voltage.
Electronic circuits in transponders as mentioned above require, in addition to the rectifier, a charge pump in order to produce a suitable operating voltage. In this context, the charge pump shifts the voltage potential at the output of the rectifier to an appropriate level of potential.
The high frequencies of the electromagnetic field mean that Schottky diodes are used in a charge pump arrangement today. Their nature means that these diodes are capable of switching the AC voltages at the high carrier frequencies. Their physical nature means that they have relatively poor energy efficiency values for this conversion, however. In this context, efficiency is defined as being the ratio of available field energy to DC voltage power obtained. The high input frequencies of the electromagnetic field have to date largely prevented the use of MOS technologies for application in charge pumps.
The invention is explained below using exemplary embodiments with reference to the drawing, where components which are the same or have the same action are respectively shown with the same reference symbols in the figures. The elements shown are not to be considered as true to scale, but rather individual elements can be shown exaggeratedly large or exaggeratedly simplified in order to improve understanding.
The input unit 1 makes the AC voltage U1 available to the transitional unit 2. Within the transitional unit 2, a transitional voltage U2 and an auxiliary transitional voltage U4 are generated from this AC voltage U1. These generated voltages U2 and U4 are applied to the charge pump unit 4 contained in the output unit 3. The transitional voltage U2 and the auxiliary transitional voltage U4 are used to provide the DC voltage U3 at the output of the charge pump unit 4.
The AC voltage U1 which is present in the input unit 1 is supplied to the transitional unit 2. In this case, the capacitor C3 is an input capacitor. Together with a coil (not shown) in the input unit 1, an input parallel resonant circuit is therefore produced which converts an electromagnetic field into an electrical AC voltage U1. In this case, the capacitor C3 is not provided as an extra component but rather is the parasitic capacitance of the rectification unit. The rectification unit converts the AC voltage U1 into a transitional voltage U2 and an auxiliary transitional voltage U4, which are both available to the charge pump unit 4. The auxiliary transitional voltage U2 is connected to the oscillator 7 by means of the switch S1. When the voltage U2 is generated, the initially closed switch S1 is used to actuate the oscillator 7 with the voltage U2 and to generate a clock signal CLK which is delivered to the charge pump unit 4. In the further progression, the charge pump unit 4 will generate a DC voltage U3 which is essentially more stable and more heavily loadable than the transitional voltage U2. So as not to load the astable transitional voltage U2 unnecessarily, the switch S1 is opened and the switch S2 is closed in a further step. This means that the signal U3 is applied to the oscillator by means of the switch S2. The voltage U3 therefore replaces the voltage U2 as the supply voltage for the oscillator. The clock signal CLK which is also generated is delivered to the charge pump unit, too. While U2 is applied to the oscillator, the operation of the charge pump is called startup mode. One fundamental advantage is that the transitional voltage signal U2 is not loaded. The operation of the charge pump unit is not described in more detail here.
The applied AC voltage U1 is now divided into half-cycles. If we first of all consider the positive half-cycle of U1, the input unit connection LA will be at a higher potential than LB. This higher potential turns on the transistor T4. This links the reference potential GND to the potential LB. When considering the positive half-cycles, the input LA is therefore at a positive potential and the input LB is at reference potential GND. If the control units 6 now produce a more negative voltage U5 than this reference potential and apply it to the gate of transistor T1, the transistor T1 is on and produces a transitional voltage U2 even at low input voltages on connection LA. The same applies respectively to the negative half-cycle. Essentially, T3 is turned on and therefore reference point LA is applied to the ground potential GND. If the control unit 6 now generates a more negative gate voltage U5 on the transistor T2, LB is connected to U2 even at low input voltages in this case too. In addition, the control units 6 generate auxiliary transitional voltages U4a and U4b, which can have a negative and/or a positive arithmetic sign.
In this manner, it is also possible to use radio-frequency input AC voltages of more than 500 MHz using MOS transistors and accordingly to achieve a higher level of energy efficiency. By actuating the charge pump unit 4 using a mid-frequency signal CLK, the use of Schottky diodes is no longer necessary there either. First, it is possible to implement more efficient charge pumps, and in addition the charge pump units do not have to be implemented in multistage form. This achieves space saving and hence a reduction in the size of the circuit.
For the purposes of illustration,
The voltage U1 is split into the voltages LA and LB, which have a 180 degree phase shift, by means of the transistors T3 and T4. The reference potential GND, which is the same for both, is likewise defined by the transistors T3 and T4. The transitional voltage U2 produced is already heavily rectified in this
This rectifier operates for various frequency bands, since rapid switching is achieved through such connection of the gate connections to the control units 6. For the purposes of optimizing to the individual frequency bands, it is also possible to produce what is known as an area/frequency ratio by connecting in further transistors and hence to allow switching matched to the frequency range.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 009 838.5 | Feb 2007 | DE | national |