The present invention relates to systems and methods for dynamic line balancing of high-voltage (HV) transmission lines using spatially distributed active impedance-injection modules that are connected directly in series with the HV transmission lines that form HV electric power grids.
HV electric power grids typically operate at voltages that are on the order of about 50 kV up to about 600 kV. One of the requirements of these HV power grids is the need for dynamic distributed active power-flow control capability that can inject both inductive and capacitive impedance on to the HV transmission line as required to achieve line balancing and phase angle correction. A system that can react fast to the problems of power flow over the grid, will greatly improve the grid operation and power-transfer efficiency.
Congested networks limit system reliability and increase the cost of power delivery by having part of the power dissipated in unbalanced circuits causing loop currents with associated power loss. In addition, substantially out-of-phase voltages and currents on the transmission lines reduce the capacity of the lines to transfer real power from the generator to the distribution substation. To remove this limitation, it is desired to have HV power grids with transmission lines that are balanced, with power transfer shared substantially per optimization methods, with reasonable power factor, and controllable phase difference between voltage and currents. These improvements reduce the loop currents and associated losses and enable real power transfer over the grid up to the capacity of the lines.
Most of the grid control capabilities today are ground based and installed at substations with switchable inductive and capacitive loads. These installations require high-voltage insulation and high-current switching capabilities. Being at the substations these can use methods of cooling that include oil cooling, forced recirculation of coolant, and other options without consideration of the weight and size of the units. These lumped controls require a centralized data collection and control facility to coordinate operation across the grid and hence have associated delays in implementing the control function on the power grid.
Distributed and active control of transmission line impedance, if effectively implemented with high reliability, improves the system efficiency substantially, but requires cost-effective implementations that can alter the impedance of the HV transmission lines, with fast identification and fast response to line balance issues, by changing the phase angle of the current-voltage relationship applied across the line, thus controlling power flow.
At present proven effective and reliable solutions for distributed control of the power grid as, for example, described in U.S. Pat. No. 7,835,128 to Divan et al (the '128 patent) are limited.
Power is transmitted from the electric power source or generator 104 to the load or distribution substation 106. Spatially distributed passive inductive impedance-injection modules (or DSR 100) are directly attached to the power conductor on the HV transmission line 108, and hence form the primary winding of the DSR 100 with a secondary winding having a bypass switch that, when open, inject an inductive impedance on to the line for distributed control. These DSR 100s only provide a limited amount of control by injecting only the inductive impedance on to the line. When the secondary winding is shorted by the bypass switch, the DSR 100 is in a protection mode and injects substantially zero impedance on to the HV line.
When using multiple DSRs 100 connected on the HV transmission line as in
Distributed active impedance-injection modules on high voltage transmission lines have been proposed in the past. U.S. Pat. No. 7,105,952 of Divan et al. licensed to the applicant entity is an example of such.
In practice the active impedance-injection modules 300s have not been practical due to reasons of cost and reliability. In order to inject the needed impedances on to the HV transmission line for providing reasonable line balancing there is a need to generate a significant amount of power in the converter circuits. This has required the active impedance-injection modules 300 to use specialized devices with adequate voltages and currents ratings.
The failure of a module in a spatially distributed inductive impedance injection line balancing system using DSR 100 modules inserts a fixed inductive impedance set by the “air gap” 138 or substantially zero impedance on to the line. Failure of a few modules out of a large number distributed over the HV transmission line does not mandate the immediate shutdown of the line. The repairs or replacement of the failed modules can be undertaken at a time when the line can be brought down with minimum impact on the power flow on the grid. For utilities to implement distributed active line balancing, the individual modules must be extremely reliable. They also have to be cost effective to be accepted by the Utilities.
Power transmission line balancing circuits have been limited to the use of delayed-acting heavy-duty fully-insulated oil-cooled inductive and capacitive impedance injectors or phase-shifting transformers prone to single-point failures, located at substations where repairs of these failed units can be handled without major impact on power transfer over the grid.
As described above the use the specialized devices that can handle the needed power with high reliability demanded by the utilities at a reasonable cost has not been possible so far. There is a need for such a capability for converting the grid to a more efficient and intelligent system for power distribution. If it can be established, it will have a major impact on the efficiency and capabilities of the grid.
The drawings are meant only to help distinguish the invention from the prior art. The objects, features and advantages of the invention are detailed in the description taken together with the drawings.
As discussed above there is a need to have high-reliability, fault-tolerant and intelligent distributed dynamic-control modules (distributed active impedance-injection modules) with capability to inject both inductance and capacitive impedances of sufficient and appropriate magnitude on to high-voltage transmission lines to enable power flow control. These distributed dynamic control modules have to be directly attached to the HV transmission line and are at line potential while in operation. The distributed dynamic-control modules are enabled to operate by extracting power from the HV transmission line for control and for generating the necessary converter voltages. The modules generate and inject voltages at the right phase angle for injection on to the HV transmission line to provide the necessary inductive or capacitive impedance during operation.
The secondary side of the single turn transformer and all associated circuitry are electrically isolated from the ground. However, one side of the secondary winding is connected to the primary winding to provide a virtual ground or “floating ground” reference.
In order for the distributed control modules to be successfully accepted by utilities and installed on lines these distributed control modules have to be smart and self-aware, remotely controllable and configurable. The modules should be of a reasonable weight compared to the line segment over which these are to be installed, even where the modules are suspended in an insulated fashion from the towers or are supported by additional support structures. These should also have a low wind resistance to reduce the effect of wind loading on the line/tower/special support structure employed. As an essential feature all the electronic components and circuits of the module should have very high reliability to reduce the probability of down times due to failure of the modules/components used therein.
Invention: The invention disclosed is generally directed at providing very high-reliability distributed active control capability for power-flow balancing across the multiple high-voltage lines used for power transmission on the high-power grid system that overcomes the issues of the prior art implementations.
There are multiple needs that have been defined for achieving the use of distributed control that need changes from the prior art implementations. These are:
The disclosed invention provides for improvement in all the above aspects in the embodiments disclosed below:
The prior art dynamic injection modules had problems which prevented their acceptance. One was the need for specialized components for the generation of the magnitude of injection power (voltage and current) needed to be generated to provide adequate control of the HV transmission line segment where the module is attached. The second was the lack of reliability due to the modules handling high power levels which again necessitated specially tested and qualified component use. Both the above requirements resulted in the cost of the module also being very high for use by utilities.
The invention uses of a plurality of secondary windings with individual voltage converters that are used to generate voltages of the correct polarity and amplitude to be impressed on the high-voltage power-lines. The distributed impedance-injection modules comprising the plurality of injector blocks that enable generation and injection of the right impedance, inductive or capacitive as required, for dynamic line balancing is disclosed. These distributed impedance injection-modules are direct attached to the HV transmission lines at the towers or at special support structures that can help support the weight of the modules.
In the distributed module that is to be attached to the HV transmission line at the secondary side of the transformer and all associated circuitry are electrically at line voltage and isolated from ground. One side of the secondary winding is connected to the primary winding to provide a virtual ground or “floating ground” reference.
By using multiple secondary windings, each injecting an impedance onto the HV transmission line, the total necessary cumulative voltage for correction of the phase angle can be impressed on the segment of the grid without unduly stressing the circuits associated with each of the secondary windings of the distributed impedance-injector module.
The current invention addresses the advantages and features of the distributed module with multiple secondary windings and associated core segments with associated voltage converters/inverters to address the problem of actively injecting inductive and capacitive impedances in line segments. The voltage converter or simply converter 405 may be of any appropriate design, as such devices of various designs are well known in the art. Typically such devices are configured to inject an inductive load onto the high voltage transmission line, and may also have the capability of injecting a capacitive load on the transmission for power factor control, and may further be capable of controlling harmonic content in the high voltage transmission line. Such devices are also known by other names, such as by way of example, inverters or converters/inverters. An exemplary device of this general type is the combination of the inverter 71 and energy storage 74 of U.S. Pat. No. 7,105,952, though many other examples of such devices are well known. These devices typically act as active impedances to controllably impose the desired impedance onto the high voltage transmission line. Also preferably the controller 410 used in the preferred embodiments includes a transceiver for receiving control signals and reporting on high voltage transmission line conditions, etc.
The use of multiple windings and multiple circuits to generate the necessary injection power enables reduction in the operating voltage of the components used. The resulting lower voltage, due to use of multiple secondary windings per transformer, enables the units to use a more cost-effective design, while using highly reliably mass-produced semiconductors and other power-electronics components. Further using a distributed approach allows for significantly greater “N+X” system reliability, where N is the number of distributed modules required to achieve a desired line balancing capability, and X is the number of extra redundant modules. Therefore, with ensuring the reliability of each unit by carefully selecting the number and type of secondary windings, by carefully matching mass-produced semiconductor devices and other components used, the added extra redundant distributed active-impedance control modules provide an additional layer of “system” reliability over and above the unit reliability. This in turn results in distributed injection modules of high reliability, capable of providing very high system reliability, acceptable to the utilities. The use of the distributed impedance-injection modules are enablers for providing the capability to balance the power transmitted over the HV-transmission-lines of the power grid.
The secondary circuits of each of the injection transformers 401A and 401B comprise power-electronic circuits for generation and injection of the inductive and capacitive impedances (or equivalent voltages) onto the HV transmission line 108. For example, the secondary winding circuit of the injector block 400A having the single-turn injection transformer 401A, comprises of a shorting switch 304A, a power converter 405A for generating the necessary voltages and currents at the appropriate phase angle for injecting on to the HV transmission line 108 via the single-turn injection transformer 401A. A controller 406A is enabled to sense the HV transmission line 108 current and voltage characteristics through a sensor and power-supply transformer 302A connected to a sensor and power supply module 303A. The controller 406A provides the needed control instructions to the power converter 405A to generate the needed injection voltages to be impressed on the HV transmission line for power-flow control. The controller 406A is also enabled to sense via the sensor and power supply transformer 302 A and the connected sensor and power supply module 303A, when over-current conditions exist in the HV transmission line and to provide instruction to the switch 304A to short the secondary winding 401A-2 of the injection transformer 401A. This is done in order to protect the power electronic circuits and components connected to the secondary winding 401A-2 of the injection transformer 401A from damage due to high voltages and currents. The sensor and power supply module 303A are also enabled to extract power from the line and provide the DC supply voltages needed by the power-electronics circuits connected to the secondary winding 401A-2 of the injection transformer 401A. The same set of components and blocks are repeated for the same functionality implemented by the second injector block 400B. A master control block 408 coordinates and synchronizes the operation of the secondary controllers 406A and 406B to provide the corrective impedance injection. The master controller 408 also provides the capability for the module containing the plurality of injection blocks for communicating to the outside world as well as other distributed modules, to provide status and control information. The communication capability is also used for external control and configuration of the module.
The secondary circuit of each of the injection transformers 401A and 401B comprise power-electronic circuits for generation and injection of the inductive and capacitive impedances on to the HV transmission line 108. Each of the secondary winding circuits of the injector blocks 400A and 400B are similar in structure and as such, the block diagram is explained using the injector block 400A. The injector block 400A has a single-turn injection transformer 401A, having a shorting switch 304A across its secondary winding 401A-2 and a power converter 405A for generating the necessary voltages and currents at the appropriate phase angle for injecting on to the HV transmission line 108 via the single-turn injection transformer 401A coupled to it. A master controller 508 is common to all the injector blocks and is enabled to sense the HV transmission line 108 current and voltage characteristics through a sensor and power-supply transformer 502 coupled to the HV transmission line 108 via a sensor and power supply module 503. The master controller 508 provides the needed control instructions to the power converter 405A to generate the needed injection voltages to be impressed on the HV transmission line 108 for line balancing. (In other embodiments, the respective converter/inverter controllers may provide alternate redundant master-controller architectures. Therefore, the specific embodiment shown here is only representative.) The controller 508 is also enabled to sense via the sensor and power supply transformer 502 and the connected sensor and power supply module 503 when over-current conditions exist in the HV transmission line and to provide instruction to the switch 304A to short the secondary winding 401A-2 shown in
Having a plurality of secondary windings with associated power electronic circuits, each generating a part of the injection voltage allow each injector block, such as 400A and 400B of the module to output a portion of the required injectable impedance to control the impedance of the line while enabling the distributed injection module 400 to generate the needed range of injectable impedance (or respective voltage) in a cumulative fashion from the plurality of injector blocks to be impressed on the HV transmission line 108. Hence the power-electronic circuits within the secondary injector blocks 400A and 400B are able to operate without undue stress at voltages that are normal for these components when a plurality of such blocks are used in a module to generate the needed impedance (or respective voltage). This provides for improved reliability of the components and hence the injection block and the module as a whole. The use of a plurality of secondary windings with associated injector blocks also enable lower voltages and currents to be used in the individual injector blocks. By using a sufficient number of such injector blocks it is possible to use off-the-shelf components with known operational characteristics and reliability and achieve a lower manufactured cost point for the module as a whole. In essence, the multiple secondary windings are electrically equivalent to a single secondary winding with a multiple of the voltage value of the single winding wherein such a single secondary winding would need a higher power output converter than used in the present invention, with the plurality of secondary windings, to impress the same impedance on the power line.
Though only two exemplary secondary blocks 400A and 400B are shown in
As discussed before by having a plurality of secondary windings with associated injector blocks for an injection module, each injection block with its own power-electronic control and converter capability, the weight and the wind cross section of the module may be higher. It should be understood that all the associated circuits of the module are enclosed in a housing, which is suspended insulated from ground at the HV transmission line voltage. Due to weight considerations it is preferable to have these modules suspended from the towers or provide additional support for attachment.
Even though the invention disclosed is described using specific implementation, it is intended only to be exemplary and non-limiting. The practitioners of the art will be able to understand and modify the same based on new innovations and concepts, as they are made available. The invention is intended to encompass these modifications.
This application is a continuation of U.S. patent application Ser. No. 15/069,785 filed Mar. 14, 2016, which claims the benefit of U.S. Provisional Patent Application No. 62/264,744 filed Dec. 8, 2015, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2237812 | De Blieux | Apr 1941 | A |
2551841 | Kepple et al. | May 1951 | A |
3556310 | Loukotsky | Jan 1971 | A |
3704001 | Sloop | Nov 1972 | A |
3750992 | Johnson | Aug 1973 | A |
3913003 | Felkel | Oct 1975 | A |
4025824 | Cheatham | May 1977 | A |
4057736 | Jeppson | Nov 1977 | A |
4103853 | Bannan | Aug 1978 | A |
4164345 | Arnold et al. | Aug 1979 | A |
4200899 | Volman et al. | Apr 1980 | A |
4277639 | Olsson | Jul 1981 | A |
4286207 | Spreadbury et al. | Aug 1981 | A |
4323722 | Winkelman | Apr 1982 | A |
4367512 | Fujita | Jan 1983 | A |
4514950 | Goodson, Jr. | May 1985 | A |
4562360 | Fujimoto | Dec 1985 | A |
4577826 | Bergstrom et al. | Mar 1986 | A |
4710850 | Jahn et al. | Dec 1987 | A |
4821138 | Nakano et al. | Apr 1989 | A |
4903927 | Farmer | Feb 1990 | A |
5006846 | Granville et al. | Apr 1991 | A |
5023768 | Collier | Jun 1991 | A |
5032738 | Vithayathil | Jul 1991 | A |
5193774 | Rogers | Mar 1993 | A |
5461300 | Kappenman | Oct 1995 | A |
5469044 | Gyugyi et al. | Nov 1995 | A |
5610501 | Nelson et al. | Mar 1997 | A |
5648888 | Le Francois et al. | Jul 1997 | A |
5844462 | Rapoport et al. | Dec 1998 | A |
5884886 | Hageli | Mar 1999 | A |
5886888 | Akamatsu et al. | Mar 1999 | A |
5986617 | McLellan | Nov 1999 | A |
6088249 | Adamson | Jul 2000 | A |
6134105 | Lueker | Oct 2000 | A |
6147581 | Rancourt et al. | Nov 2000 | A |
6215653 | Cochran et al. | Apr 2001 | B1 |
6233137 | Kolos et al. | May 2001 | B1 |
6335613 | Sen et al. | Jan 2002 | B1 |
6486569 | Couture | Nov 2002 | B2 |
6727604 | Couture | Apr 2004 | B2 |
6831377 | Yampolsky et al. | Dec 2004 | B2 |
6895373 | Garcia et al. | May 2005 | B2 |
6914195 | Archambault et al. | Jul 2005 | B2 |
7090176 | Chavot et al. | Aug 2006 | B2 |
7091703 | Folts et al. | Aug 2006 | B2 |
7105952 | Divan et al. | Sep 2006 | B2 |
7193338 | Ghali | Mar 2007 | B2 |
7352564 | Courtney | Apr 2008 | B2 |
7460931 | Jacobson | Dec 2008 | B2 |
7642757 | Yoon et al. | Jan 2010 | B2 |
7688043 | Toki et al. | Mar 2010 | B2 |
7834736 | Johnson et al. | Nov 2010 | B1 |
7835128 | Divan et al. | Nov 2010 | B2 |
7932621 | Spellman | Apr 2011 | B1 |
8019484 | Korba et al. | Sep 2011 | B2 |
8249836 | Yoon et al. | Aug 2012 | B2 |
8270558 | Dielissen | Sep 2012 | B2 |
8310099 | Engel et al. | Nov 2012 | B2 |
8401709 | Cherian et al. | Mar 2013 | B2 |
8441778 | Ashmore | May 2013 | B1 |
8497592 | Jones | Jul 2013 | B1 |
8680720 | Schauder et al. | Mar 2014 | B2 |
8681479 | Englert et al. | Mar 2014 | B2 |
8816527 | Ramsay et al. | Aug 2014 | B1 |
8825218 | Cherian et al. | Sep 2014 | B2 |
8867244 | Trainer et al. | Oct 2014 | B2 |
8872366 | Campion et al. | Oct 2014 | B2 |
8890373 | Savolainen et al. | Nov 2014 | B2 |
8896988 | Subbaiahthever et al. | Nov 2014 | B2 |
8922038 | Bywaters et al. | Dec 2014 | B2 |
8957752 | Sharma et al. | Feb 2015 | B2 |
8996183 | Forbes, Jr. | Mar 2015 | B2 |
9099893 | Schmiegel et al. | Aug 2015 | B2 |
9124100 | Ukai et al. | Sep 2015 | B2 |
9124138 | Mori et al. | Sep 2015 | B2 |
9130458 | Crookes et al. | Sep 2015 | B2 |
9172246 | Ramsay et al. | Oct 2015 | B2 |
9178456 | Smith et al. | Nov 2015 | B2 |
9185000 | Mabilleau et al. | Nov 2015 | B2 |
9207698 | Forbes, Jr. | Dec 2015 | B2 |
9217762 | Kreikebaum et al. | Dec 2015 | B2 |
9246325 | Coca Figuerola et al. | Jan 2016 | B2 |
9325173 | Varma et al. | Apr 2016 | B2 |
9331482 | Huang | May 2016 | B2 |
9659114 | He et al. | May 2017 | B2 |
9843176 | Gibson et al. | Dec 2017 | B2 |
20020005668 | Couture | Jan 2002 | A1 |
20020042696 | Garcia et al. | Apr 2002 | A1 |
20030006652 | Couture | Jan 2003 | A1 |
20030098768 | Hoffmann et al. | May 2003 | A1 |
20040217836 | Archambault et al. | Nov 2004 | A1 |
20050052801 | Ghali | Mar 2005 | A1 |
20050073200 | Divan et al. | Apr 2005 | A1 |
20050194944 | Folts et al. | Sep 2005 | A1 |
20050205726 | Chavot et al. | Sep 2005 | A1 |
20060085097 | Courtney | Apr 2006 | A1 |
20070135972 | Jacobson | Jun 2007 | A1 |
20070250217 | Yoon et al. | Oct 2007 | A1 |
20080103737 | Yoon et al. | May 2008 | A1 |
20080157728 | Toki et al. | Jul 2008 | A1 |
20080177425 | Korba et al. | Jul 2008 | A1 |
20080278976 | Schneider et al. | Nov 2008 | A1 |
20080310069 | Divan et al. | Dec 2008 | A1 |
20090243876 | Lilien et al. | Oct 2009 | A1 |
20090281679 | Taft et al. | Nov 2009 | A1 |
20100026275 | Walton | Feb 2010 | A1 |
20100177450 | Holcomb et al. | Jul 2010 | A1 |
20100213765 | Engel et al. | Aug 2010 | A1 |
20100302744 | Englert et al. | Dec 2010 | A1 |
20110060474 | Schmiegel et al. | Mar 2011 | A1 |
20110095162 | Parduhn et al. | Apr 2011 | A1 |
20110106321 | Cherian et al. | May 2011 | A1 |
20110172837 | Forbes, Jr. | Jul 2011 | A1 |
20120105023 | Schauder et al. | May 2012 | A1 |
20120146335 | Bywaters et al. | Jun 2012 | A1 |
20120205981 | Varma et al. | Aug 2012 | A1 |
20120242150 | Ukai et al. | Sep 2012 | A1 |
20120255920 | Shaw et al. | Oct 2012 | A1 |
20120293920 | Subbaiahthever et al. | Nov 2012 | A1 |
20130002032 | Mori et al. | Jan 2013 | A1 |
20130033103 | McJunkin et al. | Feb 2013 | A1 |
20130044407 | Byeon et al. | Feb 2013 | A1 |
20130094264 | Crookes et al. | Apr 2013 | A1 |
20130128636 | Trainer et al. | May 2013 | A1 |
20130166085 | Cherian et al. | Jun 2013 | A1 |
20130169044 | Stinessen et al. | Jul 2013 | A1 |
20130182355 | Coca Figuerola et al. | Jul 2013 | A1 |
20130184894 | Sakuma et al. | Jul 2013 | A1 |
20130200617 | Smith et al. | Aug 2013 | A1 |
20130249321 | Gao et al. | Sep 2013 | A1 |
20130277082 | Hyde et al. | Oct 2013 | A1 |
20130345888 | Forbes, Jr. | Dec 2013 | A1 |
20140025217 | Jin et al. | Jan 2014 | A1 |
20140032000 | Chandrashekhara et al. | Jan 2014 | A1 |
20140111297 | Earhart et al. | Apr 2014 | A1 |
20140129195 | He et al. | May 2014 | A1 |
20140132229 | Huang | May 2014 | A1 |
20140153383 | Mabilleau et al. | Jun 2014 | A1 |
20140188689 | Kalsi et al. | Jul 2014 | A1 |
20140203640 | Stinessen | Jul 2014 | A1 |
20140210213 | Campion et al. | Jul 2014 | A1 |
20140246914 | Chopra et al. | Sep 2014 | A1 |
20140247554 | Sharma et al. | Sep 2014 | A1 |
20140268458 | Luciani et al. | Sep 2014 | A1 |
20140312859 | Ramsay et al. | Oct 2014 | A1 |
20140327305 | Ramsay et al. | Nov 2014 | A1 |
20140347158 | Goeke et al. | Nov 2014 | A1 |
20150012146 | Cherian et al. | Jan 2015 | A1 |
20150029764 | Peng | Jan 2015 | A1 |
20150051744 | Mitra | Feb 2015 | A1 |
20150184415 | Bushore | Jul 2015 | A1 |
20150226772 | Kreikebaum et al. | Aug 2015 | A1 |
20150244307 | Cameron | Aug 2015 | A1 |
20150270689 | Gibson et al. | Sep 2015 | A1 |
20160036231 | Ramsay et al. | Feb 2016 | A1 |
20160036341 | Jang et al. | Feb 2016 | A1 |
20170163036 | Munguia et al. | Jun 2017 | A1 |
20170169928 | Carrow et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
660094 | Mar 1987 | CH |
103256337 | Aug 2013 | CN |
203668968 | Jun 2014 | CN |
2002-199563 | Jul 2002 | JP |
2005-045888 | Feb 2005 | JP |
2015-086692 | May 2015 | JP |
10-1053514 | Aug 2011 | KR |
WO-2008082820 | Jul 2008 | WO |
WO-2014035881 | Mar 2014 | WO |
WO-2014074956 | May 2014 | WO |
WO-2014099876 | Jun 2014 | WO |
WO-2015074538 | May 2015 | WO |
WO-2015119789 | Aug 2015 | WO |
Entry |
---|
“Notice of Allowance dated Sep. 24, 2018; U.S. Appl. No. 15/157,726”, filed Sep. 24, 2018. |
“Notice of Allowance dated Sep. 4, 2018; U.S. Appl. No. 15/345,065”, filed Sep. 4, 2018. |
“Office Action dated Oct. 4, 2018; U.S. Appl. No. 15/975,373”, filed Oct. 4, 2018. |
“International Search Report and Written Opinion of the International Searching Authority dated Feb. 2, 2017; International Application No. PCT/U52016/062358”, Feb. 2, 2017. |
“International Search Report and Written Opinion of the International Searching Authority dated Feb. 2, 2017; International Application No. PCT/U52016/062620”, Feb. 2, 2017. |
“International Search Report and Written Opinion of the International Searching Authority dated Mar. 2, 2017; International Application No. PCT/U52016/061009”, Mar. 2, 2017. |
“Invitation of the International Searching Authority to Pay Additional Fees dated Dec. 15, 2016; International Application No. PCT/U52016/061009”, Dec. 15, 2016. |
“Notice of Allowance dated Feb. 22, 2018; U.S. Appl. No. 15/069,785”, filed Feb. 22, 2018. |
“Office Action dated Apr. 6, 2018; U.S. Appl. No. 15/055,422”, filed Apr. 6, 2018. |
“Office Action dated Apr. 6, 2018; U.S. Appl. No. 15/157,726”, filed Apr. 6, 2018. |
“Office Action dated Feb. 9, 2018; U.S. Appl. No. 15/345,065”, filed Feb. 9, 2018. |
“Office Action dated Jul. 26, 2017; U.S. Appl. No. 15/069,785”, filed Jul. 26, 2017. |
“Office Action dated Jul. 27, 2018; U.S. Appl. No. 15/055,422”, filed Jul. 27, 2018. |
“Office Action dated Nov. 3, 2017; U.S. Appl. No. 15/157,726”, filed Nov. 3, 2017. |
Albasri, Fadhel A. et al., “Performance Comparison of Distance Protection Schemes for Shung-FACTS Compensated Transmission Lines”, IEEE Transactions on Power Delivery, vol. 22, No. 4, Oct. 2007, pp. 2116-2125. |
Amin, S. M. et al., “Toward a Smart Grid: Power Delivery for the 21st Century”, IEEE power & energy magazine, vol. 3, No. 5, Sep./Oct. 2005, pp. 34-41. |
Angeladas, Emmanouil “High Voltage Substations Overview (part 1)”, Siemens, Jan. 24, 2013, pp. 1-8. |
Aquino-Lugo, Angela A. “Distributed and Decentralized Control of the Power Grid”, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 2010, 172 pp. total. |
Bhaskar, M. A. et al., “Impact of FACTS devices on distance protection in Transmission System”, 2014 IEEE National Conference on Emerging Trends in New & Renewable Energy Sources and Energy Management (NCET NRES EM), Dec. 16, 2014, pp. 52-58. |
Dash, P. K. et al., “Digital Protection of Power Transmission Lines in the Presence of Series Connected Facts Devices”, IEEE Power Engineering Society Winter Meeting, 2000, pp. 1967-1972. |
Divan, D. M. “Nondissipative Switched Networks for High-Power Applications”, Electronics Letters, vol. 20, No. 7, Mar. 29, 1984, pp. 277-279. |
Funato, Hirohito et al., “Realization of Negative Inductance Using Variable Active-Passive Reactance (VAPAR)”, IEEE Transactions on Power Electronics, vol. 12, No. 4, Jul. 1997, pp. 589-596. |
Gyugyi, Laszlo et al., “Status Synchronous Series Compensator: A Solid-State Approach to the Series Compensation of Transmission Lines”, IEEE Transactions on Power Delivery, vol. 12, No. 1, Jan. 1997, pp. 406-417. |
Gyugyi, Laszlo et al., “The Interline Power Flow Controller Concept: A New Approach to Power Flow Management in Transmission Systems”, IEEE Transactions on Power Delivery, vol. 14, No. 3, Jul. 1999, pp. 1115-1123. |
Kavitha, M. et al., “Integration of FACTS into Energy Storage Systems for Future Power Systems Applications”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, Issue 2, Feb. 2013, pp. 800-810. |
Kumbhar, Mahesh M. et al., “Smart Grid: Advanced Electricity Distribution Network”, IOSR Journal of Engineering (IOSRJEN), vol. 2, Issue 6, Jun. 2012, pp. 23-29. |
Lambert, Frank C. “Power Flow Control”, ISGT Europe, 2014, Istanbul, Turkey, Oct. 13, 2014, pp. 1-15. |
Lehmkoster, Carsten “Security Constrained Optimal Power Flow for an Economical Operation of FACTS-Devices in Liberalized Energy Markets”, IEEE Transactions on Power Delivery, vol. 17, No. 2, Apr. 2002, pp. 603-608. |
Mali, Bhairavanath N. et al., “Performance Study of Transmission Line Ferranti Effect and Fault Simulation Model Using MATLAB”, International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, vol. 4, Issue 4, Apr. 2016, pp. 49-52. |
Mutale, Joseph et al., “Transmission Network Reinforcement Versus Facts: An Economic Assessment”, IEEE Transactions on Power Systems, vol. 15, No. 3, Aug. 2000, pp. 961-967. |
Ramchurn, Sarvapali D. et al., “Putting the ‘Smarts’ into the Smart Grid: A Grand Challenge for Artificial Intelligence”, Communications of the ACM, vol. 55, No. 4, Apr. 2012, pp. 86-97. |
Reddy, D. M. et al., “FACTS Controllers Implementation in Energy Storage Systems for Advanced Power Electronic Applications—A Solution”, American Journal of Sustainable Cities and Society, Issue 2, vol. 1, Jan. 2013, pp. 36-63. |
Renz, B. A. et al., “AEP Unified Power Flow Controller Performance”, IEEE Transactions on Power Delivery, vol. 14, No. 4, Oct. 1999, pp. 1374-1381. |
Ribeiro, P. et al., “Energy Storage Systems”, Chapters 1-2.4 of Section entitled “Energy Storage Systems” in Electrical Engineering—vol. III, edited by Kit Po Wong, Encyclopedia of Life Support Systems (EOLSS) Publications, Dec. 13, 2009, 11 pp. total. |
Samantaray, S. R., “A Data-Mining Model for Protection of FACTS-Based Transmission Line”, IEEE Transactions on Power Delivery, vol. 28, No. 2, Apr. 2013, pp. 612-618. |
Schauder, C. D. et al., “Operation of the Unified Power Flow Controller (UPFC) Under Practical Constraints”, IEEE Transactions on Power Delivery, vol. 13, No. 2, Apr. 1998, pp. 630-639. |
Siemens Sas, “Portable Power Solutions, “Plug and play” High Voltage E-Houses, skids and mobile high voltage substations up to 420 kV”, Nov. 2015, 8 pp. total. |
Swain, S. C. et al., “Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm”, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 5, No. 3, 2011, pp. 399-407. |
Xue, Yiyan et al., “Charging Current in Long Lines and High-Voltage Cables—Protection Application Considerations”, 67th Annual Georgia Tech Protective Relaying Conference, Atlanta, Georgia, May 8-10, 2013, pp. 1-17. |
Number | Date | Country | |
---|---|---|---|
20180261373 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62264744 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15069785 | Mar 2016 | US |
Child | 15981616 | US |