Claims
- 1. A shielded wide band high voltage divider comprising a high level arm in series with a low level arm, wherein the high level arm comprises a high-voltage resistor in parallel with a high-voltage capacitor coupled between a first terminal and a tap, and the low level arm comprises a low-voltage resistor in parallel with a low-voltage capacitor coupled between the tap and ground, so that the resistors are frequency compensated by the parallel capacitors; the high-voltage resistor having a high voltage end for connection via the first terminal to a high voltage direct current source and a low voltage end connected to said tap, wherein the high voltage capacitor is a variable high voltage piston capacitor used to set the resistance-capacitance product of the high level arm equal to that of the low level arm.
- 2. A shielded wide band high voltage divider according to claim 1, which is wholly contained inside an enclosure comprising an insulating tube coated with metal to provide a metal shield and electrical ground;
- wherein the high-voltage capacitor comprises a quartz glass tube, a first plate which is a cylindrical metal slug contained within the inner surface of the quartz glass tube and a second plate which is a metal foil wrapper around the outer surface of the quartz glass tube, with the thickness of the quartz glass tube setting the distance between the two plates, the quartz glass tube being designed to be long enough to provide adequate creepage distance to span between low voltage and high voltage connections; the quartz glass tube having a portion near the low voltage end of said high-voltage resistor which is wrapped with said metal foil and attached to the low voltage end of the high-voltage resistor.
- 3. A shielded wide band high voltage divider according to claim 2, wherein said metal shield, metal slug and metal foil are copper;
- wherein the high-voltage resistor and the high-voltage capacitor are supported within said enclosure between a first supporting disk at the high-voltage end and a second supporting disk at the low-voltage end, and the low-voltage resistor and the low-voltage capacitor are supported within said enclosure between the second supporting disk and a third supporting disk at an end of the enclosure;
- wherein said quartz glass tube has an extension at the low voltage end made to allow for creepage between the inner portion slug and the second supporting disk, the metal slug has rounded ends to minimize corona, a small inner conductor is used to minimize capacitance in the rest of the quartz glass tube and attaches the metal slug to the high-voltage end of the high-voltage resistor, the capacitance value being adjusted by positioning the metal slug either more or less inside of the outer shield such that the overlap increases or decreases the surface area of the two concentrical capacitor plates that are separated dielectric formed by the quartz glass tube;
- wherein the high-voltage resistor is positioned near the center of the enclosure to minimize its stray capacitance to ground, and the piston capacitor parallels the high-voltage resistor;
- wherein the first supporting disk is inserted far enough into the enclosure to provide a required creepage distance for the operational voltage, and wherein the first terminal is formed with silicone insulated wire to exit at the first supporting disk.
Parent Case Info
This is a division of application Ser. No. 07/459,870 filed Jan. 2, 1990, now U.S. Pat. No. 5,070,538.
RIGHTS OF THE GOVERNMENT
The invention described herein may be manufactured and used by or for the Government of the United States for all governmental purposes without the payment of any royalty.
US Referenced Citations (7)
Divisions (1)
|
Number |
Date |
Country |
Parent |
459870 |
Jan 1990 |
|