The present invention relates to voltage regulators, and more particularly to voltage regulators for high performance radio frequency (RF) systems.
Circuits in high performance radio frequency (RF) systems such as but not limited to wireless communications devices often require a regulated supply voltage. Voltage regulators are typically used to regulate the supply voltage. In some RF systems, more than one voltage regulator may be required. In other applications with spatial limitations, multiple circuits may share the same voltage regulator. For example, a voltage-controlled oscillator (VCO) circuit and a mixer circuit may share the same regulated supply. In this configuration, noise from the mixer circuit often appears at the output of the VCO circuit and vice-versa.
Referring now to
The output voltage signal 20 is input to a gate of the PMOS transistor 14. A source of the PMOS transistor 14 is connected to a supply voltage 22. A drain of the PMOS transistor 14 is connected to the non-inverting input of the opamp 12 to provide the feedback signal 18. The voltage regulator 10 outputs a regulated signal 26 to an RF subcircuit 28 of a RF system 30. When supplying a single RF subcircuit 28, the regulated signal 26 is stable and constant. When a single voltage regulator supplies more than one RF subcircuit, noise or crosstalk from one of the RF sub-circuits may appear in the output of the other RF sub-circuit.
Referring now to
A voltage regulator according to the present invention includes a master regulator circuit that receives a reference signal, that generates a master bias signal and that includes a transistor having a first gain. A first slave regulator circuit includes a first transistor having a second gain that is substantially equal to unity gain, a control terminal that receives the master bias signal from the master regulator circuit, a first terminal and a second terminal that outputs a first regulated output signal. A second slave regulator circuit includes a second transistor having a third gain that is substantially equal to unity gain, a control terminal that receives the master bias signal from the master regulator circuit, a first terminal, and a second terminal that outputs a second regulated output signal.
In other features, the master regulator circuit includes an opamp having a non-inverting input that receives the reference signal, an inverting input and an output. The output of the opamp generates the master bias signal, which is output to a control terminal of the transistor.
In yet other features, the master regulator circuit includes a current source. A second terminal of the transistor communicates with the current source and the inverting input of the opamp. The transistor includes a first terminal. The first terminals of the transistor, the first transistor and the second transistor are biased by a first voltage potential.
In still other features, the transistor, the first transistor and the second transistor are NMOS transistors. The first gain is greater than unity gain.
In still other features, a Radio Frequency (RF) circuit includes the voltage regulator, a first RF subcircuit that receives the first regulated output signal, and a second RF subcircuit that receives the second regulated output signal. The RF circuit is a wireless communications device.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements.
Referring now to
Referring now to
The master bias signal 50 is regulated based on a difference between the reference voltage signal 48 and the feedback signal 52. The master bias signal 50 is output to slave regulator circuits 82-1, 82-2, . . . , 82-m. The slave regulator circuits 82-1, 82-2, . . . , 82-m include second NMOS transistors 84-1, 84-2, . . . , 84-m. The slave regulator circuits 82-1, 82-2, . . . , 82-m provide a regulated signal to RF subcircuits 86-1, 86-2, . . . , 86-m of the RF system 30. The master bias signal 50 biases gates 88-1, 88-2, . . . , 88-m of the second NMOS transistors 84-1, 84-2, . . . , 84-m. Drain terminals 90-1, 90-2, . . . , 90-N of the second NMOS transistors 84-1, 84-2, . . . , 84-m communicate with a supply voltage 74-1, 74-2, . . . , 74-m. Source terminals 92-1, 92-2, . . . , 92-m of the second NMOS transistors 84-1, 84-2, . . . , 84-m output a regulated supply voltage signal 94-1, 94-2, . . . , 94-m to the RF subcircuits 86-1, 86-2, . . . , 86-m. In this arrangement, the second NMOS transistors 84-1, 84-2, . . . , 84-m act as source followers.
The regulated supply voltage 94-1, 94-2, . . . , 94-m is based on a difference between the reference voltage signal 48 and the feedback signal 52, which is generated in the master regulator circuit 44. Because the second NMOS transistors 84-1, 84-2, . . . , 84-m have substantially unity gain, the slave regulator circuits 82-1, 82-2, . . . , 82-m act as unity gain buffers for the master control voltage signal 50. In conventional regulator circuits shown in
Referring now to
Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present invention can be implemented in a variety of forms. Therefore, while this invention has been described in connection with particular examples thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification and the following claims.
The present disclosure is a continuation of U.S. patent application Ser. No. 13/709,627 (non U.S. Pat. No. 8,639,201), filed on Dec. 10, 2012, which is a continuation of U.S. patent application Ser. No. 12/893,604 (now U.S. Pat. No. 8,331,884), filed on Sep. 29, 2010, which is a continuation of U.S. patent application Ser. No. 11/715,027 (now U.S. Pat. No. 7,809,339), filed on Mar. 7, 2007, which is a continuation of U.S. patent application Ser. No. 10/747,522 (now U.S. Pat. No. 7,190,936), filed Dec. 29, 2003, which claims the benefit of U.S. Provisional Application No. 60/470,620, filed on May 15, 2003. The entire disclosures of the applications referenced above are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4359679 | Regan | Nov 1982 | A |
4439819 | Regan | Mar 1984 | A |
4766364 | Biamonte et al. | Aug 1988 | A |
5175488 | Moroney | Dec 1992 | A |
5901070 | Trainor | May 1999 | A |
6130526 | Yang et al. | Oct 2000 | A |
6246221 | Xi | Jun 2001 | B1 |
6529563 | Mosinskis et al. | Mar 2003 | B1 |
6765374 | Yang et al. | Jul 2004 | B1 |
6806690 | Xi | Oct 2004 | B2 |
6861827 | Yang et al. | Mar 2005 | B1 |
7030595 | Akita | Apr 2006 | B2 |
7058374 | Levesque et al. | Jun 2006 | B2 |
7106034 | Chien et al. | Sep 2006 | B2 |
7174534 | Chong et al. | Feb 2007 | B2 |
7190936 | Teo et al. | Mar 2007 | B1 |
7207054 | Richards et al. | Apr 2007 | B1 |
7274176 | Mihara | Sep 2007 | B2 |
7312652 | Brox | Dec 2007 | B2 |
7421256 | Levesque et al. | Sep 2008 | B2 |
7514909 | Burstein et al. | Apr 2009 | B2 |
7522436 | Schultz et al. | Apr 2009 | B2 |
7616463 | Bustein | Nov 2009 | B2 |
7675273 | Ko et al. | Mar 2010 | B2 |
7723968 | Okuyama et al. | May 2010 | B2 |
7809339 | Teo et al. | Oct 2010 | B1 |
7994791 | Hall et al. | Aug 2011 | B2 |
20050057234 | Yang et al. | Mar 2005 | A1 |
20050190475 | Poss | Sep 2005 | A1 |
20050208909 | Maya et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
0942531 | Sep 1999 | EP |
Entry |
---|
ANSI/IEEE Std. 802.11, 1999 Edition; Part 11: Wireless LAN Medium Access Cntrol (MAC) and Physical Layer (PHY) Specifications; Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements; pp. 1-512. |
IEEE P802.11g/D8.2 Apr. 2003 (Supplement to ANSI/IEEE std. 802.11 1999(Reaff 2003)) Draft Supplement Standard for Part 11: Wireless LAN Medium Access Cntrol (MAC) and Physical Layer (PHY) Specifications; Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements; Further Higher Data Rate Extension in the 2.4 GHz Band; pp. 1-69. |
IEEE Std. 802.11a-1999; Supplement to IEEE Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements; Part: 11 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications; High-speed Physical Layer in the 5 GHz Band; pp. 1-83. |
IEEE Std. 802.11b; Supplement to IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band; Approved Sep. 16, 1999; pp. 1-89. |
IEEE Std. 802.11b-1999/Cor Jan. 2001;IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements; Part 11: Wireless LAN Medium Access Cntrol (MAC) and Physical Layer (PHY) Specifications; Amendment 2: Higher-speed Physical Layer (PHY) extension in the 2.4 GHz band—Corrigendum 1; pp. 1-15. |
IEEE Std. 802.16; IEEE Standard for Local and metropolitan area networks; Part 16: Air Interface for Fixed Broadband Wireless Access Systems; Apr. 8, 2002; pp. 1-322. |
IEEE Std. 802.16a; IEEE Standard for Local and metropolitan area networks; Part 16: Air Interface for Fixed Broadband Wireless Access Systems—Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz; Apr. 1, 2003; pp. 1-292. |
IEEE Std. 802.16; IEEE Standard for Local and Metropolitan Area Networks; Part 16; Air Interface for Fixed Broadband Wireless Access Systems, 802.16 IEEE Standard for Local and Metropolitan Area Networks, Oct. 1, 2004, pp. i-xxxiv and pp. 1-857, IEEE Std. 802.16-2004, IEEE, United States. |
Number | Date | Country | |
---|---|---|---|
60470620 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13709627 | Dec 2012 | US |
Child | 14163365 | US | |
Parent | 12893604 | Sep 2010 | US |
Child | 13709627 | US | |
Parent | 11715027 | Mar 2007 | US |
Child | 12893604 | US | |
Parent | 10747522 | Dec 2003 | US |
Child | 11715027 | US |