The present invention relates generally to digital circuits, and more particularly to voltage regulators for such circuits.
Digital circuits often comprise or include logic circuits which have a speed of operation based upon their delay time, which in turn varies with the applied power supply voltage. This variation in delay time can be a source of jitter in the logic system. One solution to this jitter problem is the introduction of a regulator which holds the voltage provided to the logic circuit constant, thus lessening the jitter. For example, a regulator may be made to operate from a typical 1.2 volt (V) power supply and generate an 800 millivolt (mV) constant voltage for the critical elements of the logic design, such as the delay elements in a delay line.
A regulator designed for this purpose should have certain characteristics in order to properly maintain a steady voltage. First, the output voltage must be provided even when the input voltage is high or low. A typical specification might call for the regulator to provide the desired output when the input voltage varies by +/−15%. Thus, in the above example with an input voltage of 1.2 V, the input voltage may run from about 1.38 V to 1.02 V, and even at these high and low voltages the regulator should still produce the desired output voltage of 800 mV.
Secondly, to be effective the regulator should have a low output impedance even at high frequencies in the output terminal. If it does have a low output impedance, high frequency disturbances will create noise and introduce errors. Finally, it is desirable that the regulator draw the minimum power possible from the voltage supply so that battery life and excess heat are minimized.
One type of simple and inexpensive regulator used to maintain a steady voltage is a linear regulator. The resistance of the regulator varies in accordance with the load on the output, resulting in a constant output voltage. A voltage divider network uses a transistor or other device as a regulating device which is made to act like a variable resistor. The output voltage is compared to a reference voltage to produce a control signal to the transistor, and the transistor continuously adjusts to maintain a constant output voltage. With negative feedback and good compensation, the output voltage is kept reasonably constant.
All linear regulators require an input voltage that is at least some minimum amount higher than the desired output voltage. That minimum amount of excess voltage is called the dropout voltage. In a case where the difference between the supply voltage and the desired output voltage is small, such as the example above of 1.2 V and 800 mV (and as is common in low-voltage power supplies for digital logic circuits), the regulator must be of what is known as a “Low Dropout voltage” type (LDO).
Linear regulators are often inefficient. Because the regulated voltage of a linear regulator is always lower than input voltage, the input voltage must be high enough to always allow the active device to drop some voltage. Further, since the transistor is acting like a resistor, it will waste electrical energy by converting the difference between the input voltage and the regulated output voltages to waste heat.
Linear regulators exist in two basic forms, series regulators and shunt regulators. In the series regulator, the regulating device is placed between the source and the regulated load. In a shunt regulator, the regulating device is placed in parallel with the load.
Series regulators are the more common form. As can be seen in
The output of op amp 106 is fed to the gate of transistor 104, and controls the current passing through transistor 104. Series regulator 100 is thus a closed loop which operates to maintain an output voltage by controlling the amount of current delivered to the load resistance 102. If the current delivered results in the output voltage being too high, the current is reduced, while if the current delivered results in the output being too low it is increased. By this mechanism, a stable output voltage is obtained. The power lost and dissipated as heat is equal to the power supply output current times the voltage drop in the regulating transistor 104.
By comparison, the shunt regulator 200 of
It may be seen that shunt regulator 200 functions somewhat like a zener diode, i.e., the regulator 200 exhibits an abrupt change in incremental resistance at a distinct voltage, i.e., the regulated voltage or zener voltage. Below this voltage the impedance is high, since the effective impedance of transistor 206 is very high and the combined parallel impedance of transistor 206 and load resistor 204 is close to the impedance of load resistor 204, while above this voltage the impedance is low since the effective impedance of transistor 206 is lower, reducing the combined impedance.
This abrupt change in incremental resistance allows the shunt regulator 200 to provide a stable output voltage for a wide range of load conditions at the same regulated or zener voltage. In addition, compared to a series regulator in which the output impedance increases with frequency, a shunt regulator has a lower output impedance as frequency increases and thus may work better in suppressing jitter.
However, this flexibility with respect to load conditions and frequency comes at a price. The shunt regulator 200 only works because it wastes current, i.e., it always sinks more current than the maximum current expected, and will thus drain a battery quickly. For example, as shown shunt regulator 200 shows an 8 kilohm (kΩ) load on the 800 mV output; that 8 kΩ load draws 100 microamps (uA), but the shunt regulator 200 wastes another 100 uA or so in the transistor 206. Because the shunt regulator uses more than the “ideal” current, i.e., only what is necessary to go through the load resistance, the shunt regulator is not as efficient as a series regulator under the same conditions.
A designer is thus faced with a choice between a series regulator, which is more efficient but has high output impedance at high frequency, or a shunt regulator, which generally has an inherently low output impedance even at high frequency but is inefficient.
It would thus be desirable to find a simple solution that would combine the frequency response and load flexibility of a shunt regulator with the lower current, and thus lower power drain and waste heat, of a series regulator, for use with logic circuits and other types of electronic circuitry as well.
A voltage regulator is disclosed which provides a combination of a shunt regulator driven by a series regulator, thus achieving the benefits of both types of regulator and an improvement over the typical prior art solution.
One embodiment discloses a voltage regulator connected to a load, comprising: a series regulator connected to a power supply and configured to provide a current in an amount based upon a control signal; a shunt regulator configured to receive a portion of the current not passed through the load; a sensor configured to determine the portion of the current received by the shunt regulator and generate the control signal based upon the determination of the portion of the current.
Another embodiment discloses a voltage regulator for providing a voltage at a voltage output, comprising: a first transistor having a source configured to be connected to a power supply, a gate configured to receive a control signal, and a drain connected to the voltage output; a first differential amplifier having a non-inverting input connected to the drain of the first transistor and an inverting input configured to be coupled to a ground through a device providing a first reference voltage, and an output configured to provide a signal based upon the difference of the non-inverting input and the inverting input; a second transistor having a drain connected to the drain of the first transistor, a gate connected to the output of the first differential amplifier, and a source configured to be coupled to the ground through a first resistor; a second differential amplifier having a non-inverting input connected to the source of the second transistor and an inverting input configured to be coupled to the ground through a device providing a second reference voltage, and an output configured to provide a control signal based upon the difference of the non-inverting input and the inverting input, the output of the second differential amplifier connected to the gate of the first transistor; and a second resistor configured to be connected between the voltage output and the ground.
Described herein is a voltage regulator for providing a constant voltage to a circuit in which a series regulator drives a shunt regulator, i.e., acts as the current source for the shunt regulator, and the series regulator in turn is controlled by the current diverted from the output by the shunt regulator.
The shunt regulator works much like a shunt regulator of the prior art by diverting current from the load when necessary to keep the output voltage at the desired level, while the series regulator acts as the current source for the shunt regulator. The current being diverted by the shunt regulator is measured, either directly or by measuring a related operating parameter. When current beyond a certain desired amount is being diverted from the load by the shunt regulator, a signal is sent to the series regulator causing the series regulator to provide less current, so that the shunt regulator again diverts the preselected amount of current and the output voltage remains constant. When too little current is diverted, the control signal causes the series regulator to increase the amount of current provided.
This approach has the benefits that the frequency response of the regulator is like that of the shunt regulator, i.e., having low impedance even at high frequencies, and that the amount of current consumed is that of the series regulator plus a small amount of overhead for the shunt regulator (the desired amount of current to be diverted), which will generally be significantly less than a typical shunt regulator alone.
As in a prior art shunt regulator, the source of transistor 504 is connected to the output voltage Out, and transistor 504 operates as the variable resistance that shunts current from resistor 502 when necessary. The gate of transistor 504 is driven by op amp 506, operating to provide the difference between the output voltage Out and the voltage from the reference voltage source 508, again as in the prior art.
Circuit 500 also contains additional components present which are connected in such a way as to also form a series regulator similar to that shown in circuit 100 of
It may be seen that there are small differences here in the implementation of the regulators as compared to the prior art. One input to op amp 512 is connected to the source of transistor 504, and thus coupled to the output voltage Out through transistor 504 rather than connected directly to Out as in circuit 100 in
It will be apparent that the two regulators are interconnected. The source of second transistor 516, which again is part of the series regulator, is connected to voltage supply DVcc, acts as the current source for the shunt regulator; its drain is connected to, and acts as the current source for, resistor 502 and transistor 504. Also, as above, one input of op amp 512 of the series regulator is connected to the source of transistor 504 of the shunt regulator, rather than directly to the output voltage Out. In operation, the second op amp 512 adjusts the series regulator portion of circuit 500 to keep the current in the shunt portion of the circuit constant.
In the example above in which the regulated output voltage is 800 mV, the current flowing through resistor 502, having a resistance of 8 kΩ as shown, must be 100 uA. Further, if voltage source 514 provides a voltage of 200 mV to op amp 512, for stable operation there must also be 200 mV present on the other input to op amp 512; since sensing resistor 510 as shown has a resistance of 10 kΩ, there must be 20 uA flowing through resistor 510. Thus, the total current flowing from supply voltage DVcc must be 120 uA.
Now suppose that the load impedance increases by a factor of 10, so that resistor 502 appears to be 80 kΩ rather than 8 kΩ. To obtain an output voltage of 800 mV, the current through resistor 502 should be 10 uA rather than 100 uA. The first part of circuit 500 which will “see” this change is the shunt regulator control portion of circuit 500, through transistor 504. It will see that the load voltage is trying to increase, since there is still 120 uA flowing through transistor 516, even though now only 30 uA (10 uA for resistor 502 and 20 uA for resistor 510) is required.
As in the prior art, the response of the shunt regulator portion of circuit 500 is to rapidly increase the current drawn by transistor 504 to consume the extra 90 uA that is not needed by resistor 502, in order to pull the output voltage Out back down to the required 800 mV. The shunt regulator portion of circuit 500 will operate to hold the output to the regulated voltage with the bandwidth that it can provide, which, as with shunt regulators of the prior art, is generally the higher desirable bandwidth.
Now, however, there is more current flowing than is needed, i.e., the extra 90 uA that is no longer needed by the load. This will flow from transistor 504 through sensing resistor 510, increasing the current through resistor 510 from 20 uA to 110 uA, and the voltage across it from 200 mV to 2.2 V. Since the new voltage drop across resistor 510 of 2.2 V is now greater than the 200 mV comparison voltage on the other input of op amp 512, the output of op amp 510 will cause transistor 516 to reduce the current passing through transistor 516 until the output voltage Out is again at the regulated 800 mV, i.e. to reduce the current to the now required 30 uA.
This control of the output voltage by altering the current flowing through the load is similar to that which occurs in a prior art series regulator. Thus, circuit 500 is able to reduce the current required and have something approaching the efficiency of a prior art series regulator, rather than having the maximum current appropriate for a full load be consumed all the time. In addition, circuit 500 is able to maintain the bandwidth characteristic of a shunt regulator.
Note that circuit 500 will not be quite as efficient at a prior art series regulator, since there is a constant “overhead” current consumption by resistor 510, in this case 20 uA, in addition to the current required by the load. However, this is still likely to be substantially less than the current consumed in a prior art shunt regulator, which is always greater than the maximum anticipated load current by the amount needed for the shunt operation, and thus the total power consumption of circuit 500 over time is likely to be significantly less than the total power consumption of a typical shunt regulator.
There is still another benefit to circuit 500, which is that the regulation of DC voltage is greatly improved. Series and shunt regulators have open loop gain, and in the configuration of circuit 500 the gains of the two regulators is multiplied. Thus, if the series regulator has a low frequency open loop gain of 25 decibels (db) and the shunt regulator has a low frequency open loop gain of 30 db, the circuit 500 will have a low frequency open loop gain of 55 db.
In practice, circuit 500 may be implemented using transistors as now explained.
A load (not shown) is applied between the output voltage Out and the ground DGnd. Resistor 602, also connected between Out and DGnd, is used to bias the circuit, and transistor 604 is the shunt device, functioning to divert current when necessary, as is done by transistor 504 in
The op amp 506 of
The four transistors 604, 606, 608 and 610, and the resistor 602, are sufficient to construct the shunt regulator portion of circuit 500 of
The use of the two additional transistors 712 and 714 also brings an additional benefit, in that they can multiply the gain of the current in transistor 604. That is, whatever current passes through transistor 604 to control the action of the shunt regulator, some multiple of that can actually be pulled out of the load point because transistors 712 and 714 may act not only as a current mirror but one with gain.
This is accomplished by using two transistors 712 and 714 which have different aspect ratios, i.e., the ratio of length to width of the drain channel, which thus alters the amount of current that can flow through the drain. Thus, transistor 712 may, for example, allow A times as much current to flow through as transistor 714, so that the combined current flow removed from the load by the shunt regulator becomes A+1 times the current flowing through transistor 604. Further, the current flowing through the drain of transistor 712 is now a measure of the shunt regulator current.
The components to make the series regulator may be added to circuit 700 as shown in circuit 800 of
A combination series-shunt regulator constructed in this fashion will show the frequency response of a prior art shunt regulator and a current efficiency close to that of a prior art series regulator. In addition, because the two regulator loops are operating together, the low frequency rejection is very high.
There are a few additional components in circuit 900 that provide specific implementation characteristics and are not shown in the basic circuit 800 of
Transistor 932 is connected to share the voltages applied to the gate and source voltages applied to transistor 712. The drain current of transistor 932 is a constant fraction of the drain current of transistor 712 (which is the shunt current), and is used to divert part of the drain current of transistor 712 which I not needed in the series regulator portion of circuit 900.
Curve B of
Curve C of
However, in circuit 800 of
Thus, while not directly measuring the current bypassed by the shunt regulator as in circuit 800, the circuit 1100 of
The disclosed system and method has been explained above with reference to several embodiments. Other embodiments will be apparent to those skilled in the art in light of this disclosure. Certain aspects of the described method and apparatus may readily be implemented using configurations or steps other than those described in the embodiments above, or in conjunction with elements other than or in addition to those described above.
For example, it is expected that the described apparatus may be implemented in numerous ways, including as a hard-wired circuit or embodied in a semiconductor device. Where elements are shown as connected, they may in some embodiments be coupled to each other through another element, for example, through another resistor. Different components may be added for different purposes, such as the capacitors of
Although developed for the application of a voltage regulator for logic circuits, this disclosure may also be used to provide power to any other form of electronic circuitry.
These and other variations upon the embodiments are intended to be covered by the present disclosure, which is limited only by the appended claims.
This application claims priority from Provisional Application No. 61/920,325, filed Dec. 23, 2013, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61920325 | Dec 2013 | US |