Voltage nonlinear resistor, method for fabricating the same, and varistor

Information

  • Patent Grant
  • 6620696
  • Patent Number
    6,620,696
  • Date Filed
    Thursday, October 10, 2002
    22 years ago
  • Date Issued
    Tuesday, September 16, 2003
    21 years ago
Abstract
A voltage nonlinear resistor is composed of an aggregate of silicon carbide particles doped with impurities, in which oxygen and at least one of aluminum and boron are diffused in the vicinity of the surfaces of the silicon carbide particles, the diffusion length of the oxygen is about 100 nm or less from the surfaces of the silicon carbide particles, and the diffusion length of at least one of the aluminum and the boron is in the range of about 5 to 100 nm from the surfaces of the silicon carbide particles. A method for fabricating a voltage nonlinear resistor and a varistor using a voltage nonlinear resistor are also disclosed.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to voltage nonlinear resistors and methods for fabricating the same, and to varistors.




2. Description of the Related Art




As the sizes of circuits are reduced and reference frequencies are increased, there are demands for electronic components which are small and suitable for higher frequencies. As the driving voltages for circuits are decreased, there are also demands for electronic components which can cope with decreased voltage. This trend also applies to varistors as abnormal-voltage absorbing devices.




As voltage nonlinear resistors, SiC-based varistors, ZnO-based varistors and SrTiO


3


-based varistors are generally known. With respect to ZnO-based varistors and SrTiO


3


-based varistors, monolithic chip varistors with a driving voltage of 3.5 V or more have been developed and commercially available.




In order to make a varistor suitable for higher frequencies and to use the varistor as a noise-absorbing device in a signal circuit, etc., the capacitance of the varistor must be decreased. In order to make the varistor suitable for decreased voltage, the varistor voltage must be reduced.




However, the conventional ZnO-based varistor has an apparent relative dielectric constant of 200 or more, and the apparent relative dielectric constant of the SrTiO


3


-based varistor is higher than that of the ZnO-based varistor, at several thousands to several ten thousands. Therefore, in order to decrease the capacitance of the varistor, the total area of electrodes must be greatly decreased or the number of particle boundaries must be increased by increasing the thickness of the device between the electrodes. However, if the total area of electrodes is decreased, the surge current capacity is also decreased, and if the thickness of the device between the electrodes is increased, the varistor voltage is increased. If the varistor voltage is decreased, the capacitance of the varistor is further increased, and therefore, it has been difficult to make the low voltage and the low capacitance requirements compatible with each other.




With respect to the SiC-based varistor, since the apparent relative dielectric constant is low, the capacitance can be easily decreased. However, the SiC-based varistor has a lower voltage nonlinear coefficient α in comparison with other varistors. For example, in the ZnO-based varistor or the SrTiO


3


-based varistor, the voltage nonlinear coefficient is several tens, while the SiC-based varistor has a voltage nonlinear coefficient of 8 at most. For the reasons described above, a voltage nonlinear resistor in which the capacitance is decreased, the voltage nonlinear coefficient α is increased and the varistor voltage is decreased, is not available at present.




SUMMARY OF THE INVENTION




Accordingly, it is an object of the present invention to provide a voltage nonlinear resistor in which the capacitance is decreased, the voltage nonlinear coefficient α is increased and the varistor voltage is decreased.




In order to achieve the object described above, the present inventors have conducted various experiments and examinations with respect to voltage nonlinear resistors composed of aggregates of n-type semiconductive SiC particles doped with impurities, such as N


2


. As a result, it has been found that electrical characteristics of the voltage nonlinear resistors depend on the surface state of the SiC particles, and that oxygen must be diffused-into the surfaces of SiC particles to a depth of about 100 nm or less and at least one element selected from the group consisting of Al and B must be diffused into the surfaces of SiC particles to a depth of about 5 to 100 nm.




In one aspect of the present invention, a voltage nonlinear resistor is composed of an aggregate of silicon carbide particles doped with impurities, in which oxygen and at least one of aluminum and boron are diffused in the vicinity of the surfaces of the silicon carbide particles, the diffusion length of the oxygen is about 100 nm or less from the surfaces of the silicon carbide particles, and the diffusion length of at least one of the aluminum and the boron is in the range of about 5 to 100 nm from the surfaces of the silicon carbide particles.




Preferably, the diffusion length of the oxygen is in the range of about 25 to 85 nm from the surfaces of the silicon carbide particles. Preferably, the diffusion length of at least one of the aluminum and the boron is in the range of about 25 to 70 nm from the surfaces of the silicon carbide particles.




Preferably, the element ratio of silicon being present within about 10 nm from the surfaces of the silicon carbide particles to the at least one of the aluminum and the boron is about 1:0.5 to 3. By modifying the surfaces of the silicon carbide particles to such a state, it is possible to obtain a superior voltage nonlinear resistor which has a small capacitance and high α, and which is resistant to surge and static electricity.




The average particle size of the silicon carbide particles is preferably in the range of about 0.3 to 70 μm and more preferably in the range of about 1 to 30 μm. By setting the average particle size of the silicon carbide particles in such a range, the varistor voltage can be controlled.




In another aspect of the present invention, a method for fabricating a voltage nonlinear resistor includes the steps of: adding at least one of aluminum and boron to silicon carbide powder doped with impurities; and heat-treating mixed powder obtained in an oxidizing atmosphere in order to form silicon carbide particles based on the silicon carbide powder, to diffuse at least one of the aluminum and the boron into the surfaces of the silicon carbide particles and to oxidize the surfaces of the silicon carbide particles. In such a case, the heat-treating temperature is preferably set at about 1,100 to 1,500° C.




In another aspect of the present invention, a method for fabricating a voltage nonlinear resistor includes the steps of: adding at least one of aluminum and boron to silicon carbide powder doped with impurities; heat-treating mixed powder obtained in a non-oxidizing atmosphere in order to form silicon carbide particles based on the silicon carbide powder and to diffuse at least one of the aluminum and the boron into the surfaces of the silicon carbide particles; and oxidizing the surfaces of the silicon carbide particles formed by the heat treatment. In such a case, the heat-treating temperature is preferably set at about 800 to 1,500° C.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a flow chart showing a fabrication method in a first example;





FIG. 2

is a graph showing the diffusion lengths of elements in the first example;





FIG. 3

is a flow chart showing a fabrication method in a second example; and





FIG. 4

is a graph showing the relationship between the varistor voltage and the SiC particle size in a third example.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Voltage nonlinear resistors, methods for fabricating the same, and varistors will be described with reference to the following examples.




EXAMPLE 1




As shown in the flow chart of

FIG. 1

, to n-type semiconductive β-SiC powder doped with 4,000 ppm of N as a dopant, having a particle size of 2 μm, boric acid and metallic aluminum were added so as to satisfy the Al and B contents shown in Table 1. An organic solvent was added to the mixed powder and wet mixing was performed. The resultant mixed slurry was dried to remove the solvent, and then in order to form SiC particles based on the SiC powder, to diffuse Al and B into the surfaces of SiC particles and to oxidize the surfaces of SiC particles, a heat treatment was performed in air at 1,100 to 1,500° C. The resultant powder was subjected to pulverization/screening. Hereinafter, the powder is referred to as voltage nonlinear powder. After an organic binder was mixed to the voltage nonlinear powder, a pressure of 3 t/cm


2


was applied to produce a columnar compact with a diameter of 4 mm and a thickness of 0.25 mm.




After the compact was hardened at 100 to 200° C., a pair of Ag electrodes with a diameter of 2 mm was formed as input/output electrodes on the upper and lower surfaces of the compact by sputtering, and varistor characteristics were evaluated. Furthermore, the voltage nonlinear powder was subjected to surface analysis using 1-SAM to observe the surface state.




In order to evaluate the varistor characteristics, a direct current was applied to measure the voltage between both terminals, and a voltage at 0.1 mA was defined as the varistor voltage V


0.1mA


. The voltage nonlinear coefficient α as a performance index of the varistor was calculated according to the formula (1) below.






α=1/Log(V


0.1mA


/V


0.01


mA)  (1)






where V


0.01mA


is a voltage at 0.01 mA.




The results of the voltage nonlinear coefficient α and the varistor voltage are shown in Table 2.




Since the relative dielectric constant ∈ determined based on the observed capacitance was in the range of 3 to 5 in all the samples, the constant ∈ is not listed.




Furthermore, the surge current capacity and the ESD susceptibility were measured. The results thereof are shown in Table 3. When a current wave with a waveform of 8×20 μsec was applied twice at an interval of one minute and the rate of change in varistor voltage was less than 5%, the maximum current (unit: A) was defined as the surge current capacity. The surge current was applied in steps of 20 A.




The ESD susceptibility was measured using a contact discharge-type ESD tester, in which 30 kV was charged at a charge capacitance of 500 pF and a discharge resistance of 0 Ω, and the samples were subjected to discharge. The symbol ∘ indicates that the sample had a rate of change in varistor voltage of 5% or less, the symbol Δ indicates that the sample had a rate of change in varistor voltage of 10% or less, the symbol x indicates the sample's rate was other than the above. The designation *** means no determination was made.





FIG. 2

shows a typical example of the results measured by the μ-SAM. Table 4 shows the diffusion lengths of oxygen (O), aluminum (Al) and boron (B) obtained based on the observed results by the μ-SAM. With respect to the diffusion length (Al.B), the distance (nm) from the surface to the point of 10.5 atomic % relative to the total element amount is shown. This is because of the fact that at the point of 0%, noise due to, for example, adsorbed elements during measurement, may occur and it is not possible to attain measurement accuracy. Additionally, since oxygen is easily adsorbed, the distance from the surface to the point of 10 atomic % is shown.















TABLE 1









Sample




SiC




Al




B






No.




(parts by weight)




(parts by weight)




(parts by weight)


























 1




100




0




0






 2




100




0.001




0






 3




100




0.01




0






 4




100




0.1




0






 5




100




1




0






 6




100




10




0






 7




100




100




0






 8




100




0




0.001






 9




100




0




0.01






10




100




0




0.1






11




100




0




1






12




100




0




10






13




100




0




100






14




100




0.1




0.1






15




100




1




1






16




100




10




10
























TABLE 2













Oxidation Temperature

















1,100° C.




1,200° C.




1,300° C.




1,400° C.




1,500° C.





















Sample




V


1mA







V


1mA







V


1mA







V


1mA







V


1mA









No.




(V/mm)




α




(V/mm)




α




(V/mm)




α




(V/mm)




α




(V/mm)




α
























1




5,000




1.4




3,800




1.8




3,200




 2.5




3,000




 2.4




***




***






2




3,050




15.8




2,090




18.7




1,970




19.1




2,050




13.4




2,100




 8.7






3




1,870




18.7




1,640




20.8




1,510




31.5




1,540




18.6




1,850




15.6






4




1,440




20.4




1,310




20.4




1,180




35.4




1,160




25.4




1,280




17.1






5




1,410




37.2




1,370




37.2




1,370




37.2




1,820




18.2




***




***






6




2,530




24.3




1,960




24.3




1,890




24.3




***




***




***




***






7




4,800




18.6




3,400




18.5




***




***




***




***




***




***






8




2,430




8.6




2,050




17.8




1,980




19.6




1,810




16.4




2,050




15.6






9




2,550




13.9




1,790




18.0




1,450




23.8




1,540




24.2




1,750




17.2






10




1,990




22.5




1,310




25.1




1,180




32.5




1,280




33.3




1,350




18.9






11




1,940




25.7




1,190




35.8




1,170




44.6




1,150




21.1




1,190




14.5






12




2,890




18.0




2,190




23.6




1,890




27.0




1,890




17.6




***




***






13




4,750




10.7




3,540




15.8




2,500




18.9




2,830




13.4




***




***






14




1,360




17.8




1,360




25.8




1,360




26.8




1,460




25.8




1,590




19.6






15




1,540




45.8




1,330




44.1




1,320




42.7




1,320




35.5




1,460




24.7






16




2,880




18.0




1,960




19.7




1,750




22.3




1,990




19.6




***




***
























TABLE 3













Oxidation Temperature
















Sample




1,100° C.




1,200° C.




1,300° C.




1,400° C.




1,500° C.





















No.




Surge




ESD




Surge




ESD




Surge




ESD




Surge




ESD




Surge




ESD
























1




***




***




***




***




***




***




***




***




***




***






2




40









40




Δ




40









60









60




Δ






3




60









60









60









40









40




Δ






4




60









80









80









60









60




Δ






5




100 









100









100









80









***




***






6




80









100









100









***




***




***




***






7




60




x




80




Δ




80




Δ




***




***




***




***






8




***




***




40









40









60









60




Δ






9




***




***




80









60









60









60




Δ






10




60









80









80









80









80




Δ






11




80









100









100









80









***




***






12




80









80









100









60









***




***






13




***




***




60




Δ




80




Δ




***




***




***




***






14




80









80









80









100 









80




Δ






15




100 









120









120









100 









80











16




80









80









60









60









***




***
























TABLE 4













Oxidation Temperature

















1,100° C.




1,200° C.




1,300° C.




1,400° C.




1,500° C.






















O




Al · B




O




Al · B




O




Al · B




O




Al · B




O




Al · B






Sample




Diffusion




Diffusion




Diffusion




Diffusion




Diffusion




Diffusion




Diffusion




Diffusion




Diffusion




Diffusion






No.




Length




Length




Length




Length




Length




Length




Length




Length




Length




Length
























1




65




***




30




***




70




***




110




***




150




***






2




55




5




25




15




35




20




60




55




90




65






3




45




5




30




20




40




35




80




75




95




95






4




40




5




35




20




40




40




85




90




100




95






5




40




10




35




25




45




50




95




90




110




100






6




50




15




50




25




50




75




100




110




120




145






7




90




20




15




30




60




100




120




110




130




150






8




65




3




20




5




35




10




70




65




90




95






9




65




4




30




10




45




45




85




75




90




100






10




50




10




40




20




60




60




90




85




95




100






11




55




15




50




25




70




75




85




95




100




110






12




75




30




75




40




85




90




90




100




105




110






13




110




90




95




95




100




95




100




110




110




120






14




50




10




45




10




30




25




40




45




70




75






15




45




15




85




15




60




55




85




75




90




80






16




100




20




95




50




90




95




90




100




110




100














As shown in Tables 2 and 4, depending on the amounts of Al and B added and the heat-treating temperature, the range in which varistor characteristics with high α are exhibited changes. Such a change in the range depends on the diffusion lengths of oxygen, Al and B from the surfaces.




When the heat-treating temperature is decreased, since SiC is oxidized first to form SiO


2


, the apparent diffusion length of oxygen from the surfaces increases. Therefore, the varistor voltage is easily increased. As the varistor voltage is increased, α is also decreased, which is quite different from the object of the present invention. The upper limit of the diffusion length of oxygen was about 100 nm. However, since oxidation does not easily proceed beyond a certain level, and since the vaporization of SiO


2


advances as the temperature is increased, the diffusion length of oxygen is not proportional to the oxidation temperature. When the amounts of Al and B added are increased, the oxides thereof are dissolved into the SiO


2


which covers the SiC surface, and thus the oxidation of SiC is inhibited. However, the varistor voltage is easily increased as the amounts of Al and B added are increased.




Al and B form compounds with SiO


2


and tend to diffuse into SiC from those compounds. If the diffusion length of Al or B exceeds about 5 nm, α is increased (α≧15), and if the diffusion further proceeds, a significantly high α can be obtained in the SiC varistor. However, if the diffusion length exceeds about 100 nm, α starts to decrease.




In Example 1, using the observed results by the μ-SAM, the composition from the surfaces of SiC particles to the depth of 10 nm was also observed. The results thereof are shown in Table 5.




As is seen in Tables 2 and 5, when the element ratio Si:(Al.B) is about 1:(0.5 to 3), an α of 20 or more can be obtained. The amounts of Al and B added do not correspond to the element ratios of Al and B in the surfaces of SiC particles. The reason for this is that the Al and B added are not entirely homogeneous in the surfaces of SiC particles, and because of agglomeration, etc., particles other than SiC are formed. In Example 1, excess Al and B react with SiO


2


and portions thereof act as binders for particles. As seen in Tables 3 and 5, at the element ratio described above, the surge current capacity and the ESD susceptibility are increased. The criterion of the surge current capacity was set at 60 A or more, and the criterion of the ESD susceptibility was determined as a change of varistor voltage of 5% or less.




As is obvious from the above, if the required amounts of Al and B are supplied to the surfaces of SiC particles and oxidation was performed appropriately, it is possible to fabricate an SiC varistor having a high surge current capacity and high ESD susceptibility.















TABLE 5














S:Al.B Ratio, 1:x, at an







Sample




Oxidation Temperature (° C.) of


















No.




1,100




1,200




1,300




1,400




1,500











 1




***




***




***




***




***







 2




0.3




0.1




0.1




0.1




0.1







 3




0.5




0.5




0.5




0.4




0.3







 4




1.0




0.8




0.5




0.5




0.3







 5




1.4




1.0




0.7




0.5




0.5







 6




3.0




2.8




2.6




2.2




2.2







 7




4.2




3.8




3.2




2.8




2.8







 8




0.4




0.4




0.3




0.3




0.1







 9




0.6




0.5




0.5




0.5




0.4







10




0.8




0.6




0.5




0.5




0.4







11




1.2




1.0




0.8




0.7




0.6







12




2.8




2.5




2.3




2.2




2.0







13




3.8




3.5




3.1




2.7




2.5







14




0.6




0.6




0.5




0.5




0.4







15




1.1




0.9




0.7




0.6




0.6







16




2.9




2.7




2.4




2.3




2.1















EXAMPLE 2




As shown in the flow chart of

FIG. 3

, to n-type semiconductive β-SiC powder doped with 4,000 ppm of N as a dopant, having a particle size of 2 μm, boric acid and metallic aluminum were added so as to satisfy the Al and B contents shown in Table 6. An organic solvent was added to the mixed powder and wet mixing was performed. The resultant mixed slurry was dried to remove the solvent, and then in order to form SiC particles based on the SiC powder and to diffuse Al and B into the surfaces of the SiC particles, a heat treatment was performed in an Ar atmosphere at 800 to 1,500° C. Furthermore, surface oxidation treatment was performed on the SiC particles in an SiC oxidizing atmosphere at 1,300° C., and the resultant powder was subjected to pulverization/screening. Hereinafter, the powder is referred to as voltage nonlinear powder. After an organic binder was mixed to the voltage nonlinear powder, a pressure of 3 t/cm


2


was applied to produce a columnar compact with a diameter of 4 mm and a thickness of 0.25 mm.




After the compact was hardened at 100 to 200° C., a Ag-based electrode paste was applied to the upper and lower surfaces of the compact to fabricate a varistor provided with a pair of input/output electrodes, and then varistor characteristics were evaluated.




The evaluation method for the voltage nonlinear resistor was the same as that in Example 1, and measurements were taken at a capacitance of 1 MHZ.




Table 7 shows the measurement results of the voltage nonlinear coefficient α. The oxidation temperature for samples was fixed at 1,300° C.















TABLE 6









Sample




SiC




Al




B






No.




(parts by weight)




(parts by weight)




(parts by weight)











1




100




3




0






2




100




5




0






3




100




7




0






4




100




10 




0






5




100




15 




0






6




100




20 




0






7




100




0




3






8




100




0




5






9




100




0




7






10 




100




0




10 






11 




100




0




15 






12 




100




0




20 























TABLE 7











Sample




Ar Heat Treatment Temperature

















No.




Untreated




800° C.




1,000° C.




1,300° C.




1,400° C.




1,500° C.




















1




40.6




50.3




30.8




30.5




33.0




40.1






2




23.3




25.3




36.6




34.3




32.1




55.8






3




Unmeasurable




30.0




50.1




46.2




28.6




60.0






4




Unmeasurable




30.1




40.2




36.1




45.1




70.3






5




Unmeasurable




Unmeasurable




Unmeasurable




52.7




50.9




45.3






6




Unmeasurable




Unmeasurab1e




38.1




28.0




22.8




50.0






7




30.0




22.4




35.1




32.0




22.0




30.6






8




40.1




41.0




32.1




62.0




32.9




42.6






9




Unmeasurable




30.1




24.9




41.0




43.1




44.2






10




20.0




Unmeasurable




20.4




50.1




24.9




36.8






11




Unmeasurable




25.5




34.2




45.0




41.0




41.2






12




Unmeasurable




Unmeasurable




28.0




28.3




50.0




30.1














As is seen in Table 7, when the heat treatment is performed in an Ar atmosphere as preliminary treatment to the oxidation treatment, a higher nonlinearity can be obtained in the broad range of the amount added in comparison with the case in which an Ar heat treatment is not performed. With respect to the sample shown as “Unmeasurable” in Table 7, discharge occurred between device electrodes when the current and the voltage were measured, and thus varistor characteristics were not obtained. This is due to inhomogeneous dispersion of the Al and B added, and oxides of Al and B generated in the oxidation process are believed to be included between SiC particles to completely insulate the particle boundaries.




With respect to the dispersibility of Al and B in the powder which was subjected to Ar heat treatment, the dispersibility into SiC particles was improved. In contrast, in the powder which was not subjected to Ar heat treatment, Al and B segregated inhomogeneously, exhibiting unsatisfactory dispersibility. As is obvious from the results, by performing heat treatment in an Ar atmosphere before oxidation treatment is performed, it is possible to improve the dispersibility of additives, thus stabilizing the characteristics.




As described above, when voltage nonlinear powder is formed, in view of characteristic stability, heat treatment is preferably performed in an Ar atmosphere at 800 to 1,500° C. before oxidation treatment is performed.




EXAMPLE 3




As shown in Table 8, 5 types of SiC powder having different particle sizes were prepared. Each of Al and B was added to the powder in the amount of 5 parts by weight relative to 100 parts by weight of SiC. Next, using the mixed powder, a voltage nonlinear powder was formed in the same manner as that in Example 2, and samples to be evaluated were obtained. The heat-treating temperature in an Ar atmosphere was set at 1,500° C., and the oxidation treatment was performed at 1,300° C. for 2 hours.















TABLE 8











Sample No.




SiC Average Particle Size (μm)













13




0.3







14




1.0







15




3.5







16




12.4 







17




30.5 







18




67.2 















The varistor characteristics of the samples were measured. As shown in

FIG. 4

, it was conformed that as the SiC particle size was increased, the varistor voltage was decreased. Consequently, it is possible to control the varistor voltage by controlling the SiC particle size. However, use of SiC particles having an average particle size exceeding about 70 μm causes a problem in view of molding, resulting in a difficulty in the formation of the device. When SiC particles having an average particle size of less than about 0.3 μm are used, particles easily agglomerate during the Ar heat treatment and oxidation, resulting in variations in the particle size of voltage nonlinear powder, thus affecting the variations and stability of varistor characteristics. Therefore, the average particle size of SiC particles used for the voltage nonlinear resistor is preferably about 0.3 to 70 μm.




As described above, in the voltage nonlinear resistor of the present invention, the apparent relative dielectric constant is lower than that of the ZnO-based varistor by approximately 2 orders of magnitude, and the voltage nonlinear coefficient is increased, and also the surge current capacity and the ESD susceptibility are increased.




In accordance with the fabrication method of the present invention, it is possible to obtain a voltage nonlinear resistor in which the apparent relative dielectric constant is lower than that of the ZnO-based varistor by approximately 2 orders of magnitude and the voltage nonlinear coefficient is equal to that of the ZnO varistor. In particular, by performing heat treatment in an Ar atmosphere, it is possible to easily obtain a voltage nonlinear resistor having stable characteristics.




Furthermore, the SiC varistor of the present invention is a varistor obtained by modifying the surfaces of SiC particles and combining the individual SiC particles. Therefore, by molding using a resin or the like as a binder, it is possible to easily obtain a varistor having superior characteristics. As a characteristic of the varistor having such a structure, it is possible to form various shapes, and it is possible to use it as a protecting device from static electricity.




By controlling the particle size of SiC particles, it is possible to obtain a varistor voltage V


0.1 mA


of approximately 500 to 1,000 V/mm, and thus a voltage nonlinear resistor having a low varistor voltage can be obtained.



Claims
  • 1. A method for fabricating a voltage nonlinear resistor comprising the steps of:combining at least one of aluminum and boron with doped silicon carbide powder; and heat-treating the powder thus obtained in an oxidizing atmosphere in order to form silicon carbide particles from the silicon carbide powder, to diffuse the at least one of the aluminum and the boron into the surfaces of the silicon carbide particles and to oxidize the surface of the silicon carbide particles.
  • 2. A method for fabricating a voltage nonlinear resistor according to claim 1, wherein the heat-treating step is performed such that the diffusion length of oxygen from the surfaces of the silicon carbide particles is about 100 nm or less, and the diffusion length of the at least one of the aluminum and the boron from the surfaces of the silicon carbide particles is in the range of about 5 to 100 nm.
  • 3. A method for fabricating a voltage nonlinear resistor according to claim 2, wherein the heat-treating temperature is about 1,100 to 1,500° C.
  • 4. A method for fabricating a voltage nonlinear resistor according to claim 2, wherein the heat-treating temperature is about 800 to 1,500° C.
  • 5. A method for fabricating a voltage nonlinear resistor according to claim 4, wherein the heat-treating step is performed such that the diffusion length of oxygen from the surfaces of the silicon carbide particles is about 25 to 85 nm.
  • 6. A method for fabricating a voltage nonlinear resistor according to claim 5, wherein the heat-treating step is performed such that the diffusion length of the at least one of the aluminum and the boron from the surfaces of the silicon carbide particles is in the range of about 25 to 70 nm.
  • 7. A method for fabricating a voltage nonlinear resistor according to claim 6, wherein the heat-treating step is performed such that the average particle size of the silicon carbide particles is in the range of about 0.3 to 70 μm and wherein both Al and B are present.
  • 8. A method for fabricating a voltage nonlinear resistor according to claim 1, wherein the heat-treating step is performed in an argon atmosphere.
  • 9. A method for fabricating a voltage nonlinear resistor according to claim 1, wherein the silicon carbide powder is n-type semiconductive doped.
  • 10. A method for fabricating a voltage nonlinear resistor according to claim 1, wherein the heat-treating step is performed such that the diffusion length of the at least one of the aluminum and the boron from the surfaces of the silicon carbide particles is in the range of about 25 to 70 nm.
  • 11. A method for fabricating a voltage nonlinear resistor according to claim 1, wherein the heat-treating step is performed such that the average particle size of the silicon carbide particles is in the range of about 0.3 to 70 μm and wherein both Al and B are present.
  • 12. A method for fabricating a voltage nonlinear resistor according to claim 1, wherein aluminum is combined with the doped silicon carbide powder.
  • 13. A method for fabricating a voltage nonlinear resistor according to claim 1, wherein boron is combined with the doped silicon carbide powder.
  • 14. A method for fabricating a voltage nonlinear resistor according to claim 1, wherein aluminum and boron are combined with the doped silicon carbide powder.
  • 15. A method for fabricating a voltage nonlinear resistor comprising the steps of:combining at least one of aluminum and boron to doped silicon carbide powder; heat-treating the resulting mixed powder in a non-oxidizing atmosphere in order to form silicon carbide particles from the silicon carbide powder and to diffuse the at least one of the aluminum and the boron into the surface of the silicon carbide particles; and oxidizing the surface of the silicon carbide particles formed by the heat treatment.
  • 16. A method for fabricating a voltage nonlinear resistor according to claim 15, wherein the heat-treating step is performed such that the diffusion length of oxygen from the surfaces of the silicon carbide particles is about 100 nm or less, and the diffusion length of at least one of the aluminum and the from the surfaces of the silicon carbide particles boron is in the range of about 5 to 100 nm.
  • 17. A method for fabricating a voltage nonlinear resistor according to claim 16, wherein the heat-treating step is performed such that the diffusion length of oxygen from the surfaces of the silicon carbide particles is about 25 to 85 nm or less, and the diffusion length of at least one of the aluminum and the from the surfaces of the silicon carbide particles boron is in the range of about 55 to 70 nm.
Priority Claims (1)
Number Date Country Kind
2000-071888 Mar 2000 JP
Parent Case Info

This is a divisional of U.S. patent application Ser. No. 09/801,288, filed Mar. 7, 2001.

US Referenced Citations (1)
Number Name Date Kind
3863193 Matsuura et al. Jan 1975 A