The present application relates generally to an improved data processing apparatus and method and more specifically to mechanisms for power gating and bypassing a voltage regulator module.
A voltage regulator module or VRM, sometimes called processor power module (PPM), is an electronic device that provides a microprocessor the appropriate supply voltage. Voltage regulators can be used to control or adjust an incoming source of electrical potential to meet specific requirements of the electronic device. A voltage regulator can increase or decrease the voltage provided by the source, and can be used to provide a substantially constant voltage to the device despite variations in the current dissipated by the device or variations in the value of the incoming source voltage. A portion of power that is supplied to an input of a voltage regulator is dissipated by the regulator and is thus not provided at the voltage regulator's output. The amount of power provided by a voltage regulator, expressed as a percentage fraction of the power received, can be referred to as the voltage conversion efficiency of the voltage regulator.
In one illustrative embodiment, a circuit structure for power gating a voltage regulator is provided. In the illustrative embodiment, first control circuitry, in a first circuit of the voltage regulator, is configured to remove frequency components of an output voltage in a first frequency range. In the illustrative embodiment, the first control circuitry receives a first signal to power gate the output voltage of the first circuit and wherein by the first control circuitry power gating the output voltage of the first circuit causes substantially no voltage to be output by the first circuit to a primary output node. In the illustrative embodiment, second control circuitry, in a second circuit of the voltage regulator, has first and second inverters electrically coupled to the primary output node of the first circuit, the second circuit is configured to remove frequency components of the output voltage in a second frequency range. In the illustrative embodiment, the second frequency range being greater than the first frequency range. In the illustrative embodiment, the second control circuitry receives the first signal to power gate the output voltage of the second circuit. In the illustrative embodiment, the second control circuitry power gating the output voltage of the second circuit causes substantially no voltage to be output by the second circuit to the primary output node.
In another illustrative embodiment, a circuit structure for bypassing a voltage regulator is provided. In the illustrative embodiment, first control circuitry, in a first circuit of the voltage regulator, is configured to remove frequency components of an output voltage in a first frequency range. In the illustrative embodiment, the first control circuitry receives a first signal to bypass the output voltage of the first circuit and wherein by the first control circuitry bypassing the output voltage of the first circuit causes substantially the voltage of a voltage source to be output by the first circuit to a primary output node. In the illustrative embodiment, second control circuitry, in a second circuit of the voltage regulator, has first and second inverters electrically coupled to the primary output node of the first circuit, the second is circuit configured to remove frequency components of the output voltage in a second frequency range. In the illustrative embodiment, the second frequency range being greater than the first frequency range. In the illustrative embodiment, the second control circuitry receives the first signal to bypass the output voltage of the second circuit. In the illustrative embodiment, the second control circuitry bypassing the output voltage of the second circuit causes substantially the voltage of the voltage source to be output by the second circuit to the primary output node.
In yet another illustrative embodiment, a circuit structure for either power gating or bypassing a voltage regulator is provided. In the illustrative embodiment, first control circuitry, in a first circuit of the voltage regulator, is configured to remove frequency components of an output voltage in a first frequency range. In the illustrative embodiment, the first control circuitry receives either a power gate signal or a bypass signal to either power gate or bypass the output voltage of the first circuit. In the illustrative embodiment, responsive to the power gate signal being asserted to power gate to output voltage, the first control circuitry power gates the output voltage of the first circuit such that substantially no voltage to is output by the first circuit to a primary output node. In the illustrative embodiment, responsive to the bypass signal being asserted to bypass to output voltage, the first control circuitry bypasses the output voltage of the first circuit such that substantially the voltage of a voltage source is output by the first circuit to the primary output node. In the illustrative embodiment, second control circuitry, in a second circuit of the voltage regulator, has first and second inverters electrically coupled to the primary output node of the first circuit, the second circuit is configured to remove frequency components of the output voltage in a second frequency range. In the illustrative embodiment, the second control circuitry receives either the power gate signal or the bypass signal to either power gate or bypass the output voltage of the first circuit. In the illustrative embodiment, responsive to the power gate signal being asserted to power gate to output voltage, the second control circuitry power gates the output voltage of the first circuit such that substantially no voltage to is output by the first circuit to the primary output node. In the illustrative embodiment, responsive to the bypass signal being asserted to bypass to output voltage, the second control circuitry bypasses the output voltage of the first circuit such that substantially the voltage of a voltage source is output by the first circuit to the primary output node.
These and other features and advantages of the present invention will be described in, or will become apparent to those of ordinary skill in the art in view of, the following detailed description of the example embodiments of the present invention.
The invention, as well as a preferred mode of use and further objectives and advantages thereof, will best be understood by reference to the following detailed description of illustrative embodiments when read in conjunction with the accompanying drawings, wherein:
The illustrative embodiments provide a mechanism where a voltage regulator module (VRM) circuit may be extended with the functionality to override the senseamp output to provide either full-on or full-off current supply capability. The invention adds a control circuit on the path between the senseamp and the current supply device. The control circuit controls whether the senseamp output is to be used to regulate the current supply device or whether the senseamp output should be ignored. If the senseamp output is ignored, then the control circuit can either turn the current supply device fully on or fully off, causing it to act as a power gating header device.
Referring to
Circuit 110 is provided to remove frequency components of the voltage in a first frequency range to obtain an output voltage at primary output node 114 with reduced voltage deviation. In one exemplary embodiment, circuit 110 is configured to remove frequency components of the voltage in the frequency range of 0 to 10 Megahertz. Of course, in alternative embodiments of circuit 110, circuit 110 may remove frequency components in other frequency ranges. Circuit 110 includes voltage reference device 116, operational amplifier 118, and P-FET transistor 120. Operational amplifier 118 has an inverting input terminal “−”, a non-inverting input terminal “+”, and an output terminal. P-FET transistor 120 has a gate terminal (G1), a source terminal (S1), and a drain terminal (D1). Voltage reference device 116 is electrically coupled to the inverting input terminal “−” of operational amplifier 118. Voltage reference device 116 is configured to output a desired reference voltage level. The output terminal of operational amplifier 118 is electrically coupled to the gate terminal (G1) of P-FET transistor 120. The non-inverting terminal “+” of operational amplifier 118 is electrically coupled to the drain terminal (D1) of P-FET transistor 120 and further coupled to primary output node 114.
During operation of circuit 110, when the output voltage of voltage source 104 decreases, the voltage received by the non-inverting terminal “+” of operational amplifier 118 has a low logic voltage relative to a high logic voltage on the inverting terminal “−”, which induces operational amplifier 118 to output a low logic voltage. In response to the low logic voltage on the gate terminal (G1) of P-FET transistor 120, P-FET transistor 120 increases current flowing from the source terminal (S1) to the drain terminal (D1) which causes the output voltage on primary output node 114 to increase. Alternately, when the output voltage of voltage source 104 increases, the voltage received by the non-inverting terminal “+” of operational amplifier 118 has a high logic voltage relative to a low logic voltage on the inverting terminal “−”, which induces operational amplifier 118 to output a high logic voltage. In response to the high logic voltage on the gate terminal (G1) of P-FET transistor 120, P-FET transistor 120 decreases current flowing from the source terminal (S1) to the drain terminal (D1) which causes the output voltage on primary output node 114 to decrease.
Circuit 112 is provided to remove frequency components of the voltage in a second frequency range to obtain an output voltage at primary output node 114 with reduced voltage deviation. In one exemplary embodiment, circuit 112 is configured to remove frequency components of the voltage in the frequency range of 10 Megahertz to 6 Gigahertz. Of course, in alternative embodiments of circuit 112, circuit 112 may remove frequency components in other frequency ranges. Circuit 112 includes comparator circuit 122, inverters 124, 126, 128, 130, 132, and P-FET transistor 134.
Referring to
Inverter 136 includes P-FET transistor 202, N-FET transistor 204, input terminal 206, and output terminal 208. P-FET transistor 202 includes a gate terminal (G3), a source terminal (S3), and a drain terminal (D3). N-FET transistor 204 includes a gate terminal (G4), a source terminal (S4), and a drain terminal (D4). P-FET transistor 202 is electrically coupled to N-FET transistor 204. In particular, the gate terminals (G3) and (G4) are electrically coupled together at input terminal 206. The source terminal (S3) is electrically coupled to primary output node 114. The drain terminal (D3) is electrically coupled to the source terminal (S4) at output terminal 208. Output terminal 208 is electrically coupled to input terminal 206. The drain terminal (D4) is electrically coupled to electrical ground. Capacitor 140 is electrically coupled between the input terminal 206 and electrical ground. During operation, a voltage on output terminal 208 is less than the output voltage at the primary output node 114. In particular, a voltage on the output terminal 208 is approximately one-half of the voltage at the primary output node 114.
Inverter 138 includes P-FET transistor 210, N-FET transistor 212, input terminal 214, and output terminal 216. P-FET transistor 210 includes a gate terminal (G5), a source terminal (S5), and a drain terminal (D5). N-FET transistor 212 includes a gate terminal (G6), a source terminal (S6), and a drain terminal (D6). P-FET transistor 210 is electrically coupled to N-FET transistor 212. In particular, the gate terminals (G5) and (G6) are electrically coupled together at input terminal 214. Input terminal 214 is electrically coupled to the output terminal 208. The source terminal (S5) is electrically coupled to primary output node 114. The drain terminal (D5) is electrically coupled to the source terminal (S6) at output terminal 216. Output terminal 216 is electrically coupled to inverter 124. The drain terminal (D6) is electrically coupled to electrical ground.
During operation of comparator circuit 122, when an output voltage at primary output node 114 is increased, the voltage on output terminal 208 of inverter 136 is less than the output voltage on primary output node 114 which induces inverter 138 to output a high logic voltage on output terminal 216. The high logic voltage is utilized to subsequently induce P-FET transistor 134 to reduce the output voltage on primary output node 114 in response to the high logic voltage. Alternately, when the output voltage at primary output node 114 is decreased, the voltage on output terminal 208 of inverter 136 is greater than the output voltage on primary output node 114 which induces inverter 138 to output a low logic voltage on output terminal 216. The low logic voltage is subsequently utilized to induce the P-FET transistor 134 to increase the output voltage on primary output node 114 in response to the low logic voltage.
Referring to
Inverter 124 includes P-FET transistor 302, N-FET transistor 304, input terminal 306, and output terminal 308. P-FET transistor 302 includes a gate terminal (G7), a source terminal (S7), and a drain terminal (D7). N-FET transistor 304 includes a gate terminal (G8), a source terminal (S8), and a drain terminal (D8). P-FET transistor 302 is electrically coupled to N-FET transistor 304. In particular, the gate terminals (G7) and (G8) are electrically coupled together at input terminal 306. The source terminal (S7) is electrically coupled to primary output node 114. The drain terminal (D7) is electrically coupled to the source terminal (S8) at output terminal 308. Output terminal 308 is electrically coupled to input terminal 316. The drain terminal (D8) is electrically coupled to electrical ground. During operation, inverter 124 receives an output voltage at input terminal 306 from comparator circuit 122 and outputs an inverted amplified output voltage at output terminal 308.
Inverter 126 includes P-FET transistor 312, N-FET transistor 314, input terminal 316, and output terminal 318. P-FET transistor 312 includes a gate terminal (G9), a source terminal (S9), and a drain terminal (D9). N-FET transistor 314 includes a gate terminal (G10), a source terminal (S10), and a drain terminal (D10). P-FET transistor 312 is electrically coupled to N-FET transistor 314. In particular, the gate terminals (G9) and (G10) are electrically coupled together at input terminal 316. The source terminal (S9) is electrically coupled to primary output node 114. The drain terminal (D9) is electrically coupled to the source terminal (S10) at output terminal 318. Output terminal 318 is electrically coupled to input terminal 326. The drain terminal (D10) is electrically coupled to electrical ground. During operation, inverter 126 receives an output voltage at input terminal 316 from inverter 124 and outputs an inverted amplified output voltage at output terminal 318.
Inverter 128 includes P-FET transistor 322, N-FET transistor 324, input terminal 326, and output terminal 328. P-FET transistor 322 includes a gate terminal (G11), a source terminal (S11), and a drain terminal (D11). N-FET transistor 324 includes a gate terminal (G12), a source terminal (S12), and a drain terminal (D12). P-FET transistor 322 is electrically coupled to N-FET transistor 324. In particular, the gate terminals (G11) and (G12) are electrically coupled together at input terminal 326. The source terminal (S11) is electrically coupled to primary output node 114. The drain terminal (D11) is electrically coupled to the source terminal (S12) at output terminal 328. Output terminal 328 is electrically coupled to input terminal 336. The drain terminal (D12) is electrically coupled to electrical ground. During operation, inverter 128 receives an output voltage at input terminal 326 from inverter 126 and outputs an inverted amplified output voltage at output terminal 328.
Inverter 130 includes P-FET transistor 332, N-FET transistor 334, input terminal 336, and output terminal 338. P-FET transistor 332 includes a gate terminal (G13), a source terminal (S13), and a drain terminal (D13). N-FET transistor 334 includes a gate terminal (G14), a source terminal (S14), and a drain terminal (D14). P-FET transistor 332 is electrically coupled to N-FET transistor 334. In particular, the gate terminals (G13) and (G14) are electrically coupled together at input terminal 336. The source terminal (S13) is electrically coupled to primary output node 114. The drain terminal (D13) is electrically coupled to the source terminal (S14) at output terminal 338. Output terminal 338 is electrically coupled to input terminal 346. The drain terminal (D14) is electrically coupled to electrical ground. During operation, inverter 130 receives an output voltage at input terminal 336 from inverter 128 and outputs an inverted amplified output voltage at output terminal 338.
Inverter 132 includes P-FET transistor 342, N-FET transistor 344, input terminal 346, and output terminal 348. P-FET transistor 342 includes a gate terminal (G15), a source terminal (S15), and a drain terminal (D15). N-FET transistor 344 includes a gate terminal (G16), a source terminal (S16), and a drain terminal (D16). P-FET transistor 342 is electrically coupled to N-FET transistor 344. In particular, the gate terminals (G15) and (G16) are electrically coupled together at input terminal 346. The source terminal (S15) is electrically coupled to primary output node 114. The drain terminal (D15) is electrically coupled to the source terminal (S16) at output terminal 348. Output terminal 348 is electrically coupled to a gate terminal (G2) of P-FET transistor 134. The drain terminal (D16) is electrically coupled to electrical ground. During operation, inverter 132 receives an output voltage at input terminal 346 from inverter 130 and outputs an inverted amplified output voltage at output terminal 348.
It should be noted that in an alternative embodiment, voltage regulator 102 could be constructed by removing inverters 124, 126, 128, 130, 132 where inverter 138 would be directly electrically coupled to the P-FET transistor 134. Further, in other alternative embodiments, the number of inverters in the chain of inverters to amplify the voltage from the comparator circuit 122 can be greater than or less than the number of inverters shown in the chain of inverters of
Referring to
While voltage regulator 102 decreases current flow to reduce the output voltage on primary output node 114 in response to the high logic voltage and increases current flow to increase the output voltage on primary output node 114 in response to the low logic voltage, voltage regulator 102 does not provide for either completely turning on the entire current flow or completely turning off the current flow.
The source terminals (S17) and (S18) are electrically coupled together at input terminal 412. Input terminal 412 is electrically coupled to the output terminal of operational amplifier 118. The drain terminals (D17) and (D18) are electrically coupled to the drain terminal (D19) of P-FET transistor 408 and to the gate terminal (G1) of P-FET transistor 120. The gate terminal (G18) of P-FET transistor 406 is electrically coupled to a power gate (pg_on) signal 414. The gate terminal (G17) is electrically coupled to the output of inverter 410 and the input of inverter 410 is electrically coupled to the power gate signal 414. The gate terminal (G19) of P-FET transistor 408 is also electrically coupled to the output of inverter 410 and the source terminal (S19) of P-FET transistor 408 is electrically coupled to voltage source 104.
When power gate signal 414 is asserted, i.e. a “1”, the gate terminal (G18) of P-FET transistor 406 receives the “1” and turns completely off. Also, gate terminal (G17) of N-FET transistor 404 receives the inverse, a “0”, of the asserted power gate signal 414 through inverter 410, such that the gate terminal (G17) receives the “0” and turns completely off. Thus, the output of operational amplifier 118 is open to the gate terminal (G1) of P-FET transistor 120. Additionally, gate terminal (G19) of P-FET transistor 408 also receives the “0” from the output of inverter 410 and turns completely on. At this point, current from voltage source 104 flows through the source terminal (S19) to the drain terminal (D19) which causes gate terminal (G1) of P-FET transistor 120 to turn completely off. Thus, no current will flow through the source terminal (S1) to the drain terminal (D1) which causes the output voltage on primary output node 114 to be zero.
When power gate signal 414 is not asserted, i.e. a “0”, the gate terminal (G18) of P-FET transistor 406 receives the “0” and turns completely on. Also, the gate terminal (G17) of N-FET transistor 404 receives the inverse, a “1”, of the not asserted power gate signal 414 through inverter 410, such that the gate terminal (G17) receives the “1” and turns completely on. Thus, the output of operational amplifier 118 is closed to the gate terminal (G1) of P-FET transistor 120 and P-FET transistor 120 operates as described with regard to
Also, instead of the drain terminal (D16) of N-FET transistor 344 being electrically coupled to electrical ground as is illustrated in
When power gate signal 534 is asserted, i.e. a “1”, the gate terminal (G21) of P-FET transistor 526 receives the “1” and turns completely off. Also, the gate terminal (G20) of N-FET transistor 524 receives the inverse, a “0”, of the asserted power gate signal 534 through inverter 530, such that the gate terminal (G20) receives the “0” and turns completely off. Thus, the output of inverter 132 is floating to the gate terminal (G2) of P-FET transistor 134. Additionally, gate terminal (G22) of P-FET transistor 528 also receives the “0” from the output of inverter 530 and turns completely on. At this point, current from voltage source 104 flows through the source terminal (S22) to the drain terminal (D22) which causes gate terminal (G2) of P-FET transistor 134 to turn completely off. Thus, no current will flow through the source terminal (S2) to the drain terminal (D2) which causes the output voltage on primary output node 114 to float.
When power gate signal 534 is not asserted, i.e. a “0”, the gate terminal (G21) of P-FET transistor 526 receives the “0” and turns completely on. Also, the gate terminal (G20) of N-FET transistor 524 receives the inverse, a “1”, of the not asserted power gate signal 534 through inverter 530, such that the gate terminal (G20) receives the “1” and turns completely on. Thus, the inverter 132 operates as described with regard to
The source terminals (S17) and (S18) are electrically coupled together at input terminal 412. Input terminal 412 is electrically coupled to the output terminal of operational amplifier 118. The drain terminals (D17) and (D18) are electrically coupled to the source terminal (S23) of N-FET transistor 716 and to the gate terminal (G1) of P-FET transistor 120. The gate terminal (G18) of P-FET transistor 406 is electrically coupled to a voltage regulator bypass (vreg_bypass) signal 718. The gate terminal (G17) is electrically coupled to the output of inverter 410 and the input of inverter 410 is electrically coupled to the voltage regulator bypass signal 718. The gate terminal (G23) of N-FET transistor 716 is also electrically coupled to the output the voltage regulator bypass signal 718 and the drain terminal (D23) of N-FET transistor 716 is electrically coupled to ground.
When voltage regulator bypass signal 718 is asserted, i.e. a “1”, the gate terminal (G18) of P-FET transistor 406 receives the “1” and turns completely off. Also, the gate terminal (G17) of N-FET transistor 404 receives the inverse, a “0”, of the asserted voltage regulator bypass signal 718 through inverter 410, such that the gate terminal (G17) receives the “0” and turns completely off. Thus, the output of operational amplifier 118 is open to the gate terminal (G1) of P-FET transistor 120. Additionally, gate terminal (G23) of N-FET transistor 716 also receives the “1” from the voltage regulator bypass signal 718 and turns completely on. At this point, the gate terminal (G1) is pulled to ground through the source terminal (S23) and the drain terminal (D23) which causes gate terminal (G1) of P-FET transistor 120 to turn completely on. Thus, full current will flow through the source terminal (S1) to the drain terminal (D1) which causes the output voltage on primary output node 114 to be at virtual Vdd from voltage source 104.
When voltage regulator bypass signal 718 is not asserted, i.e. a “0”, the gate terminal (G18) of P-FET transistor 406 receives the “0” and turns completely on. Also, the gate terminal (G17) of N-FET transistor 404 receives the inverse, a “1”, of the not asserted voltage regulator bypass signal 718 through inverter 410, such that the gate terminal (G17) receives the “1” and turns completely on. Thus, the output of operational amplifier 118 is closed to the gate terminal (G1) of P-FET transistor 120 and P-FET transistor 120 operates as described with regard to
Also, instead of the drain terminal (D16) of N-FET transistor 344 being electrically coupled to electrical ground as is illustrated in
When voltage regulator bypass signal 838 is asserted, i.e. a “1”, the gate terminal (G21) of P-FET transistor 526 receives the “1” and turns completely off. Also, the gate terminal (G20) of N-FET transistor receives the inverse, a “0”, of the asserted voltage regulator bypass signal 838 through inverter 530, such that the gate terminal (G20) receives the “0” and turns completely off. Thus, the output of inverter 132 is floating to the gate terminal (G2) of P-FET transistor 134. Additionally, gate terminal (G24) of N-FET transistor 836 also receives the “1” from voltage regulator bypass signal 838 and turns completely on. At this point, the gate terminal (G2) is pulled to ground through the source terminal (S24) and the drain terminal (D24) which causes gate terminal (G2) of P-FET transistor 134 to turn completely on. Thus, full current will flow through the source terminal (S2) to the drain terminal (D2) which causes the output voltage on primary output node 114 to be at virtual Vdd from voltage source 104.
When voltage regulator bypass signal 838 is not asserted, i.e. a “0”, the gate terminal (G21) of P-FET transistor 526 receives the “0” and turns completely on. Also, the gate terminal (G20) of N-FET transistor 524 receives the inverse, a “1”, of the not asserted voltage regulator bypass signal 838 through inverter 530, such that the gate terminal (G20) receives the “1” and turns completely on. Thus, the inverter 132 operates as described with regard to
Input terminal 412 is electrically coupled to the output terminal of operational amplifier 118. The drain terminals (D17) and (D18) are electrically coupled to the drain terminal (D19) of P-FET transistor 408, to the source terminal (S23) of N-FET transistor 716, and to the gate terminal (G1) of P-FET transistor 120. The gate terminal (G18) of P-FET transistor 406 is electrically coupled to an OR function of power gate (pg_on) signal 414 and voltage regulator bypass (vreg_bypass) signal 718. The gate terminal (G17) is electrically coupled to the output of inverter 410 and the input of inverter 410 is electrically coupled to an OR function of power gate signal 414 and voltage regulator bypass signal 718. The gate terminal (G19) of P-FET transistor 408 is electrically coupled to the complement of power gate signal 414 and the source terminal (S19) of P-FET transistor 408 is electrically coupled to voltage source 104. The gate terminal (G23) of N-FET transistor 716 is also electrically coupled to the voltage regulator bypass signal 718 and the drain terminal (D23) of N-FET transistor 716 is electrically coupled to ground.
When power gate signal 414 is asserted, i.e. a “1”, the gate terminal (G18) of P-FET transistor 406 receives the “1” and turns completely off. Also, the gate terminal (G17) of N-FET 404 transistor receives the inverse, a “0”, of the asserted power gate signal 414 through inverter 410, such that the gate terminal (G17) receives the “0” and turns completely off. Thus, the output of operational amplifier 118 is open to the gate terminal (G1) of P-FET transistor 120. Additionally, gate terminal (G19) of P-FET transistor 408 receives a “0” from the complement of power gate signal 414 and turns completely on. At this point, current from voltage source 104 flows through the source terminal (S19) to the drain terminal (D19) which causes gate terminal (G1) of P-FET transistor 120 to turn completely off. Thus, no current will flow through the source terminal (S1) to the drain terminal (D1) which causes the output voltage on primary output node 114 to float.
When voltage regulator bypass signal 718 is asserted, i.e. a “1”, the gate terminal (G18) of P-FET transistor 406 receives the “1” and turns completely off. Also, the gate terminal (G17) of N-FET transistor 404 receives the inverse, a “0”, of the asserted voltage regulator bypass signal 718 through inverter 410, such that the gate terminal (G17) receives the “0” and turns completely off. Thus, the output of operational amplifier 118 is open to the gate terminal (G1) of P-FET transistor 120. Additionally, gate terminal (G23) of N-FET transistor 716 also receives the “1” from the voltage regulator bypass signal 718 and turns completely on. At this point, the gate terminal (G1) is pulled to ground through the source terminal (S23) and the drain terminal (D23) which causes gate terminal (G1) of P-FET transistor 120 to turn completely on. Thus, full current will flow through the source terminal (S1) to the drain terminal (D1) which causes the output voltage on primary output node 114 to be at virtual Vdd from voltage source 104.
When power gate signal 414 and voltage regulator bypass signal 718 are both not asserted, i.e. a “0”, the gate terminal (G18) of P-FET transistor 406 receives the “0” and turns completely on. Also, the gate terminal (G17) of N-FET transistor 404 receives the inverse, a “1”, of the not asserted power gate signal 414 and not asserted voltage regulator bypass signal 718 through inverter 410, such that the gate terminal (G17) receives the “1” and turns completely on. Thus, the output of operational amplifier 118 is closed to the gate terminal (G1) of P-FET transistor 120 and P-FET transistor 120 operates as described with regard to
Additionally, gate terminal (G23) of N-FET transistor 716 also receives the “0” from voltage regulator bypass signal 718 and turns completely off. At this point, no current flows through the source terminal (S23) through the drain terminal (D23) to ground. Thus, P-FET transistor 120 operates as described with regard to
Also, instead of the drain terminal (D16) of N-FET transistor 344 being electrically coupled to electrical ground as is illustrated in
When power gate signal 534 is asserted, i.e. a “1”, the gate terminal (G21) of P-FET transistor 526 receives the “1” and turns completely off. Also, the gate terminal (G20) of N-FET transistor 524 receives the inverse, a “0”, of the asserted power gate signal 534 through inverter 530, such that the gate terminal (G20) receives the “0” and turns completely off. Thus, the output of inverter 132 is floating to the gate terminal (G2) of P-FET transistor 134. Additionally, gate terminal (G22) of P-FET transistor 528 also receives the “0” from the complement of power gate signal 534 and turns completely on. At this point, current from voltage source 104 flows through the source terminal (S22) to the drain terminal (D22) which causes gate terminal (G2) of P-FET transistor 134 to turn completely off. Thus, no current will flow through the source terminal (S2) to the drain terminal (D2) which causes the output voltage on primary output node 114 to float.
When voltage regulator bypass signal 838 is asserted, i.e. a “1”, the gate terminal (G21) of P-FET transistor 526 receives the “1” and turns completely off. Also, the gate terminal (G20) of N-FET transistor 524 receives the inverse, a “0”, of the asserted voltage regulator bypass signal 838 through inverter 530, such that the gate terminal (G20) receives the “0” and turns completely off. Thus, the output of inverter 132 is floating to the gate terminal (G2) of P-FET transistor 134. Additionally, gate terminal (G24) of N-FET transistor 836 also receives the “1” from voltage regulator bypass signal 838 and turns completely on. At this point, the gate terminal (G2) is pulled to ground through the source terminal (S24) and the drain terminal (D24) which causes gate terminal (G2) of P-FET transistor 134 to turn completely on. Thus, full current will flow through the source terminal (S2) to the drain terminal (D2) which causes the output voltage on primary output node 114 to be at virtual Vdd from voltage source 104.
When power gate signal 534 is not asserted, i.e. a “0”, the gate terminal (G21) of P-FET transistor 526 receives the “0” and turns completely on. Also, the gate terminal (G20) of N-FET transistor 524 receives the inverse, a “1”, of the not asserted power gate signal 534 through inverter 530, such that the gate terminal (G20) receives the “1” and turns completely on. Thus, the inverter 132 operates as described with regard to
When voltage regulator bypass signal 838 is not asserted, i.e. a “0”, the gate terminal (G21) of P-FET transistor 526 receives the “0” and turns completely on. Also, the gate terminal (G20) of N-FET transistor 524 receives the inverse, a “1”, of the not asserted voltage regulator bypass signal 838 through inverter 530, such that the gate terminal (G20) receives the “1” and turns completely on. Thus, the inverter 132 operates as described with regard to
When power gating is desired in electrical system 1200, then power gate signal 414 and power gate signal 534, which are the same signal in this illustrative embodiment, are asserted and control circuitry 1002 and control circuitry 1102 operate in the manner described above in
Referring now to
The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
Thus, the illustrative embodiments provide mechanisms where a voltage regulator module (VRM) circuit may be extended with the functionality to override the senseamp output to provide either full-on or full-off current supply capability. The invention adds a control circuit on the path between the senseamp and the current supply device. The control circuit controls whether the senseamp output is to be used to regulate the current supply device or whether the senseamp output should be ignored. If the senseamp output is ignored, then the control circuit can either turn the current supply device fully on or fully off, causing it to act as a power gating header device.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.