A voltage regulator circuit may be utilized for generating a steady voltage. The steady voltage may be required for circuitry, e.g. integrated circuits (ICs), which are highly susceptible to voltage variations. It is crucial that the voltages supplied to the ICs are always within a bounded range, so that the ICs may behave consistently.
Manufacturing variations may affect the voltage regulators function. The manufacturing variation, however, may be corrected through a trimming process. Trimming process is a standard method applicable to an IC to modify voltage output for minor deviations. The problem with most trimming processes is the requirement of variable resistor at the voltage regulator output terminal. The placement may affect the voltage regulators gain, which is not desired.
It is within this context that the embodiments described herein arise.
The embodiments described herein describe a voltage regulator and a method to operate the voltage regulator. Several embodiments are described below.
In one embodiment, a voltage regulator is described. The voltage regulator includes an operational amplifier (op-amp) and a voltage trim circuit. The op-amp receives a reference voltage on its first terminal. The op-amp also includes an output terminal. The voltage trim circuit is coupled between the output terminal and a second terminal of the op-amp. The voltage trim circuit is operable to modify an output voltage on the output terminal so that the output voltage is substantially equivalent with the reference voltage. The voltage trim circuit modifies the output voltage by controlling an electrical current propagating within the voltage trim circuit.
In another embodiment, an Integrated Circuit (IC) is described. The IC includes a first op-amp and a second op-amp where a positive terminal of the first and second op-amps is coupled to a reference voltage source. The IC also includes a first trim circuit and a second trim circuit. The first trim circuit is coupled between an output terminal of first op-amp and a negative terminal of the first op-amp. The second trim circuit is coupled between an output terminal of second op-amp and a negative terminal of second op-amp. Both the first and second trim circuits are operable to trim the output voltages of the first and second op-amp, respectively. The trimming may be performed by selecting an electrical current propagating pathway within respective voltage trim circuits.
In another embodiment, a method to operate the voltage regulator is described. The method includes receiving a reference voltage on a first input terminal of an op-amp. Next, it is determined if an output voltage of the op-amp requires a voltage level modification. A direction of an electrical current in a voltage trim circuit that enables trimming of the output voltage by a predetermined voltage is selected. The output voltage is the output from the voltage regulator.
Other aspects of the embodiments will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrated by way of example.
The embodiment may be understood by reference to the following description taken in conjunction with the accompanying drawings.
The following embodiments describe a voltage regulator and a method to operate the voltage regulator. It will be obvious, however, to one skilled in the art, that the present embodiments may be practiced without some or all of these specific details. In other instances, well-known operations have not been described in detail in order not to unnecessarily obscure the present embodiments.
The embodiments described below illustrate a voltage regulator. The voltage regulator may include an operational amplifier that generates an output at a particular voltage, and a voltage trimming circuit that may trims the output by a delta voltage. The trimming may be a result of an electrical current propagating in a particular direction within the voltage trimming circuit. The voltage regulator, in this embodiment, may not affect an input voltage as a result of trimming.
IC 100 includes core 110 and a plurality of IOs 120. Core 110 may execute functions that define IC 100. IOs 120 may enable transferring of electrical signals between IC 100 and external circuitry (e.g. tester or another IC, which are not illustrated in
In one embodiment, core 110 includes a plurality of programmable logic elements. The programmable logic elements may be programmable to execute electrical functions. It should be appreciated, however, that the circuitry that defines core 110 may vary depending on IC 100, e.g., core 110 of a memory IC may include a plurality of storage element circuitry.
Core 110 may further include circuits that may regulate the conditions of IC 100. In the exemplary embodiment of
In one embodiment, voltage regulators 130a and 130b may be utilized to supply a steady voltage to the remaining circuits of IC 100. In the exemplary embodiment of
In one embodiment, voltage regulators 130a and 130b receive a reference voltage (Vref) from an external voltage source, e.g., external power source. In another embodiment, however, the Vref may be an output from a Bipolar Junction Transistor (BJT) within IC 100. The Vref voltage level may be in a range between about 0.5V and 0.7V, in one exemplary embodiment. Voltage regulators 130a and 130b receiving the Vref may generate an output that has a voltage level based on the Vref. In one embodiment, voltage regulator 130a generates an output, e.g. Vout1, and voltage regulator 130b generates an output, e.g. Vout2.
It shall be appreciated that semiconductor manufacturing variations may impact the electrical characteristics of voltage regulators 130a and 130b. As a consequence, voltage regulators 130a and 130b may generate different voltage level for Vout1 and Vout2 even when tied to a single voltage source. The output, e.g., Vout1 and Vout2, may not be equivalent to a predefined voltage level. It should be appreciated, however, that the Vout1 and Vout2 may be adjusted in such manner so that Vout1 and Vout2 may become substantially identical to the predefined voltage through a trimming process.
In one embodiment, voltage regulator 130a/b includes operational amplifier (op-amp) circuit 220 and voltage trimming circuit 210. Op-amp circuit 220 includes a positive input terminal, a negative input terminal and an output terminal. The positive input terminal of op-amp circuit 220 receives Vref from input terminal 230 and the negative input terminal of op-amp circuit 220 receives an output of voltage trimming circuit 210. In one embodiment, op-amp circuit 220 amplifies a difference between voltages (Δv) received at the positive terminal and the negative terminal of op-amp circuit 220. It should be appreciated that the voltage difference may be amplified by an amplification factor (Ao).
In one embodiment, op-amp circuit 220 has an amplification factor of ‘1’, i.e., unity gain amplification factor. It shall be appreciated that op-amp circuit 220 achieves unity gain amplification factor by coupling the output terminal of op-amp circuit 220 to the negative input terminal of op-amp circuit 220. In one embodiment, the voltage received by the negative terminal of op-amp circuit 220 is denoted as feedback voltage (Vfb). The Vfb and Vout voltage levels are identical, in one embodiment. As a result of unity gain amplification factor, op-amp circuit 220 includes high input impedance at its input terminals and low impedance at its output terminal. The impedances prevent an electrical current to propagate into the input terminals of op-amp circuit 220. The unity gain amplification factor may further provide voltage-following characteristic, where the output voltage, e.g., Vout, is substantially similar, if not identical, to the input voltage, e.g., Vin.
In the embodiment of
In one embodiment, current source 320 and 330 may be utilized for generating a steady electrical current. It should be appreciated that the stable voltage source may be applied to terminals 340 and 350. In an exemplary embodiment, current sources 320 and 330 may generate corresponding electrical currents, e.g., I1 and I2. The I1 and I2 may have different electrical current value in one embodiment. The difference may be due to differences in the configuration for respective current sources 320 and 330.
Current sinks 325 and 335, on the other hand, may be utilized for sinking a steady electrical current to the ground. In one embodiment, current sinks 325 and 335 may be utilized for sinking the corresponding electrical currents, e.g., I3 and I4, to the ground through the respective ground terminals, e.g., terminals 360 and 370. The electrical current value for respective electrical currents I3 and I4 may also be different in one embodiment. Similar to current sources 320 and 330, the difference for the respective electrical currents I3 and I4 may be due to differences in the configuration for current sinks 325 and 335.
In the embodiment of
The input terminals of current sources 320 and 330 are coupled to terminals 340 and 350 respectively. Terminals 340 and 350 are applied with voltage, e.g., Vcc. In the embodiment of
In one embodiment, the selected pathway for the purpose of trimming includes a pathway that includes current source 320, Rtrim 310 and current sink 325. The electrical current generated by current source 320 may propagate through Rtrim 310, current sink 325 and to ground via terminal 370. In another embodiment, the selected pathway for the purpose of trimming includes a pathway that includes current source 330, Rtrim 310 and current sink 335. The electrical current generated by current source 330 may propagate through Rtrim 310, current sink 335 to ground via terminal 360.
In one embodiment, the selected pathway may be selected through activating the appropriate current source 320 or 330 and current sink 325 or 335. In one embodiment, the selected pathway that includes current source 320, current sink 325 and Rtrim 310 may be selected by activating current source 320 and current sink 325. In an alternative embodiment, the selected pathway that includes current source 330, current sink 335 and Rtrim 310 may be selected by activating current source 330 and current sink 335. It should be appreciated that the Vout may be trimmed by activating current source 320 and current sink 325 in one instance or by activating current source 330 and current sink 335 in another instance.
It should be appreciated that the electrical current I1 may be identical with the electrical current I3 or the electrical current I2 may be identical with the electrical current I4. The electrical currents, I1 and I3 in one instance or I2 and I4 in another instance, are substantially identical so that it may prevent any electrical current propagating through the output terminal of the op-amp circuit 220.
It should also be appreciated that when none of current sources 320 and 330 or current sinks 325 and 335 are active, the output voltage is at an initial output voltage, Voutini. In one embodiment, current source 320 and current sink 325 are activated. The Voutini may be trimmed down by ΔV1. The electrical current generated by current source 320, which is I1, propagates through Rtrim 310, current sink 325 and be output to the ground via terminal 370. The generated ΔV1 across Rtrim 310 may be applied negatively to final output. Therefore, the final output voltage may be Voutfin=Voutini−ΔV1.
In another embodiment, current source 330 and current sink 335 are activated. The Voutini may be added by ΔV2 in this embodiment. The electrical current generated by current source 330, which is I2, propagates through Rtrim 310, current sink 335 and be output to the ground via terminal 360. The generated ΔV2 across Rtrim 310 may be applied positively to the final output. Therefore, the final output voltage may be Voutfin=Voutini+ΔV2. It should be appreciated that ΔV1 may be is a product of I1×resistance of Rtrim 310 and ΔV2 is a product of I2×resistance of Rtrim 310.
It should appreciated that the electrical currents generated by current sources 320 and 330 may be controlled via fuses. The fuses are set to a specific configuration, which determines the amount of electrical current I1 or I2 that is generated. In one embodiment, the fuses may be antifuses, which are blown to a specific configuration. In one exemplary embodiment, current sources 320 and 330 have at least eight different electrical current values with the available fuses. The ability to generate different electrical current values for corresponding I1 or I2 provides flexibility in terms of trim step ΔV1 and ΔV2. Therefore, voltage trimming circuit 210 may be able to trim even when there is substantial offset compared to the predefined voltage.
Voltage regulator 130a includes op-amp circuit 220a and voltage trimming circuit 210a. Voltage regulator 130b has op-amp 220b and voltage trimming circuit 210b. Voltage regulators 130a and 130b generates output voltages Vout1 and Vout2 respectively. Ideally, the Vout1 and Vout2 should be identical to the Vref because of the unity gain amplification factor that is applied by the voltage regulators 130a and 130b. However, manufacturing variations may cause mismatches between the Vout1 and Vout2 with the Vref.
Voltage trimming circuit 210a may trim the Vout1 to be similar, if not identical, with the Vref and voltage trimming circuit 210b may trim the Vout2 to be similar, if not identical, with the Vref. The trimming may be performed by activating the current sources 320 and 330 and current sinks 325 and 335 within each of the voltage trimming circuits 210a or 210b, as described in
At step 520, the output voltage is checked if the output voltage matches with the reference voltage. In one embodiment, the output voltage may not be equivalent with the reference voltage. The mismatch may arise due to plurality of reason, including manufacturing variations. Consequently, at step 530, the output voltage may be determined if required for any modification. If the output voltage does not match with the reference voltage, the output voltage may be deemed to require modification at step 530. Whereas, if the output voltage matches with the reference voltage, then the output voltage may be deemed not to require modification at step 530.
If it is determined if the output voltage needs to be modified, step 540, where by a current source and a current sink within a voltage trimming circuit are activated, is performed. The activation of the current source and sink enables propagation of the electrical current in a selected pathway. In one exemplary embodiment, the selected pathway may trim down the output voltage by a predefined voltage step. In an alternative embodiment, the selected pathway may add up to the output voltage by a predefined voltage. The predefined voltage step may depend on the electrical current generated by a current source, e.g., current source 320 or 330 in
The embodiments, thus far, were described with respect to integrated circuits. The method and apparatus described herein may be incorporated into any suitable circuit. For example, the method and apparatus may be incorporated into numerous types of devices such as microprocessor, programmable logic devices (PLDs), application specific standard products (ASSPs) and application specific integrated circuits (ASICs). Examples of PLDs include programmable arrays logic (PALs), programmable logic arrays (PLAs), field programmable logic arrays (FPLAs), electrically programmable logic devices (EPLDs), electrically erasable programmable logic devices (EEPLDs), logic cell arrays (LCAs), field programmable gate arrays (FPGAs), just name a few.
The programmable logic device described herein may be part of a data processing system that includes one or more of the following components; a processor; memory; IO circuits; and peripheral devices. The data processing can be used in a wide variety of applications, such as computer networking, data networking, instrumentation, video processing, digital signal processing, or any suitable other application where the advantage of using programmable or re-programmable logic is desirable. The programmable logic device can be used to perform a variety of different logic functions. For example, the programmable logic device can be configured as a processor or controller that works in cooperation with a system processor. The programmable logic device may also be used as an arbiter for arbitrating access to a shared resource in the data processing system. In yet another example, the programmable logic device can be configured as an interface between a processor and one of the other components in the system. In one embodiment, the programmable logic device may be one of the family of devices owned by the assignee.
Although the method of operations were described in a specific order, it should be understood that other operation may be performed in between described operations, described operations may be adjusted so that they occur at slightly different times or described operations may be distributed in a system which allows occurrence of the processing operation at various intervals associated with the processing, as long as the processing of the overlay operations are performed in a desired way.
Although the foregoing invention has been described in some detail for the purposes of clarity of understanding, it will be apparent that certain changes and modifications can be practiced within the scope of the appended claims. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4665356 | Pease | May 1987 | A |
5295161 | Dreps et al. | Mar 1994 | A |
5412309 | Ueunten | May 1995 | A |
5627458 | Nevin | May 1997 | A |
6433521 | Chen et al. | Aug 2002 | B1 |
7068103 | Lind | Jun 2006 | B2 |
7362079 | Maheedhar et al. | Apr 2008 | B1 |
7420359 | Anderson et al. | Sep 2008 | B1 |
8129967 | Blisson et al. | Mar 2012 | B2 |
20030223254 | Xu et al. | Dec 2003 | A1 |
20070146051 | Tsen | Jun 2007 | A1 |
20110181361 | Nolan et al. | Jul 2011 | A1 |