Voltage regulators are commonly used in electronic devices to maintain a load current at a specified proper voltage level for powering the various electronic components of the device. In a typical low dropout voltage regulator, the load current is passed through a power transistor (a pass element) that is regulated by a feedback loop (a control circuit) that ensures the voltage level output by the power transistor is held relatively constant. The control circuitry that regulates the operation of the power transistor is typically contained in an integrated circuit (IC). The power transistor, however, may or may not also be contained in the integrated circuit along with the other circuitry.
Sometimes, whether an electronic device maker uses an internal power transistor or an external power transistor may be simply a matter of design choice. However, the choice is often constrained by other design requirements. For instance, voltage regulators of the second design type (with the external power transistor 110) typically are better able to handle greater load current levels than are voltage regulators of the first design type (with the internal power transistor 104). Additionally, voltage regulators of the first design type are typically smaller than voltage regulators of the second design type. Other differences can also constrain the design choice. Therefore, the two design types are usually not interchangeable.
In either of the voltage regulator design types, some form of frequency compensation scheme must be implemented to ensure proper functioning of the voltage regulator (e.g. 100 or 106) and of the electronic components powered thereby. Due to the differences in device parameters of the internal and external power transistors (e.g. width/length ratio, threshold voltage, transconductance, gate capacitance, etc.), which can be different by several orders of magnitude, among other considerations, the potential frequency compensation schemes for one design type are generally incompatible with the other design type. Therefore, the designs for the different types of voltage regulators (e.g. 100 and 106), and the ICs (e.g. 102 and 108) used therein, must implement very different and non-interchangeable frequency compensation schemes.
As a consequence of the inherent differences between the two general voltage regulator types and the relative advantages and disadvantages of each, it is necessary for designers and manufacturers of the voltage regulator ICs (e.g. 102 and 108) to produce at least two different voltage regulator ICs (or families of voltage regulator ICs), so they can satisfy their customers' needs for either type of voltage regulator circuitry, since the same voltage regulator IC cannot be used in both types of applications, even though either design type could conceivably be used in some of the same electronic devices. In other words, the designers and manufacturers of the voltage regulator ICs must maintain availability of at least two SKUs (stock keeping units) for multiple products that are somewhat redundant in spite of being of incompatible and non-interchangeable designs. As is usually the case, however, larger numbers of SKUs generally lead to lower efficiencies in resource utilization and inventory management and, thus, higher costs for each SKU.
According to various method and apparatus embodiments of the present invention, a voltage regulator IC has an internal power transistor, but can also operate in applications that include an external power transistor. The IC determines in which type of application it is, preferably almost immediately upon power-up, by detecting whether the external power transistor is connected thereto. In response, the IC then automatically configures an internal frequency compensation scheme that depends on whether the external power transistor is present.
According to more specific embodiments, the IC monitors two I/O nodes, pins or ports, rather than having to rely on some kind of programming or external intervention, to determine whether the external power transistor is connected to the IC. At one of the I/O nodes, the IC receives a supply voltage in both configurations (i.e. with or without the external power transistor). At the other I/O node, the IC receives the supply voltage when there is no external power transistor, but uses this node to control the external power transistor when it is present. There is, thus, a significant voltage drop (e.g. due to the Vgs of the external power transistor) between these two I/O nodes when the external power transistor is present, but no such voltage drop in the absence of the external power transistor. The IC, therefore, can determine in which type of application it is by comparing the voltages at these two I/O nodes.
According to other more specific embodiments, when the IC detects the presence of the external power transistor, the IC preferably turns on a switch which causes a capacitor to be included in the regulation feedback loop, thereby automatically configuring the frequency compensation scheme to include the capacitor in the loop. On the other hand, when the IC detects the absence of the external power transistor, the IC preferably turns off the switch, which causes the capacitor not to be included in the regulation feedback loop, thereby automatically configuring the frequency compensation scheme not to include the capacitor in the loop.
A more complete appreciation of the present disclosure and its scope, and the manner in which it achieves the above noted improvements, can be obtained by reference to the following detailed description of presently preferred embodiments taken in connection with the accompanying drawings, which are briefly summarized below, and the appended claims.
Voltage regulators 140 and 142 are shown in
The internal and external power transistors 146 and 152 are shown as P-channel MOSFETs. However, it is understood that the present invention is not necessarily so limited, but can be adapted for use with N-channel MOSFETs, as well as with BJTs, with appropriate modifications. Additionally, the circuitry in
In
In the configuration of
In the configuration of
In the configuration of
In the configuration of
In other words, the second and third I/O nodes 160 and 162 have different functions, depending on whether the voltage regulator IC 144 is in the first or second configuration. Specifically, in the first configuration, the second I/O node 160 is an input node (for the supply voltage), and the third I/O node 162 is an output node (for the output voltage). On the other hand, in the second configuration, the second I/O node 160 is an output node (for a control, or gate drive, signal), and the third I/O node 162 is an input node (for a regulation feedback signal).
Additionally, the current that can thus be provided to the load 154/156 in the second configuration is typically substantially greater than the current that can be provided to the load 148/150 in the first configuration of
The voltage regulator IC 144, in the illustrated embodiment shown in
In the first configuration (
The internal power transistor 146 and the sense transistor 170 are driven by the transistor 172. The transistor 172 is preferably a source follower with low output impedance. The source follower transistor 172 may be considered part of the amplifier 186 and, with the current source 188, drives the internal power transistor 146 and the sense transistor 170 according to the control function of the amplifier 186.
The amplifier 186 receives a reference voltage (on line 194) from the reference voltage generator 190 at a negative input and a feedback voltage from a voltage divider (i.e. the resistors 176 and 178) at a positive input. The output of the amplifier 186 controls the source follower transistor 172 and, thus, the internal power transistor 146 and the sense transistor 170. Under this control, the internal power transistor 146 produces the output voltage at the third I/O node 162. The output voltage, through the sense resistor 174 and the voltage divider 176/178, forms the feedback voltage that completes a feedback loop at the positive input of the amplifier 186. This feedback loop generally regulates the output voltage at the third I/O node 162 to a desired voltage level, or to within a specified load regulation range.
The sense voltage generator 192 preferably subtracts an appropriate amount (e.g. about 100 millivolts) from the supply voltage 164 or 166 (received, e.g., at the first I/O node 158) to establish a sense voltage (on line 196) that is provided to a positive input of the comparator 184. In the first configuration (
In the first configuration (
In the second configuration (
The output voltage at the drain of the external power transistor 152 is fed back at the third I/O node 162 through the sense resistor 174 and the voltage divider 176/178 to form the feedback voltage supplied to the positive input of the amplifier 186. With the feedback voltage and the reference voltage on the line 194, the amplifier 186 controls the source follower transistor 172 and, thus, the internal power transistor 146 and the sense transistor 170. However, in this configuration, the presence of the external power transistor 152 and the external pull-up resistor 168 results in the feedback control loop causing the internal power transistor 146 (and the sense transistor 170) to maintain the gate voltage of the external power transistor 152 to be less than the supply voltage 166 by about the gate-source voltage drop (Vgs) threshold required to operate the external power transistor 152. By thus maintaining the gate voltage of the external power transistor 152 relative to the supply voltage 166, the feedback control loop can automatically adjust the load current through the external power transistor 152 and regulate the output voltage over a broad range of the supply voltage 166.
A gate-source voltage drop (Vgs) of about one Volt (or greater), for example, is common. Such a Vgs results in the gate voltage, i.e. the voltage at the second I/O node 160, which is the voltage supplied to the negative input of the comparator 184, being substantially less than the sense voltage on line 196, which is preferably the supply voltage 166 minus an appropriate amount, e.g. about 100 millivolts. In this case, therefore, the comparator 184 produces a second appropriate voltage level (e.g. a high voltage), which turns on, or closes, the switch 182. (The comparator 184 is, thus, an internal sensor that determines whether the external power transistor 152 is connected to the voltage regulator IC 144.) Since the switch 182 is closed when the voltage regulator IC 144 is in the second configuration (
When the capacitor 180 is connected in this manner, it forms a standard “Miller compensation network” with the high gain of the external power transistor 152 and splits the dominant and non-dominant poles of the feedback control loop on opposite sides of the capacitor 180. The gate of the source follower transistor 172, thus, becomes the dominant pole of the feedback control loop in this configuration. The low output impedance of the source follower transistor 172 ensures that the pole at the gate of the internal power transistor 146 is moved to high frequency. Additionally, in this configuration, there is insufficient current through the sense transistor 170 to cause a zero by the sense resistor 174 and the load capacitor 156, as was the case in the first configuration (
When the voltage regulator IC 144 starts up, the voltage at the second I/O node 160 drops as the feedback control loop drives it down. Once the voltage at the second I/O node 160 is lower than the sense voltage on line 196, the comparator 184 outputs the appropriate voltage level (e.g. the high voltage) that turns on the switch 182 and connects the capacitor 180 into the feedback control loop. Additionally, the comparator 184 is preferably a voltage comparator, or other appropriate device which operates relatively fast, e.g. compared to the amplifier 186. Therefore, before the feedback control loop settles following startup, the comparator 184 will have determined its output (e.g. high or low), and the switch 182 will have been turned on or off accordingly. In other words, the frequency compensation scheme (with or without the Miller compensation capacitor 180) will be ready before the feedback control loop is in regulation. Thus, the operation of the comparator 184, the switch 182 and the Miller compensation capacitor 180 does not affect the stability of the circuit. Furthermore, during operation, even when a large load step is encountered, the detection thereof is fast enough for the frequency compensation scheme to remain reliable.
In other words, by detecting the voltage drop across two existing pins (the first and second I/O nodes 158 and 160), the voltage regulator IC 144 dynamically configures (and reliably maintains the configuration of) the frequency compensation scheme that is required for the feedback control loop and does not require additional external compensation to use the external power transistor 152. Therefore, the voltage regulator IC 144 can be used in both types of voltage regulator circuitry without the need for an additional dedicated configuration pin/node or any type of programming means. As a result, even though the voltage regulator IC 144 is more complex than either of the ICs 102 or 108 of
A loop gain graph 202 (upper portion of
A phase margin of more than 45 degrees generally assures that a circuit is stable, and a transient step response having less than three significant rings before settling is generally desirable. The phase margin of about 63.3 degrees is well situated within this limitation, so it is considered stable, which generally agrees with the output voltage transient step response of only two overshoots/undershoots before settling to a steady state.
A loop gain graph 214 (upper portion of
The phase margin of about 90.6 degrees is well within the desired limitation of being more than 45 degrees. In fact, an almost 90 degree phase margin indicates almost a “one pole” system, which is considered highly stable. This result generally agrees with the output voltage transient step response, which is shown to settle to a steady state relatively smoothly.
Presently preferred embodiments of the present invention and its improvements have been described with a degree of particularity. This description has been made by way of preferred example. It should be understood, however, that the scope of the claimed subject matter is defined by the following claims, and should not be unnecessarily limited by the detailed description of the preferred embodiments set forth above.
Number | Name | Date | Kind |
---|---|---|---|
5182526 | Nelson | Jan 1993 | A |
6975099 | Wu et al. | Dec 2005 | B2 |
7710091 | Huang | May 2010 | B2 |
20100026252 | Lin et al. | Feb 2010 | A1 |
20100213917 | Pulijala et al. | Aug 2010 | A1 |
Entry |
---|
L5980, 0.7 A step-down switching regulator, Nov. 2009, pp. 1, 8, 30 and 34, Doc ID 13003 Rev 6, STMicroelectronics. |
L7981, 3 A step-down switching regulator, Jul. 2010, pp. 1, 8, 31 and 35, Doc ID 15182 Rev 3, STMicroelectronics. |
Steven M. Sandler, Low Dropout Regulator Stability Considerations, 2005, pp. 1-6, AEi Systems, LLC. |
“LM100/LM200/LM300 voltage regulator,” general description, pp. 1-1 through 1-3, Hua (see article below for proof of date). |
“LM 100 National Semiconductor Corporation (NSC) integrated circuit,” Research from Mar. 18, 1988 http://www.computerhistory.org/collections/accession/102709959 (pulled Jul. 9, 2013). |
Number | Date | Country | |
---|---|---|---|
20120161733 A1 | Jun 2012 | US |