1. Field of the Invention
The present invention relates to a voltage regulator circuit applied to an IC for driving a liquid crystal panel used in a mobile telephone, a digital camera or the like.
2. Description of Related Art
A liquid crystal panel driving IC used in a mobile telephone, a digital camera or the like is increasingly made faster in transmission of data (as high-speed serial transmission) and smaller in size. Due to this, the liquid crystal panel driving IC is often designed by a fine and low voltage process (hereinafter, referred to as “the low voltage process”) capable of using higher-speed and smaller-sized elements. In such a low voltage process, a voltage with which an element is broken down (withstand voltage of the element) necessarily falls. It is, therefore, required to pay attention to the range of a voltage to be used.
Furthermore, a power supply voltage (battery voltage) supplied from a power supply (battery) to the liquid crystal panel driving IC is often higher than the voltage used in such a low voltage process. Due to this, it is required to use the power supply voltage after regulating the voltage to an appropriate voltage using a voltage regulator circuit included in the liquid crystal panel driving IC.
Moreover, in a normal case, the power supply voltage is stabilized by a device (such as a stabilization circuit) arranged between the power supply and the liquid crystal panel driving IC, and is supplied to the liquid crystal panel driving IC as a supply voltage as a supply voltage. However, not only an average consumption current but also an instantaneous consumption current is desired to be as low as possible for the liquid crystal panel driving IC since the stabilization circuit includes such a function as a function to prevent overcurrent.
The differential amplifier circuit AMP1 is connected to a high-voltage power supply [VDD] supplying a high voltage VDD and a low-voltage power supply [VSS] supplying a low-voltage VSS (ground voltage GND) lower than the high-voltage VDD, and operates with the voltage between the high-voltage VDD and the low-voltage VSS. The differential amplifier circuit AMP1 includes a positive-side input terminal +IN that is a first input terminal, a negative-side input terminal −IN that is a second input terminal, and an output terminal. A reference voltage Vref is supplied to the positive-input terminal +IN as the supply voltage.
One end of the resistor element R1 is connected to the output terminal of the differential amplifier circuit AMP1. One end of the resistor element R2 is connected to the other end of the resistor element R1, and the other end of the resistor element R2 is connected to the low-voltage power supply [VSS]. One end of the resistor element R2 is also connected to the negative-side input terminal −IN via a signal line. One end of a smoothing capacitor C1 is connected to the output terminal of the differential amplifier circuit AMP1 and one end of the resistor element R1 via an output node, and the other end of the smoothing capacitor C1 is connected to the low-voltage power supply [VSS].
The resistor elements R1 and R2 divide an output voltage Vout100 output from the differential amplifier circuit AMP1 into voltages to generate a divided voltage Vmon100 on one end of the resistor element R2. The differential amplifier circuit AMP1 amplifies the difference between the reference voltage Vref supplied to the positive-side input terminal +IN and the divided voltage Vmon100 supplied to the negative-side input terminal −IN. The smoothing capacitor C1 smoothes the output voltage Vout100 output from the differential amplifier circuit AMP1.
Sources of the transistors MN1 and MN2 are connected to one node in common. Gates of the transistors MN1 and MN2 are used as the negative-side input terminal −IN and the positive-side input terminal +IN of the differential amplifier circuit AMP, respectively.
A first constant current source is provided between the sources of the transistors MN1 and MN2 and the low-voltage power supply [VSS]. For example, the first constant current source is a third N channel MOS transistor MN3 (hereinafter, referred to as “the transistor MN3”). The sources of the transistors MN1 and MN2 are connected to the drain of the transistor MN3, and the low-voltage power supply [VSS] is connected to the source thereof. A bias voltage Vbias is supplied to the gate of the transistor MN3 for turning on the transistor MN3.
Sources of the transistors MP1 and MP2 are connected to the high-voltage power supply [VDD] in common, gates thereof are connected to one node in common, and drains thereof are connected to drains of the transistors MN1 and MN2, respectively. The gate of the transistor MP1 is connected to the drain of the transistor MN1.
The source of the transistor MP3 is connected to the high-voltage power supply [VDD], the gate thereof is connected to the drain of the transistor MN2, and the drain thereof is connected to one end of the resistor element R1.
A second constant current source is provided between the drain of the transistor MP3 and the low-voltage power supply [VSS]. For example, the second constant current source is a fourth N channel MOS transistor MN4 (hereinafter, referred to as “the transistor MN4”). The drain of the transistor MP3 is connected to the drain of the transistor MN4 and the low-voltage power supply [VSS] is connected to the source thereof. The bias voltage Vbias is supplied to the gate of the transistor MN4 for turning on the transistor MN4.
Next, operation performed by the voltage regulator circuit 110 will be described below.
The reference voltage Vref is supplied to the positive-side input terminal +IN of the differential amplifier circuit AMP1, and the divided voltage Vmon100 is supplied to the negative-side input terminal −IN of the differential amplifier circuit AMP1. Due to this, the differential amplifier circuit AMP1 operates so that the voltage supplied to the negative-side input terminal −IN is equal to that supplied to the positive-side input terminal +IN, that is, equal to the reference voltage Vref.
If Vref>Vmon 100 (namely, if the output voltage Vout100 is lower than a voltage-of-interest), then an ON-resistance of the transistor MP3 and a current 1100 falls in the smoothing capacitor C1 via the differential amplifier circuit AMP1 from the high-voltage power supply [VDD]. As a result, the output voltage Vout100 rises. If Vref<Vmon100 (if the output voltage Vout100 is higher than the voltage-of-interest), then the ON-resistance of the transistor MP3 rises, and a current Isink flows in the transistor MN4 included in the differential amplifier circuit AMP1 from the smoothing capacitor C1. As a result, the output voltage Vout falls. By repeating this operation, the output voltage Vout100 is made constant to the voltage-of-interest. In this case, the output voltage Vout100=voltage-of-interest is represented by the following Equation.
Vout=Vref×(R1+R2)/R2
As stated above, the power supply voltage is often higher than the voltage that can be used in a low voltage process. Due to this, the stabilization circuit stabilizes the power supply voltage and supplies the stabilized power supply voltage to the liquid crystal panel driving IC as the supply voltage. This stabilization circuit includes an overcurrent prevention circuit for preventing an overcurrent. The voltage regulator circuit 100 included in the liquid crystal driving IC regulates the supply voltage from the stabilization circuit to an appropriate voltage and supplies the regulated supply voltage to the low voltage logic circuit as the output voltage Vout. Operation performed by the voltage regulator circuit 110 when the liquid crystal panel driving IC is turned on in such a case will be considered.
Normally, a power supply starting sequence is applied to the liquid crystal panel driving IC.
When the liquid crystal panel driving IC is not turned on, then the low-voltage power supply [VSS] is connected to an output of the differential amplifier circuit AMP1, that is, to the output node, and the low-voltage power supply voltage VSS (the ground voltage GND) is supplied to the differential amplifier circuit AMP1 from the low-voltage power supply [VSS]. When the liquid crystal panel driving IC is turned on, then the high-voltage power supply voltage VDD and the reference voltage Vref are generated, and the output of the differential amplifier circuit AMP1 is disconnected from the low-voltage power supply [VSS]. That is, the voltage regulator circuit 110 starts.
First, the output voltage Vout100 is 0 [V] and charge of the smoothing capacitor C1 is zero at the moment the voltage regulator circuit 110 starts. In this case, the reference voltage Vref and the divided voltage Vmon100 satisfy Vref>Vmon100. A gate voltage Vg of the transistor MP3 is near 0 [V] to turn the transistor MP3 almost into the ON-state. Due to this, the ON-resistance of the transistor MP3 is very low. It is to be noted that a transistor having a large gate width is normally used as the transistor MP3 so as to ensure capability at normal time. Next, to charge the smoothing capacitor C1, the current 1100 flows in the smoothing capacitor C1 via the differential amplifier AMP1 from the high-voltage power supply [VDD]. However, the current I100 becomes very high as the inrush current since the ON-resistance of the transistor MP3 is very low. The current I100 at this time is referred to as “the inrush current”. If the inrush current is high, such a problem possibly occurs that the overcurrent prevention circuit of the stabilizing circuit operates.
Furthermore, the output voltage Vout100 rapidly rises and exceeds the voltage-of-interest. The voltage which excesses the voltage-of-interest in the output voltage Vout100 causes the current Isink to flow into the transistor MN4 included in the differential amplifier circuit AMP1 from the smoothing capacitor C1. As a result, the output voltage Vout100 is to fall down to the voltage-of-interest. However, the current Isink is normally low and it takes time for the output voltage Vout100 to be equal to the voltage-of-interest, resulting in occurrence of overshoot. If overshoot occurs, then a voltage of the low voltage logic circuit that uses the output of the voltage regulator circuit main body 110 as a power supply exceeds a process withstand voltage of an element, possibly causing such a defect as breakdown of the element.
A circuit described in Japanese Patent Publication JP2005-044203A will be described below.
One end of the switch SW200 is connected to the drain of the transistor MN2. The gate of the transistor MP3 is connected to the other end of the switch SW200 in place of the drain of the transistor MN2. A power-ON signal Pon200 is supplied to the switch SW200. A signal level of the signal Pon200 is High if the liquid crystal panel driving IC is turned on. At normal time, the signal level of the signal Pon200 is Low.
The switch SW200 is turned off according to the power-ON signal Pon200 (High), and otherwise turned on. That is, if the liquid crystal panel driving IC is turned on, then the switch SW200 is turned off, the transistor MP3 is not used but the transistor MP200 is used. At the normal time, the switch SW200 is turned on and the transistor MP3 is used.
However, in this case, similarly to the previous case, a gate voltage Vg of the transistor MP200 is almost 0 [V] right and the transistor MP200 is turned into an almost complete ON-state right after the liquid crystal panel driving IC is turned on. Due to this, it is difficult to sufficiently increase the ON-resistance.
According to an aspect of the present invention, a voltage regulator circuit includes: a differential amplifier circuit, a reference voltage is supplied to a first input of the differential amplifier circuit, and a smoothing capacitor is connected to an output of the differential amplifier circuit; a first resistor element whose one end is connected to the output of the differential amplifier circuit; a second resistor element whose one end is connected to another end of the first resistor element; a first switch, one end of the first switch is connected to the first input of the differential amplifier circuit, another end of the first switch is connected to a second input of the differential amplifier circuit, and the first switch is configured to be turned on in response to a first control signal; a second switch, an end of the second switch is connected to the second input of the differential amplifier circuit, another end of the second switch is connected to the second resistor element, and the second switch is turned on in response to a second control signal; and a switch control circuit configured to output the first control signal in a predetermined period from a power supply is turned on, and to output the second control signal after the predetermined period.
In the voltage regulator circuit according to an aspect of the present invention, if the voltage regulator circuit is turned on, then the switch is turned on according to the first control signal, the second switch is turned off, and the reference voltage is supplied, as a same voltage, to the first input and the second input of the differential amplifier circuit. If the voltage supplied to the first input of the differential amplifier circuit is equal to that supplied to the second input terminal thereof, a current value of the current flowing from the high-voltage power supply to the smoothing capacitor via the differential amplifier circuit is limited to low. That is, the inrush current can be reduced. Furthermore, the voltage regulator circuit according to the aspect of the present invention can reduce the overshoot because of gradual rise of the output voltage output from the differential amplifier circuit.
The above and other objects, advantages and features of the present invention will be more apparent from the following description of certain preferred exemplary embodiments s taken in conjunction with the accompanying drawings, in which:
FIG, 7 is a schematic diagram showing a configuration of the voltage regulator circuit 30 according to an embodiment of the present invention; and
Hereinafter, some embodiments of the present invention will be described below with reference to the attached drawings.
[Configuration]
An output of the power supply section 34 is connected to an input of the stabilization circuit 32. An output of the stabilization circuit 32 is connected to an input of the voltage regulator circuit 30. One end of the smoothing capacitor C1 is connected to an output of the voltage regulator circuit 30, and the other end of the smoothing capacitor C1 is grounded. The low voltage logic circuit 31 is connected to the output of the voltage regulator circuit 30.
The low voltage logic circuit 31 operates with voltage-of-interest VO that is a first voltage.
When a user performs an instruction to turn on the device, the power supply section 34 (battery) supplies a power supply voltage VB (battery voltage) that is a second voltage to the stabilization circuit 32. The power supply voltage VB is higher than the voltage-of-interest VO.
The stabilization circuit 32 stabilizes the power supply voltage VB to a supply voltage VDC and supplies the supply voltage VDC to the liquid crystal display panel driving IC. The stabilization circuit 32 includes an overcurrent prevention circuit 33 for preventing overcurrent.
The supply voltage VDC from the stabilization circuit 32 is input to the voltage regulator circuit 30 included in the liquid crystal panel driving IC as a reference voltage to be described later. The voltage regulator circuit 30 regulates the reference voltage to an appropriate voltage (voltage-of-interest VO) and supplies the appropriate voltage to the low voltage logic circuit 31 as an output voltage to be described later.
The voltage regulator circuit 30 includes a voltage regulator circuit main body 10. The voltage regulator circuit main body 10 includes a differential amplifier circuit AMP1 a first resistor element R1 (hereinafter, referred to as “the resistor element R1”), and a second resistor element R2 (hereinafter, referred to as “the resistor element R2”).
The differential amplifier circuit AMP1 is connected to a high-voltage power supply [VDD] supplying a high-voltage power supply voltage VDD and a low-voltage power supply [VSS] supplying a low-voltage power supply voltage VSS (ground voltage GND) lower than the high-voltage power supply voltage VDD. The differential amplifier circuit AMP1 operates with a voltage between the high-voltage power supply voltage VDD and the low-voltage power supply voltage VSS. The differential amplifier circuit AMP1 includes a positive-side input terminal +IN that is a first input terminal, a negative-side input terminal −IN that is a second input terminal, and an output terminal. The reference voltage Vref serving as the supply voltage VDC is supplied to the positive-side input terminal +IN.
The configuration of the differential amplifier circuit AM1 is the same as that shown in
One end of the resistor element R1 is connected to the output final of the differential amplifier circuit AM1. One end of the resistor element R2 is connected to the other end of the resistor element R1 and the other end of the resistor element R2 is connected to the low-voltage power supply [VSS]. One end of the resistor element R2 is also connected to the negative-side input terminal −IN via a signal line. One end of the smoothing capacitor C1 is connected to the output terminal of the differential amplifier circuit AMP1 and to one end of the resistor element R1 via an output node. The other end of the smoothing capacitor C1 is connected to the low-voltage power supply [VSS].
The resistor elements R1 and R2 divide an output voltage Vout output from the differential amplifier circuit AMP1 into voltages to generate a divided voltage Vmon on one end of the resistor element R2. The differential amplifier circuit AMP1 amplifies a difference between the reference voltage
Vref supplied to the positive -side input terminal +IN and the divided voltage Vmon supplied to the negative-side input terminal −IN. The smoothing capacitor C1 smoothes the output voltage Vout output from the differential amplifier circuit AMP1.
A common power supply starting sequence applied to a liquid crystal panel driving IC will now be described.
When the device is not turned on, the low-voltage power supply [VSS] is connected to the output of the differential amplifier circuit AMP1, that is, to an output node and the low-voltage power supply [VSS] supplies the low-voltage power supply voltage VSS (ground voltage). When the device is turned on, then the high-voltage power supply voltage VDD and the reference voltage Vref (ground voltage GND) are generated, and the output of the differential amplifier circuit AMP1 is then disconnected from the low-voltage power supply [VSS]. That is, the voltage regulator circuit 10 starts.
First, the output voltage Vout is 0 [V] and the charge of the smoothing capacitor C1 is zero the moment the voltage regulator circuit main body 10 starts. In this case, as stated above, a gate voltage Vg of a transistor MP3 (see
Furthermore, the output voltage Vout suddenly rises and exceeds the voltage-of-interest VO. A voltage amount of the output voltage Vout by as much as which the output voltage Vout exceeds the voltage-of-interest VO causes a current Isink (see
Considering these, the voltage regulator circuit 30 further includes a switch control circuit 20 and first and second switches SW1 and SW2 (hereinafter, referred to as “the switches SW1 and SW2”) for reducing the inrush current and the overshoot.
The switch SW1 is provided between the positive -side input terminal +IN and the negative-side input terminal −IN. Specifically, one end of the switch SW1 is connected to the positive-side input terminal IN and the other end of the switch SW1 is connected to the negative-side input terminal −IN.
The switch SW2 is provided on a signal line connecting the negative-side input terminal −IN to one end of the resistor element R2. Specifically, one end of the switch SW2 is connected to the negative-side input terminal −IN and the other end of the switch SW2 is connected to one end of the resistor element R2.
A first control signal CTR1 (hereinafter, referred to as “the control signal CTR1”) is supplied to the switch SW1 from the switch control circuit 20. If a signal level of the control signal CTR1 is High, the switch SW1 is turned on. If the signal level of the control signal CTR1 is Low, the switch SW1 is turned off.
A second control signal CTR2 (hereinafter, referred to as “the control signal CTR2”) is supplied to the switch SW2 from the switch control circuit 20. If a signal level of the control signal CTR2 is High, the switch SW2 is turned on. If the signal level of the control signal CTR2 is Low, the switch SW2 is turned off. The control signal CTR2 has a signal level inverted with respect to a signal level of the control signal CTR1.
The switch control circuit 20 sets the signal level of the control signal CTR1 High and that of the control signal CTR2 Low in a period before a predetermined period passes since the device is turned on. In this case, the switch SW1 is turned on and the switch SW2 is turned off. The control signals CTR1 and CTR2 supplied during this period will be described later in detail.
At normal time (after the predetermined period), the switch control circuit 20 sets the signal level of the control circuit CTR1 Low and that of the control signal CTR2 High. In this case, the switch SW1 is turned off and the switch SW2 is turned on.
A configuration of the switch control circuit 20 will be described. The switch control circuit 20 includes a converter COMP1, a negative AND arithmetic circuit NAND1, and a NOT arithmetic circuit INV1.
The comparator COMP1 is connected to the high-voltage power supply [VDD] and the low-voltage power supply [VSS], and operates with a voltage between the high-voltage power supply voltage VDD and the low-voltage power supply voltage VSS. The comparator COMP1 includes a positive-side input terminal that is a first input terminal, a negative-side input terminal that is a second input terminal, and an output terminal. The reference voltage Vref is supplied to the positive-side input terminal of the comparator COMP1 as a supply voltage. The negative-side input terminal of the comparator COMP1 is connected to one end of the resistor element R2, and the divided voltage Vmon is supplied to the negative-side input terminal of the comparator COMP1. The comparator COMP1 compares the divided voltage Vmon with the reference voltage Vref and outputs a comparison result signal Vcomp representing a comparison result from the output terminal.
The NAND arithmetic circuit NAND1 includes a first input terminal, a second input terminal, and an output terminal. The first input terminal of the NAND arithmetic circuit NAND1 is connected to the output terminal of the comparator COMP1, and the comparison result signal Vcomp is supplied to the first input terminal of the NAND arithmetic circuit NAND1. A power-on signal Pon is supplied to the second input terminal of the NAND arithmetic circuit NAND1. A signal level of the power-on signal Pon is High until passage of predetermined time since the device is turned on. At normal time, the signal level of the power-on signal Pon Low. The output terminal of the NAND arithmetic circuit NAND1 is connected to the switch SW2, and an output of the NAND arithmetic circuit NANDI is supplied to the switch SW2 as the control signal CTR2.
The NOT arithmetic circuit INV1 includes an input terminal and an output terminal. The input terminal of the NOT arithmetic circuit INV1 is connected to the output terminal of the NAND arithmetic circuit NAND1. The output terminal of the NOT arithmetic circuit INV1 is connected to the switch SW1, and an output of the NOT arithmetic circuit INV1 is supplied to the switch SW1 as the control signal CTR1.
[Operation]
A normal operation will first be described. At the normal time (during a normal control period shown in
Operation performed by the voltage regulator 30 when the device is turned on will be described.
When the device is not turned on, the low-voltage power supply voltage VSS (ground voltage GND) is supplied to the output of the differential amplifier circuit AMP1. When the device is turned on (Power ON in
Right after the device is turned on (Power ON in
As stated above, the signal level of the power-ON signal Pon is High. In this case, the signal level of the output of the NAND arithmetic circuit NAND is Low and that of the output of the NOT arithmetic circuit INV is High. That is, the signal levels of the control signals CTR1 and CTR2 are High and Low, respectively. As a result, the switch SW1 is turned on according to the control signal CTR1 (High), and the switch SW2 is turned off. At this time, the negative-side input terminal −IN of the differential amplifier circuit AMP1 is connected to the positive-side input terminal +IN thereof. Accordingly, the reference voltage Vref is supplied, as a same voltage, to the positive side input terminal +IN and the negative-side input terminal −IN of the differential amplifier circuit AMP1.
The operation performed by the switch control circuit 20 for outputting the control signal CTR1 (High) when the reference voltage Vref is higher than the divided voltage Vmon during the predetermined period will be red to as “the first operation”.
Next, during the predetermined period, the voltage supplied to the positive-side input terminal +IN of the differential amplifier circuit AMP1 is equal to that supplied to the negative-side input terminal −IN thereof. At this time, a gate voltage Vg of the transistor MP3 (see
Next, during the predetermined period, the output voltage Vout exceeds the voltage-of-interest VO. At this time, the divided voltage Vmon divided by the resistor elements R1 and R2 exceeds the reference voltage Vref. In this case, because of Vref<Vmon, the signal level of the comparison result signal Vcomp output from the comparator COMP1 is inverted to Low. Since the signal level of the power-ON signal Pon is High, the signal level of the NAND arithmetic circuit NAND1 is High and that of the output of NOT arithmetic circuit INV1 is Low. That is, the signal levels of the control signals CTR1 and CTR2 are Low and High, respectively. As a result, the switch SW1 is turned off, and the switch SW2 is turned on according to the control signal CTR2 (High). At this time, the negative-side input terminal −IN of the differential amplifier circuit AMP1 is connected to one end of the resistor element R2.
Operation performed by the switch control circuit 20 for outputting the control signal CTR2 (High) if the divided voltage Vmon is higher than the reference voltage Vref during the predetermined period will be referred to as “the second operation”.
Next, during the predetermined period, the output voltage Vout is controlled to be constant. If the output voltage Vout falls to be lower than the reference voltage Vref, that is, Vref>Vmon, then the switch SW1 is turned on according to the control signal CTRL (High), the switch SW2 is turned off, and the output voltage Vout rises. That is, the switch control circuit 20 re-executes the first operation. The switch control circuit 20 alternately executes the first and second operations until the output voltage Vout is made equal to the voltage-of-interest VO.
After passage of the predetermined time, the signal level of the power-ON signal Pon is Low and the voltage regulator circuit 30 executes normal operation. That is, at the normal time, the voltage regulator circuit main body 10 is similar in state to the voltage regulator circuit 110 and the output voltage Vout is controlled to be constant to the voltage-of-interest VO.
In the voltage regulator circuit 30 according to this embodiment of the present invention, if the voltage regulator circuit 30 is turned on, then the switch SW1 is turned on according to the control signal CTR1 (High), the switch SW2 is turned off, and the reference voltage Vref is supplied, as the voltage, to the positive-side input terminal +IN and the negative-side input terminal −IN of the differential amplifier circuit AMP1. If the voltage supplied to the positive-side input terminal +IN of the differential amplifier circuit AMP1 is equal to that supplied to the negative-side input terminal −IN thereof, the current value of the current I flowing from the high-voltage power supply [VDD] to the smoothing capacitor C1 via the differential amplifier circuit AMP1 is limited to low. Specifically, if the voltage supplied to the positive-side input terminal +IN of the differential amplifier circuit AMP1 is equal to that supplied to the negative-side input terminal −IN thereof, the gate voltage Vg of the transistor MP3 (see
Although the present invention has been described above in connection with several exemplary embodiments thereof, it would be apparent to those skilled in the art that those exemplary embodiments are provided solely for illustrating the present invention, and should not be relied upon to construe the appended claims in a limiting sense.
Number | Date | Country | Kind |
---|---|---|---|
2009-102964 | Apr 2009 | JP | national |
The present application is a Continuation Application of U.S. patent application Ser. No. 12/662,371, filed on Apr. 13, 2010, which is based on Japanese patent application No. 2009-102964, filed on Apr. 21, 2009, the entire contents of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12662371 | Apr 2010 | US |
Child | 13408998 | US |