The present invention generally relates to a voltage regulator circuit and, in particular, to a low drop out (LDO) voltage regulator circuit.
Reference is made to
In order to have a small drop out voltage and a large current to drive the load, the power transistor 14 must be a very large device (i.e., the transistor width-to-length W/L ratio, the transistor's size, must be large). Large MOSFET devices suffer from having a correspondingly high input (i.e., gate) capacitance. As a result, the bandwidth of the voltage regulator 10 is low and the power supply rejection ratio (PSRR) of the voltage regulator 10 is also low. One solution to the foregoing problems is to support a high current capacity in the input stage of the operational amplifier 12, but there is a limit on the current increase beyond which the output non-dominant pole leads to instability. Another solution is to make the output pole of the voltage regulator dominant, but this necessitates use of a large output stage compensation capacitor 30 (either off-chip or on chip but occupying a large area).
Neither of the foregoing solutions is ideal. There is accordingly a need in the art to provide a voltage regulator of the low drop out type which has improved PSRR performance.
In an embodiment, a circuit comprises: an amplifier circuit configured to generate a control signal as a function of a difference between a reference signal and a feedback signal; a filter circuit configured to filter the control signal and generate a filtered control signal; a ballast circuit comprising: a first ballast transistor coupled to source current to an output node and having a gate terminal that is directly driven by the control signal; and a second ballast transistor coupled to source current to the output node and having a gate terminal that is directly driven by the filtered control signal; and a feedback circuit coupled to the output node and configured to generate the feedback signal.
In an embodiment, a method comprises: determining a difference between a reference signal and a feedback signal; generating a control signal in response to said difference; filtering the control signal to generate a filtered control signal; modulating a conductivity of a first ballast transistor in response to the control signal to generate a first current; modulating a conductivity of a second ballast transistor in response to the filtered control signal to generate a second current; applying the first and second currents to an output node to generate an output voltage; and generating the feedback signal from the output voltage.
In an embodiment, a method comprises: selecting a size of a ballast transistor for a low drop out (LDO) voltage regulator application, said size comprising a transistor width W and a transistor length L; splitting the ballast transistor into a first ballast transistor and a second ballast transistor by a factor M, wherein the first ballast transistor has a size comprising a transistor width W/M and a length L and wherein the second ballast transistor has a size comprising a transistor width of W(1-1/M) and a length L; and selecting a frequency response of a filter circuit for filtering a control signal to be applied to the control terminal of the first ballast transistor in order to generate a filtered control signal to be applied to the control terminal of the second ballast transistor.
For a better understanding of the embodiments, reference will now be made by way of example only to the accompanying figures in which:
Reference is now made to
Although the illustrated example embodiment utilizes p-channel MOSFETs for the ballast transistors, it will be understood that in an alternative embodiment n-channel MOSFETs could instead be used for transistors 114a and 114b. Still further, MOSFET type transistors are not the only possible transistor types which could be used. Any suitable transconductance circuit device with a control terminal could be configured for use as a ballast transistor. Indeed, bipolar transistors of either NPN or PNP type present another option for ballast transistor selection.
The circuit configuration of
Consider once again the LDO voltage regulator 10 of
The value M represents the split factor between the fine control path through the first ballast transistor 114a and the coarse control path through the second ballast transistor 114b. The value of M can be selected by the circuit designer depending on any one of a number of design considerations. An important design consideration concerns whether the load 120 is: a) an analog-type circuit load (characterized by a load circuit having a relatively higher output impedance—such as, on the order of a few Kilo ohms to a few Mega ohms), or b) a digital-type circuit load (characterized by a load circuit having a relatively lower output impedance). In the event that the load 120 is of the analog-type, the value for M can be relatively higher. Conversely, in the event that the load 120 is of the digital-type, the value for M can be relatively lower. In fact, for digital-type load circuits, based on the overall overshoot and undershoot on the output voltage Vout, the average switching current can be used to select the value of M.
Thus, a method for circuit design includes first selecting a size of a ballast transistor for a desired low drop out (LDO) voltage regulator application, wherein the size comprises a transistor width W and a transistor length L. The circuit designer then splits the ballast transistor by a factor M into a first ballast transistor and a second ballast transistor. With this split, the first ballast transistor will have a size which comprises a transistor width W/M and a length L and the second ballast transistor will have a size comprising a transistor width of W(1-1/M) and a length L. Once the design for the ballast circuit is made, the LDO voltage regulator circuit for the LDO voltage regulator application can be built using the first and second ballast transistors 114a and 114b coupled in parallel with each other. The circuit design process further includes selecting the frequency response of the low pass filter circuit and building a corresponding LPF 124 so that the first ballast transistor is gate driven by the voltage control signal and the second ballast transistor is gate driven by a low pass filtered version of the voltage control signal.
The input gate capacitance of the ballast transistor is the most important factor in degradation of high frequency PSRR. An operational advance of the LDO voltage regulator 100 of
A further advantage of the LDO voltage regulator 100 of
The split ballast transistor configuration further enables implementation of a LDO voltage regulator circuit that is input pole dominated to possess improved PSRR performance because the zero in the PSRR curve is pushed to a higher frequency dependent on the compensation strategy used in the operational amplifier. If the input pole dominance is accomplished by having a compensation capacitor through output to a low impedance/current buffer (such as with the source node of a cascode transistor or a common gate cascode transistor), then the zero is pushed to a higher frequency by a value of M*M. It will be noted that in an absence of use of the split ballast transistor configuration, the same improvement in PSRR performance would require increasing the input stage bias current by a factor of M. In any event, the implementation with the split ballast transistor maintains the output non-dominant pole and unity gain frequency so that there is no adverse impact on stability.
There are significant advantages of the split ballast transistor configuration. As an example, consider M=10. In such a case, there is a power saving by a factor of 10 in the input bias current (for an input pole dominated LDO voltage regulator circuit). Furthermore, where an output pole dominated implementation for the LDO voltage regulator circuit is not possible, the split ballast transistor configuration can enable an output pole dominated design with a capacitor at the output stage that is smaller by a factor of 10. In other words, stability of the LDO voltage regulator circuit can be achieved with an output stage capacitor CL of the regulator circuit that is 10 times smaller than would be needed with the
Reference is now made to
A control circuit 202 controls enabling of the LPF 124 through controlled actuation of the switching circuit 200 in response to the enable signal En. For example, at start-up of the LDO voltage regulator the control circuit 202 actuates the switching circuit 200 to disable (i.e., bypass) the LPF 124. After regulator load current is active at the output node 116, the control circuit 202 deactuates the switching circuit 200 to enable the LPF 124. The control circuit 202 includes an input 204 coupled to the output node 116 and configured to sense load current.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims.
This application claims the priority benefit of U.S. Provisional Application for Patent No. 62/747,827 filed Oct. 19, 2018, the disclosure of which is incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62747827 | Oct 2018 | US |