This invention relates generally to a voltage reference circuit, more specifically a voltage reference circuit with temperature compensation for constant transconductance (Gm) design.
A voltage reference circuit is an electronic device (circuit or component) that produces a fixed (constant) voltage irrespective of the loading on the device, process, power supply variation and temperature. A voltage reference circuit is one of important analog blocks in integrated circuits.
One common voltage reference circuit used in integrated circuits is the bandgap voltage reference circuit. A bandgap-based reference circuit uses analog circuits to add a multiple of the voltage difference between two bipolar junctions biased at different current densities to the voltage developed across a diode. The diode voltage has a negative temperature coefficient (i.e. it decreases with increasing temperature), and the junction voltage difference has a positive temperature coefficient. When added in the proportion required to make these coefficients cancel out, the resultant constant value is a voltage equal to the bandgap voltage of the semiconductor. However, the bandgap design requires relatively large area and power.
Another voltage reference circuit design is a constant transconductance (Gm) design.
With VTH as the threshold voltage of NMOS 108, the current and voltage of the voltage reference circuit shown in
where μN is the mobility of the NMOS, Cox is the gate oxide capacitance, W/L is the width over length of the channel of the NMOS.
With increasing temperature, the mobility μN decreases, therefore results in higher Iref in Eq. 1. On the other hand, with increasing temperature, the threshold voltage VTH decreases, resulting in lower VREF in Eq. 2. Therefore VREF shows strong dependency on temperature. For example, compared to an exemplary bandgap design voltage reference circuit with a layout area of 77×53 μm2 and 180 μA current requirement that showed about 3 mV variation over −40° C.-125° C., an exemplary constant Gm design voltage reference circuit with a layout area of 24×7.3 μm2 and 10 μA current requirement showed a temperature variation of 18 mV over the same temperature range, as shown in
Accordingly, new temperature compensation schemes are desired for voltage reference with constant Gm design.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
A voltage reference circuit with temperature compensation for constant Gm design is provided. Throughout the various views and illustrative embodiments of the present invention, like reference numbers are used to designate like elements.
With VTH as the threshold voltage of NMOS 108, the relationship between VREFNEW1 and VirtualVSS can be expressed as the following:
In Eq. 4, the first term VirtualVSS increases with temperature increase because the limited gain op amp 202 cannot keep the VirtualVSS level to the ground as Iref in Eq. 1 increases. The second term in Eq. 4 decreases with temperature increase because of the threshold voltage VTH drop. As a result, VREFNEW1 has small temperature variation since the first term in Eq. 4 (VirtualVSS) increases with temperature and the second term decreases with temperature. The gain of op amp 202 can be adjusted to find desired performance for temperature compensation.
In one integrated circuit embodiment, the current Iref was set to 5 μA, the NMOS transistor size ratio was 1:K=1:4 (K is a number greater than 1), and the resistance Rs was 8 kΩ. In other embodiments, the current Iref can range over 2-10 μA, K=4-16, Rs=1-40 kΩ. However, the circuit can be designed with different values without departing from the spirit and scope of the invention.
With RTX as the source-gate resistance of NMOS 310, the output voltage is given by the following:
With increasing temperature, the decreasing VREF from the left side circuit biases the NMOS 310 gate, thus increasing the resistance of NMOS 310, RTX. The advantage of this scheme includes simple implementation for robustness by adding a similar circuit to the voltage reference design. The size of NMOS 310 can be designed to have a desired resistance RTX.
In one integrated circuit embodiment, the current Iref was set to 5 μA, the NMOS transistor size proportion ratio was 1:N=1:4 (N is a number greater than 1) between NMOS transistors 106 and 108 and/or 306 and 308, the resistance Rs was 8 kΩ, and the source-drain resistance Rds of NMOS transistor 310 was 8 kΩ. In other embodiments, the current Iref can range from 2-10 μA, N=4-16, Rs=1-40 kΩ, and Rds=1-40 kΩ. However, the circuit can be designed with different values without departing from the spirit and scope of the invention.
Therefore, a constant Gm voltage reference that requires very small size and power compared to a bandgap design can be achieved with much improved accuracy of the output voltage by adding a temperature compensation feedback element that can control the voltage variation. A skilled person in the art will appreciate that there can be many variations of these embodiments.
One aspect of this description relates to a voltage reference circuit with temperature compensation comprising a power supply, a first reference voltage supply, a first PMOS transistor with a source connected to the power supply, a second PMOS transistor with a source connected to the power supply and a gate and a drain connected together to the gate of the first PMOS. The voltage reference circuit also comprises a first NMOS transistor with a gate and a drain connected together to the drain of the first PMOS transistor. The voltage reference circuit further comprises a second NMOS transistor with a drain connected to the drain of the second PMOS transistor and a gate connected together with the gate of the first NMOS transistor to the first reference voltage supply. The voltage reference circuit additionally comprises a resistor connected to the source of the second NMOS transistor and ground.
The voltage reference circuit also comprises a second reference voltage supply; a third PMOS transistor with a source connected to the power supply. The voltage reference circuit further comprises a fourth PMOS transistor with a source connected to the power supply and a gate and a drain connected together to the gate of the third PMOS. The voltage reference circuit additionally comprises a third NMOS transistor with a gate and a drain connected together to the drain of the third PMOS transistor.
The voltage reference circuit also comprises a fourth NMOS transistor with a drain connected to the drain of the fourth PMOS transistor and a gate connected together with the gate of the third NMOS transistor to the second reference voltage output. The voltage reference circuit additionally comprises a fifth NMOS transistor with a drain connected to the source of the fourth NMOS transistor, a source connected to the ground, a gate connected to the first reference voltage output.
Another aspect of this description relates to a voltage reference circuit with temperature compensation comprising a power supply, a first reference voltage supply, a first PMOS transistor with a source connected to the power supply, a second PMOS transistor with a source connected to the power supply and a gate and a drain connected together to the gate of the first PMOS. The voltage reference circuit also comprises a first NMOS transistor with a gate and a drain connected together to the drain of the first PMOS transistor. The voltage reference circuit further comprises a second NMOS transistor with a drain connected to the drain of the second PMOS transistor and a gate connected together with the gate of the first NMOS transistor to the first reference voltage supply. The voltage reference circuit additionally comprises a resistor connected to the source of the second NMOS transistor and ground.
The voltage reference circuit also comprises a second reference voltage supply; a third PMOS transistor with a source connected to the power supply. The voltage reference circuit further comprises a fourth PMOS transistor with a source connected to the power supply and a gate and a drain connected together to the gate of the third PMOS. The voltage reference circuit additionally comprises a third NMOS transistor with a gate and a drain connected together to the drain of the third PMOS transistor.
The voltage reference circuit also comprises a fourth NMOS transistor with a drain connected to the drain of the fourth PMOS transistor and a gate connected together with the gate of the third NMOS transistor to the second reference voltage output. The voltage reference circuit additionally comprises a fifth NMOS transistor with a drain connected to the source of the fourth NMOS transistor, a source connected to the ground, a gate connected to the first reference voltage output. The reference voltage supply is expressed by:
Although the present embodiments and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the appended claims. As one of ordinary skill in the art will readily appreciate from the disclosure of the present embodiments, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
The present application is a divisional of U.S. Application No. 12/825,652, filed Jun. 29, 2010, which claims priority of U.S. Provisional Application No. 61/222,852, filed Jul. 2, 2009, which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61222852 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12825652 | Jun 2010 | US |
Child | 14051631 | US |