The invention relates to a voltage regulator and more particularly, to a voltage regulator having regulated-biased current amplifiers.
A voltage regulator is a commonly used voltage regulation circuit which locks an output voltage by using a feedback loop.
Additionally, when several conventional voltage regulators are used in the integrated circuit to provide the same power-supply route 11, an actual output voltage of each voltage regulator set varies from each other due to an offset voltage of each voltage regulator set. For example, it is assumed that in
When Vos1>Vos2, and a transistor Ma is capable of providing a current sufficient for achieving VDD1AVG=Vref+Vos1 (wherein VDD1AVG represents an average of the voltage VDD1), the voltage regulator 110 in this condition can be normally operated, but would result in VDD2AVG>Vref+Vos2 (wherein VDD2AVG represents an average of the voltage VDD2), and VDD2AVG>Vref+Vos2 would cause a transistor Mb of the voltage regulator 120 to be turned off. In this case, the voltage regulator 120 is incapable of providing the peak current of the load circuit 10, thus, a node in the power-supply route 11 that has the greatest distance from the voltage regulator 110 generates the maximum voltage drop and thereby, the node becomes a weak point.
In another case, when Vos1>Vos2, but the transistor Ma is incapable of providing the sufficient current so that VDD1AVG<Vref+Vos1, the voltage regulator 120 in this condition can be normally operated, but the transistor Ma of the voltage regulator 110 reaches a fully-turn-on state. In this case, the voltage regulator 110 is incapable of providing the peak current to the load circuit 10 because that a control voltage of a gate of the transistor Ma is not provided with AC swing, thus, a node in the power-supply route 11 that has the greatest distance from the voltage regulator 120 generates the maximum voltage drop and thereby, the node becomes a weak point.
Consumption and the peak current of the load circuit 10 continuously raise up along with addition of new functions, such that each set of voltage regulators of the multi-regulator structure is incapable of simultaneous high-speed operation due to difference between the offset voltages (e.g., Vos1 and Vos2). The voltage regulators incapable of simultaneous high-speed operation cannot effectively provide the peak current to each of elements of the load circuit 10. The load circuit 10 easily occurs operational abnormality due to transient voltage drop at the weak point of the power-supply route 11.
The invention provides a voltage regulator capable of generating corresponding currents to push output-stage circuits of the voltage regulator when a transient change occurs in a load current.
According to an embodiment of the invention, a voltage regulator including a first voltage amplifier, a first output-stage circuit, a first AC-pass filter, a first current amplifier, a second output-stage circuit and a first gain circuit is provided. A first input terminal of the first voltage amplifier receives a reference voltage. A second input terminal of the first voltage amplifier is coupled to a first output terminal of the voltage regulator to receive a first output voltage of the voltage regulator. An input terminal of the first output-stage circuit is coupled to an output terminal of the first voltage amplifier. An output terminal of the first output-stage circuit is coupled to the first output terminal of the voltage regulator. An input terminal of the first AC-pass filter is coupled to the first output terminal of the voltage regulator to receive the first output voltage. The first AC-pass filter is configured to filter a DC component of the first output voltage to output an AC component of the first output voltage. A first input terminal of the first current amplifier receives the reference current. A second input terminal of the first current amplifier is coupled to an output terminal of the first AC-pass filter to receive the AC component of the first output voltage. An input terminal of the second output-stage circuit is coupled to an output terminal of the first current amplifier. An output terminal of the second output-stage circuit is coupled to the first output terminal of the voltage regulator. An input terminal of the first gain circuit is coupled to the output terminal of the first voltage amplifier. An output terminal of the first gain circuit is coupled to the input terminal of the second output-stage circuit to regulate a DC level of a first bias voltage output for the first current amplifier.
To sum up, in the embodiments of the invention, the second output-stage circuits are driven by the current amplifiers fed back with the AC component of the second output voltage and thereby, can generate corresponding currents to push the output-stage circuits of the voltage regulator when a transient change occurs to the load current, so as to respond to the peak current of the load circuit.
In order to make the aforementioned and other features and advantages of the invention more comprehensible, several embodiments accompanied with figures are described in detail below.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A term “couple” used in the full text of the disclosure (including the claims) refers to any direct and indirect connections. For instance, if a first device is described to be coupled to a second device, it is interpreted as that the first device is directly coupled to the second device, or the first device is indirectly coupled to the second device through other devices or connection means. Moreover, wherever possible, components/members/steps using the same referential numbers in the drawings and description refer to the same or like parts. Components/members/steps using the same referential numbers or using the same terms in different embodiments may cross-refer related descriptions.
The first output-stage circuit 220 may be any type of output-stage circuit, e.g., a push-pull output circuit or any other output circuit. An input terminal of the first output-stage circuit 220 is coupled to an output terminal of the first voltage amplifier 210. An output terminal of the first output-stage circuit 220 is coupled to first output terminal of the voltage regulator 200. A regulation loop is formed by the first voltage amplifier 210 and the first output-stage circuit 220 and may detect a change of the first output voltage Vout1, so as to regulate a current of the first output-stage circuit 220. Thereby, an output current is equal to a load current, such that the first output voltage Vout1 is maintained in a rated level. After a change occurs in the first output voltage Vout1, the regulation loop formed by the first voltage amplifier 210 and the first output-stage circuit 220 is capable of immediately providing a DC component of the first output voltage Vout1.
An input terminal of the first gain circuit 230 is coupled to the output terminal of the first voltage amplifier 210. An output terminal of the first gain circuit 230 is coupled to the input terminal of the second output-stage circuit 250 to provide the first bias voltage VBIAS1. A voltage gain value of the first gain circuit 230 may be determined depending on actual design requirements. For instance, the voltage gain value of the first gain circuit 230 may be 1 or other real numbers. The first gain circuit 230 may be any type of gain circuit, e.g., a unity-gain buffer, a level shifter, a level-shifting unity-gain-buffer (LSUGB) or any other gain circuit.
An input terminal of the second output-stage circuit 250 is coupled to the output terminal of the first gain circuit 230 and an output terminal of the first current amplifier 240. An output terminal of the second output-stage circuit 250 is coupled to the first output terminal of the voltage regulator 200. The second output-stage circuit 250 may be any type of output-stage circuit, e.g., a push-pull output circuit or any other output circuit. The second output-stage circuit 250 and the first output-stage circuit 220 may jointly provide the first output voltage Vout1.
In the regulation loop formed by the first voltage amplifier 210 and the first output-stage circuit 220, the first voltage amplifier 210 may provide a bias voltage VREG1 with an accurate DC level. The first gain circuit 230 may correspondingly regulate the DC level of the first bias voltage VBIAS1 output by the first current amplifier 240 according to the bias voltage VREG1. Thus, the voltage level of the first bias voltage VBIAS1 may be adaptive and dynamically regulated according to the load current.
An input terminal of the first AC-pass filter 260 is coupled to the first output terminal of the voltage regulator 200 to receive the first output voltage Vout1. The first AC-pass filter 260 may filter the DC component of the first output voltage Vout1 to output an AC component of the first output voltage Vout1 (i.e., a feedback current IFB) to the first current amplifier 240. The first input terminal of the first current amplifier 240 receives a reference current Iref. A level of the reference current Iref may be determined depending on actual design requirements. A second input terminal of the first current amplifier 240 is coupled to an output terminal of the first AC-pass filter 260 to receive the AC component of the first output voltage Vout1. The first current amplifier 240 can provide the AC component of the first bias voltage VBIAS1.
The first AC-pass filter 260 and the first current amplifier 240 may implement an AC feedback. For the DC component, the first current amplifier 240 and the second output-stage circuit 250 does not form a DC loop. For the AC component, the first AC-pass filter 260, the first current amplifier 240 and the second output-stage circuit 250 form an AC loop. When the load current changes, the change of the current (i.e., the feedback current IFB) is fed back to the first current amplifier 240 through the first AC-pass filter 260, so as to adjust an output current IDCAC of the first current amplifier 240. The output current IDCAC may rapidly push the second output-stage circuit 250, such that the output current Iout1 achieves balance with the load current. The AC loop may detect a change of the output current Iout1 and respond to the change of the output current Iout1 in a high speed. Thus, after the change occurs in the output current Iout1, the AC loop formed by the first AC-pass filter 260, the first current amplifier 240 and the second output-stage circuit 250 is capable of rapidly and immediately providing the AC component of the first output voltage Vout1. When a speed of the AC loop is sufficiently fast, the AC loop may nearly eliminate the change of the first output voltage Vout1. In addition, the AC loop is better than a DC loop in maintaining stability, and thus, contributes to designing a regulation circuit with a higher bandwidth than an ordinary regulation circuit.
If it is assumed that a voltage difference between the bias voltage VREG1 and the first bias voltage VBIAS1 is VSHIFT, and a threshold voltage of each of the first output-stage circuit 220 and the second output-stage circuit 250 is VTH, VBIAS1=VREG1−VSHIFT=Vout1+VTH−VSHIFT. When VSHIFT>0, VBIAS1−Vout1=VTH−VSHIFT<VTH, which ensures the second output-stage circuit 250 to be in a stable state, without outputting any current. When a peak current occurs in the output current Iout1, the output current IDCAC of the first current amplifier 240 may rapidly push the second output-stage circuit 250, so as to output a great number of currents to compensate the peak current and stabilize the first output voltage Vout1. Therefore, the first gain circuit 230 may generate level conversion according to different VSHIFT designs, so as to further control an ON state of the second output-stage circuit 250. In addition, the first gain circuit 230 may also provide a buffer effect to prevent the first bias voltage VBIAS1 from unnecessary interference.
The first current amplifier 240 may be an AC feedback current amplifier, a current mirror or any other current amplifier circuit. For instance,
A first terminal (e.g., a source) of the fourth N-channel transistor MN34 is coupled to a second system voltage (e.g., a ground voltage GND). A second terminal (e.g., a drain) of the fourth N-channel transistor MN34 is coupled to the first input terminal of the first current amplifier 240 to receive the reference current Iref. A control terminal (e.g., a gate) of the fourth N-channel transistor MN34 is coupled to the second terminal of the fourth N-channel transistor MN34, a control terminal (e.g., a gate) of the first N-channel transistor MN31 and a control terminal (e.g., a gate) of the third N-channel transistor MN33. A first terminal (e.g., a source) of the first N-channel transistor MN31 is coupled to the second system voltage (e.g., the ground voltage GND). A first terminal (e.g., a source) of the second N-channel transistor MN32 is coupled to a second terminal (e.g., a drain) of the first N-channel transistor MN31. A control terminal (e.g., a gate) of the second N-channel transistor MN32 is coupled to a third bias voltage VBIAS33. A level of the third bias voltage VBIAS33 may be determined depending on actual design requirements. A second terminal (e.g., a drain) of the second N-channel transistor MN32 is coupled to the second terminal of the second P-channel transistor MP32. A first terminal of the third N-channel transistor MN33 is coupled to the second system voltage (e.g., the ground voltage GND). A second terminal (e.g., a drain) of the third N-channel transistor MN33 is coupled to second terminal of the third P-channel transistor MP33. Thus, the third P-channel transistor MP33 and the third N-channel transistor MN33 may jointly provide the first bias voltage VBIAS1 to the second output-stage circuit 250. Therein, the first current amplifier 240 generates/determines a DC component of the first bias voltage VBIAS1 (i.e., the output current IDCAC) according to the reference current Iref.
A first terminal of the first capacitor C31 is coupled to the second terminal of the first P-channel transistor MP31. A second terminal of the first capacitor C31 receives the first output voltage Vout1 (i.e., the output current Iout1). A first terminal of the second capacitor C32 is coupled to the second terminal of the first N-channel transistor MN31. A second terminal of the second capacitor C32 is coupled to the second terminal of the first capacitor C31. An AC component of the output current Iout1 (i.e., the feedback current IFB) is transmitted to the first current amplifier 240 through the first capacitor C31 and the second capacitor C32. Therein, the first current amplifier 240 generates/determines an AC component of the first bias voltage VBIAS1 (i.e., the output current IDCAC) according to the AC component of the output current Iout1 to reflect the change of the load current.
A first terminal (e.g., a source) of the first P-channel transistor MP41 is coupled to the first system voltage VDD. A first terminal (e.g., a source) of the second P-channel transistor MP42 is coupled to a second terminal (e.g., a drain) of the first P-channel transistor MP41. A control terminal (e.g., a gate) of the second P-channel transistor MP42 is coupled to a second bias voltage VBIAS42. A level of the second bias voltage VBIAS42 may be determined depending on actual design requirements. A first terminal (e.g., a source) of the third P-channel transistor MP43 is coupled to the first system voltage VDD. A second terminal (e.g., a drain) of the third P-channel transistor MP43 is coupled to the output terminal of the first current amplifier 240. A first terminal (e.g., a source) of the fourth P-channel transistor MP44 is coupled to the first system voltage VDD. A second terminal (e.g., a drain) of the fourth P-channel transistor MP44 is coupled to a control terminal (e.g., a gate) of the fourth P-channel transistor MP44, a control terminal (e.g., a gate) of the first P-channel transistor MP41 and a control terminal (e.g., a gate) of the third P-channel transistor MP43.
A first terminal (e.g., a source) of the fourth N-channel transistor MN44 is coupled to the second system voltage (e.g., the ground voltage GND). A second terminal (e.g., a drain) of the fourth N-channel transistor MN44 is coupled to the first input terminal of the first current amplifier 240 to receive the reference current Iref. A control terminal (e.g., a gate) of the fourth N-channel transistor MN44 is coupled to the second terminal of the fourth N-channel transistor MN44, a control terminal (e.g., a gate) of the fifth N-channel transistor MN45 and a control terminal (e.g., a gate) of the first N-channel transistor MN41. A first terminal (e.g., a source) of the fifth N-channel transistor MN45 is coupled to the second system voltage (e.g., the ground voltage GND). A second terminal (e.g., a drain) of the fifth N-channel transistor MN45 is coupled to the second terminal of the fourth P-channel transistor MP44. A first terminal (e.g., a source) of the first N-channel transistor MN41 is coupled to the second system voltage (e.g., the ground voltage GND). A first terminal (e.g., a source) of the second N-channel transistor MN42 is coupled to a second terminal (e.g., a drain) of the first N-channel transistor MN41. A control terminal (e.g., a gate) the second N-channel transistor MN42 is coupled to a third bias voltage VBIAS43. A level of the third bias voltage VBIAS43 may be determined depending on actual design requirements. A second terminal (e.g., a drain) of the second N-channel transistor MN42 is coupled to a second terminal (e.g., a drain) of the second P-channel transistor. A first terminal of the resistor R41 is coupled to the control terminal of the first N-channel transistor MN41. A second terminal of the resistor R41 is coupled to the second terminal of the second N-channel transistor MN42 and a control terminal (e.g., a gate) of the third N-channel transistor MN43. A first terminal (e.g., a source) of the third N-channel transistor MN43 is coupled to the second system voltage (e.g., the ground voltage GND). A second terminal (e.g., a drain) of the third N-channel transistor MN43 is coupled to the second terminal of the third P-channel transistor MP43. Thus, the third P-channel transistor MP43 and the third N-channel transistor MN43 may jointly provide the first bias voltage VBIAS1 to the second output-stage circuit 250. Therein, the first current amplifier 240 generates/determines the DC component of the first bias voltage VBIAS1 (i.e., the output current IDCAC) according to the reference current Iref.
A first terminal of the first capacitor C41 is coupled to the second terminal of the first P-channel transistor MP41. A second terminal of the first capacitor C41 receives the first output voltage Vout1 (i.e., the output current Iout1). A first terminal of the second capacitor C42 is coupled to the second terminal of the first N-channel transistor MN41. A second terminal of the second capacitor C42 is coupled to the second terminal of the first capacitor C41. AC component of the output current Iout1 (i.e., the feedback current IFB) is transmitted to the first current amplifier 240 through the first capacitor C41 and the second capacitor C42. Therein, the first current amplifier 240 generates/determines the AC component of the first bias voltage VBIAS1 (i.e., the output current IDCAC) according to the AC component of the output current Iout1 to reflect the change of the load current.
A first terminal (e.g., a source) of the first P-channel transistor MP51 is coupled to the first system voltage VDD. A first terminal (e.g., a source) of the second P-channel transistor MP52 is coupled to second terminal (e.g., a drain) of the first P-channel transistor MP51. A control terminal (e.g., a gate) of the second P-channel transistor MP52 is coupled to the second bias voltage VBIAS52. A level of the second bias voltage VBIAS52 may be determined depending on actual design requirements. A first terminal of the first resistor R51 is coupled to a control terminal (e.g., a gate) of the first P-channel transistor MP51. A second terminal of the first resistor R51 is coupled to a second terminal (e.g., a drain) of the second P-channel transistor MP52 and a control terminal (e.g., a gate) of the third P-channel transistor MP53. A first terminal (e.g., a source) of the third P-channel transistor MP53 is coupled to the first system voltage VDD. A second terminal (e.g., a drain) of the third P-channel transistor MP53 is coupled to the output terminal of the first current amplifier 240.
A first terminal (e.g., a source) of the fourth P-channel transistor MP54 is coupled to the first system voltage VDD. A second terminal (e.g., a drain) of the fourth P-channel transistor MP54 is coupled to a control terminal (e.g., a gate) of the fourth P-channel transistor MP54 and a control terminal (e.g., a gate) of the fifth P-channel transistor MP55. A first terminal (e.g., a source) of the fifth P-channel transistor MP55 is coupled to the first system voltage VDD. A first terminal (e.g., a source) of the sixth P-channel transistor MP56 is coupled to second terminal (e.g., a drain) of the fifth P-channel transistor MP55. A control terminal (e.g., a gate) of the sixth P-channel transistor MP56 is coupled to a third bias voltage VBIAS53. A level of the third bias voltage VBIAS53 may be determined depending on actual design requirements.
A first terminal (e.g., a source) of the fourth N-channel transistor MN54 is coupled to the second system voltage (e.g., the ground voltage GND). A second terminal (e.g., a drain) of the fourth N-channel transistor MN54 is coupled to the first input terminal of the first current amplifier 240 to receive the reference current Iref. A control terminal (e.g., a gate) of the fourth N-channel transistor MN54 is coupled to the second terminal of the fourth N-channel transistor MN54, a control terminal (e.g., a gate) of the fifth N-channel transistor MN55 and a control terminal (e.g., a gate) of the first N-channel transistor MN51. A first terminal (e.g., a source) of the fifth N-channel transistor MN55 is coupled to the second system voltage (e.g., the ground voltage GND). A second terminal (e.g., a drain) of the fifth N-channel transistor MN55 is coupled to the second terminal of the fourth P-channel transistor MP54. A first terminal (e.g., a source) of the first N-channel transistor MN51 is coupled to the second system voltage (e.g., the ground voltage GND). A first terminal (e.g., a source) of the second N-channel transistor MN52 is coupled to a second terminal (e.g., a drain) of the first N-channel transistor MN51. A control terminal (e.g., a gate) of the second N-channel transistor MN52 is coupled to a fourth bias voltage VBIAS54. A level of the fourth bias voltage VBIAS54 may be determined depending on actual design requirements. A second terminal (e.g., a drain) of the second N-channel transistor MN52 is coupled to the second terminal of the second P-channel transistor MP52.
A first terminal (e.g., a source) of the third N-channel transistor MN53 is coupled to the second system voltage (e.g., the ground voltage GND). A second terminal (e.g., a drain) of the third N-channel transistor MN53 is coupled to the second terminal of the third P-channel transistor MP53. A first terminal of the second resistor R52 is coupled to a control terminal (e.g., a gate) of the third N-channel transistor MN53. A second terminal of the second resistor R52 is coupled to a control terminal (e.g., a gate) of the sixth N-channel transistor MN56. A first terminal (e.g., a source) of the sixth N-channel transistor MN56 is coupled to the second system voltage (e.g., the ground voltage GND). A first terminal (e.g., a source) of the seventh N-channel transistor MN57 is coupled to second terminal (e.g., a drain) of the sixth N-channel transistor MN56. A control terminal (e.g., a gate) of the seventh N-channel transistor MN57 is coupled to a fifth bias voltage VBIAS55. A level of the fifth bias voltage VBIAS55 may be determined depending on actual design requirements. A second terminal (e.g., a drain) of the seventh N-channel transistor MN57 is coupled to a second terminal (e.g., a drain) of the sixth P-channel transistor MP56 and the control terminal of the third N-channel transistor MN53. Thus, the third N-channel transistor MN53 and the third P-channel transistor MP53 may jointly provide the first bias voltage VBIAS1 to the second output-stage circuit 250. Therein, the first current amplifier 240 generates/determines the DC component of the first bias voltage VBIAS1 (i.e., the output current IDCAC) according to the reference current Iref.
A first terminal of the first capacitor C51 is coupled to the second terminal of the first P-channel transistor MP51. A second terminal of the first capacitor C51 receives the first output voltage Vout1 (i.e., the output current Iout1). A first terminal of the second capacitor C52 is coupled to the second terminal of the first N-channel transistor MN51. A second terminal of the second capacitor C52 is coupled to the second terminal of the first capacitor C51. A first terminal of the third capacitor C53 is coupled to the second terminal of the fifth P-channel transistor MP55. A second terminal of the third capacitor C53 receives the first output voltage Vout1 (i.e., the output current Iout1). A first terminal of the fourth capacitor C54 is coupled to the second terminal of the sixth N-channel transistor MN56. A second terminal of the fourth capacitor C54 is coupled to a second terminal of the third capacitor C53. The AC component of the output current Iout1 (i.e., the feedback current IFB) is transmitted to the first current amplifier 240 through the first capacitor C51, the second capacitor C52, the third capacitor C53 and the fourth capacitor C54. Therein, the first current amplifier 240 generates/determines the AC component of the first bias voltage VBIAS1 (i.e., the output current IDCAC) according to the AC component of the output current Iout1 to reflect the change of the load current.
The first output-stage circuit 220 includes a transistor Mout1. The transistor Mout1 may be a P-channel transistor, an N-channel transistor, a bipolar transistor or any other transistor. A first terminal (e.g., a drain) of the transistor Mout1 is coupled to the system voltage VCC. A level of the system voltage VCC may be determined depending on actual design requirements. For instance (but not limited to), the system voltage VCC may be 1.8 V or any other voltage level. A second terminal (e.g., a source) of the transistor Mout1 is coupled to the output terminal of the first output-stage circuit 220. A control terminal (e.g., a gate) of the transistor Mout1 is coupled to the input terminal of the first output-stage circuit 220 to receive the bias voltage VREG1.
In the embodiment illustrated in
In the embodiment illustrated in
The transistor Mout2 may not have to load the DC component of the first output voltage Vout1, and thus, an area of the transistor Mout2 may be as small as possible. The smaller the area of the transistor Mout2 is, the faster a responding speed thereof is to a transient state. On the other hand, since the transistor Mout2 may contribute to provide the AC component of the first output voltage Vout1 to compensate the peak current of the load current, an area of the transistor Mout1 may be adaptively shrunk, which contributes to enhancement of the responding speed.
The first gain circuit 230 includes a transistor Mshift. The transistor Mshift may be a P-channel transistor, an N-channel transistor, a bipolar transistor or any other transistor. A first terminal (e.g., a drain) of the transistor Mshift is coupled to the system voltage VDD. A second terminal (e.g., a source) of the transistor Mshift is coupled to output terminal of the first gain circuit 230. A control terminal of the transistor Mshift (e.g., a gate) is coupled to the input terminal of the first gain circuit 230. If it is assumed that the voltage difference between the bias voltage VREG1 and the first bias voltage VBIAS1 is VSHIFT, and a threshold voltage of the transistor Mshift is VTH. When the transistor Mshift is turned on, VSHIFT=VTH. Thus, in a stable state, VBIAS1−Vout1=VTH−VSHIFT=VTH−VTH=0, i.e., the second output-stage circuit 250 is turned off and outputs no current. When the peak current occurs in the output current Iout1, the output current IDCAC of the first current amplifier 240 may rapidly push the first bias voltage VBIAS1 to raise over VTH to turn on the transistor Mout2, so as to output a great number of currents to compensate the peak current.
In other embodiments, a body of the transistor Mshift may be coupled to the control terminal (i.e., the gate) of the transistor Mshift. The first bias voltage VBIAS1 has to raise over VTH to turn on the transistor Mout2, thus, a time for raising up causes affection to a speed of the AC loop formed by the first AC-pass filter 260, the first current amplifier 240 and the second output-stage circuit 250. When the body of the transistor Mshift is coupled to the control terminal (i.e., the gate) of the transistor Mshift, the bias voltage VREG1 may provide a forward bias voltage to the body of the transistor Mshift. Thereby, VTH of the transistor Mshift is reduced, so as to enhance the responding speed of the AC loop.
Referring to
The first output-stage circuit 220 and the second output-stage circuit 250 may be provided with different power sources to provide the first output voltage Vout1. When the load current changes, stable-state voltage levels of the bias voltage VREG1 and the first bias voltage VBIAS1 also have to change therewith. The second AC-pass filter 770 and the second current amplifier 780 may provide a second AC feedback loop. The second current amplifier 780 may push the first output-stage circuit 220 to accelerate responding speeds of the bias voltage VREG1 and the first bias voltage VBIAS1.
The regulation part 801 of the voltage regulator 800 includes the first voltage amplifier 210, the first current amplifier 240, the second current amplifier 780, the first gain circuit 230, the second gain circuit 891, the first output-stage circuit 220, the second output-stage circuit 250, the first AC-pass filter 260 and the second AC-pass filter 770. The regulation part 801 of the voltage regulator 800 illustrated in
The regulation part 802 of the voltage regulator 800 includes a second voltage amplifier 810, a third current amplifier 840, a fourth current amplifier 880, a third gain circuit 892, a fourth gain circuit 893, a third output-stage circuit 820, a fourth output-stage circuit 850, a third AC-pass filter 860 and a fourth AC-pass filter 870. The regulation part 802 of the voltage regulator 800 illustrated in
The second voltage amplifier 810 of the regulation part 802 may be any type of amplifier circuit, e.g., an operation amplifier, a voltage comparator or any other amplifier circuit. A first input terminal of the second voltage amplifier 810 receives the reference voltage Vref. The level of the reference voltage Vref may be determined depending on actual design requirements. A second input terminal of the second voltage amplifier 810 is coupled to a second output terminal (i.e., an output terminal of the regulation part 802) of the voltage regulator 800 to receive a second output voltage Vout2 from the voltage regulator 800. The second output terminal of the voltage regulator 800 (i.e., the output terminal of the regulation part 802) may be coupled to the second node of the power-supply route 11 of the load circuit 10.
The third output-stage circuit 820 may be any type of output-stage circuit, e.g., a push-pull output circuit or any other output circuit. An input terminal of the third output-stage circuit 820 is coupled to an output terminal of the second voltage amplifier 810. An output terminal of the third output-stage circuit 820 is coupled to the second output terminal of the voltage regulator 800 (i.e., the output terminal of the regulation part 802). The implementation of the third output-stage circuit 820 may be derived with reference to the descriptions related to the first output-stage circuit 220 illustrated in
An input terminal of the third AC-pass filter 860 is coupled to the second output terminal of the voltage regulator 800 to receive the second output voltage Vout2. The third AC-pass filter 860 may filter the DC component of the second output voltage Vout2 to output an AC component of the second output voltage Vout2. An input terminal of the fourth AC-pass filter 870 is coupled to the second output terminal of the voltage regulator 800 to receive the second output voltage Vout2. The fourth AC-pass filter 870 may filter the DC component of the second output voltage Vout2 to output the AC component of the second output voltage Vout2. The implementations of the third AC-pass filter 860 and/or the fourth AC-pass filter 870 may be derived with reference to the descriptions related to the first AC-pass filter 260 illustrated in
A first input terminal of the third current amplifier 840 receives the reference current Iref. The level of the reference current Iref may be determined depending on actual design requirements. A second input terminal of the third current amplifier 840 is coupled to an output terminal of the third AC-pass filter 860 to receive the AC component of the second output voltage Vout2. An input terminal of the fourth output-stage circuit 850 is coupled to an output terminal of the third current amplifier 840 and an output terminal of the second gain circuit 891. Thus, the second gain circuit 891 may correspondingly regulate the DC level of the second bias voltage VBIAS2 output by the third current amplifier 840 according to the bias voltage VREG1. An output terminal of the fourth output-stage circuit 850 is coupled to the second output terminal of the voltage regulator 800 (i.e., the of the regulation part 802). The implementations of the third current amplifier 840 and the fourth output-stage circuit 850 may be derived with reference to the descriptions related to the first current amplifier 240 and the second output-stage circuit 250 illustrated in
An input terminal of the third gain circuit 892 is coupled to the output terminal of the second voltage amplifier 810. An output terminal of the third gain circuit 892 is coupled to the input terminal of the fourth output-stage circuit 850. An input terminal of the fourth gain circuit 893 is coupled to the output terminal of the second voltage amplifier 810, and an output terminal of the fourth gain circuit 893 is coupled to the input terminal of the second output-stage circuit 250. The implementations of the third gain circuit 892 and/or fourth gain circuit 893 may be derived with reference to the descriptions related to the first gain circuit 230 illustrated in
A first input terminal of the fourth current amplifier 880 receives the reference current Iref. A second input terminal of the fourth current amplifier 880 is coupled to an output terminal of the fourth AC-pass filter 870 to receive the AC component of the second output voltage Vout2. An output terminal of the fourth current amplifier 880 is coupled to the output terminal of the second voltage amplifier 810. The implementation of the fourth current amplifier 880 may be derived with reference to the descriptions related to the first current amplifier 240 illustrated in
The plurality of regulation parts (e.g., the regulation parts 801 and 802 illustrated in
The regulation parts 901 and 902 of the voltage regulator 900 illustrated in
The regulation part 903 includes a current amplifier 941, an output-stage circuit 951 and an AC-pass filter 961. An output terminal of the output-stage circuit 951 is coupled to a third output terminal of the voltage regulator 900 (i.e., an output terminal of the regulation part 903), where the third output terminal of the voltage regulator 900 may be coupled to the third node of the power-supply route 11. An input terminal of the AC-pass filter 961 is coupled to the third output terminal of the voltage regulator 900 (i.e., the output terminal of the regulation part 903) to receive a third output voltage Vout3 from the voltage regulator 900. The AC-pass filter 961 may filter a DC component of the third output voltage Vout3 to output AC component of the third output voltage Vout3. A first input terminal of the current amplifier 941 receives the reference current Iref. The level of the reference current Iref may be determined depending on actual design requirements. A second input terminal of the current amplifier 941 is coupled to an output terminal of the AC-pass filter 961 to receive the AC component of the third output voltage Vout3. An output terminal of the current amplifier 941 is coupled to an input terminal of the output-stage circuit 951. For the AC component, the AC-pass filter 961, the current amplifier 941 and the output-stage circuit 951 form an AC loop. When the load current changes, the change of the current is fed back to the current amplifier 941 through the AC-pass filter 961 to adjust an output current IDCAC of the output-stage circuit 951, such that the output current achieves balance with the load current.
The regulation part 904 includes a current amplifier 942, an output-stage circuit 952 and an AC-pass filter 962. An output terminal of the output-stage circuit 952 is coupled to a fourth output terminal of the voltage regulator 900 (i.e., an output terminal of the regulation part 904), where the fourth output terminal of the voltage regulator 900 may be coupled to the fourth node of the power-supply route 11. An input terminal of the AC-pass filter 962 is coupled to the fourth output terminal of the voltage regulator 900 (i.e., the output terminal of the regulation part 904) to receive a fourth output voltage Vout4 from the voltage regulator. The AC-pass filter 962 may filter a DC component of the fourth output voltage Vout4 to output an AC component of the fourth output voltage Vout4. A first input terminal of the current amplifier 942 receives the reference current Iref. A second input terminal of the current amplifier 942 is coupled to an output terminal of the AC-pass filter 962 to receive the AC component of the fourth output voltage Vout4. An output terminal of the current amplifier 942 is coupled to an input terminal of the output-stage circuit 952. For the AC component, the AC-pass filter 962, the current amplifier 942 and the output-stage circuit 952 form an AC loop. When the load current changes, the change of the current is fed back to the current amplifier 942 through the AC-pass filter 962 to adjust an output current of the output-stage circuit 952, such that the output current achieves balance with the load current.
In the voltage regulator 900 illustrated in
In the voltage regulator 900 illustrated in
One or more regulation parts (e.g., 903 and 904) may be placed in different positions in the power-supply route 11 according to design requirements to mitigate affection caused by parasitic impedances of the power-supply route 11. The output stages in the regulation parts 903 and 904 provide current outputs (instead of voltage outputs), and thereby, the issue that the conventional voltage regulator cannot provide the peak current due to the voltage difference between the offset voltages thereof can be avoided.
The regulation parts 1001, 1003 and 1004 of the voltage regulator 1000 illustrated in
The regulation part 1002 includes the current amplifier 840, the output-stage circuit 850 and the AC-pass filter 860. An input terminal of the output-stage circuit 850 is coupled to the output terminal of the second gain circuit 891. An output terminal of the output-stage circuit 850 is coupled to an second output terminal of the voltage regulator 1000 (i.e., an output terminal of the regulation part 1002), where the second output terminal of the voltage regulator 1000 may be coupled to the second node of the power-supply route 11. An input terminal of the AC-pass filter 860 is coupled to the second output terminal of the voltage regulator 1000 (i.e., the output terminal of the regulation part 1002) to receive the second output voltage Vout2 from the voltage regulator 1000. The AC-pass filter 860 may filter the DC component of the second output voltage Vout2 to output the AC component of the second output voltage Vout2. A first input terminal of the current amplifier 840 receives the reference current Iref. The level of the reference current Iref may be determined depending on actual design requirements. A second input terminal of the current amplifier 840 is coupled to an output terminal of the AC-pass filter 860 to receive the AC component of the second output voltage Vout2. An output terminal of the current amplifier 840 is coupled to the input terminal of the output-stage circuit 850. For the AC component, the AC-pass filter 860, the current amplifier 840 and the output-stage circuit 850 forms an AC loop (AC loop). When the load current changes, the change of the current is fed back to the current amplifier 840 through the AC-pass filter 860 to adjust an output current of the output-stage circuit 850, such that the output current achieves balance with the load current.
One or more regulation parts (e.g., the regulation parts 1002, 1003 and/or 1004) may be placed in different positions in the power-supply route 11 according to design requirements to mitigate affection caused by parasitic impedances of the power-supply route 11. The output stages in the regulation parts 1002, 1003 and/or 1004 provide current outputs (instead of voltage outputs), and thereby, the issue that the conventional voltage regulator cannot provide the peak current due to the voltage difference between the offset voltages thereof can be avoided.
To summarize, in the embodiments of the invention, the output-stage circuits of the voltage regulator driven by the current amplifiers fed back with the AC component. When the load current transiently changes, the current amplifier with the AC feedback can immediately generate the corresponding currents to push the output-stage circuits of the voltage regulator. Thereby, the voltage regulator described in each of the embodiments can respond to the peak current of the load circuit rapidly and immediately.
Although the invention has been described with reference to the above embodiments, it will be apparent to one of the ordinary skill in the art that modifications to the described embodiment may be made without departing from the spirit of the invention. Accordingly, the scope of the invention will be defined by the attached claims not by the above detailed descriptions.
Number | Name | Date | Kind |
---|---|---|---|
5559424 | Wrathall | Sep 1996 | A |
6465994 | Xi | Oct 2002 | B1 |
6703816 | Biagi | Mar 2004 | B2 |
6765374 | Yang et al. | Jul 2004 | B1 |
6806690 | Xi | Oct 2004 | B2 |
6861827 | Yang et al. | Mar 2005 | B1 |
7106032 | Chen | Sep 2006 | B2 |
7253595 | Oddoart et al. | Aug 2007 | B2 |
7327125 | Benbrik | Feb 2008 | B2 |
8384305 | Liao et al. | Feb 2013 | B2 |
8710809 | Khare | Apr 2014 | B2 |
8866460 | Huang et al. | Oct 2014 | B2 |
9494959 | Hu | Nov 2016 | B2 |
20030178978 | Biagi | Sep 2003 | A1 |
20030214275 | Biagi | Nov 2003 | A1 |
20040004468 | Dearn | Jan 2004 | A1 |
20050088153 | Suzuki | Apr 2005 | A1 |
20050225306 | Oddoart et al. | Oct 2005 | A1 |
20060055383 | Eberlein | Mar 2006 | A1 |
20070182399 | Enjalbert | Aug 2007 | A1 |
20080218139 | Takagi | Sep 2008 | A1 |
20090212753 | Lou | Aug 2009 | A1 |
20120319665 | Hu | Dec 2012 | A1 |
20130076323 | Huang et al. | Mar 2013 | A1 |
20130176006 | van Ettinger | Jul 2013 | A1 |
20150212530 | Forejtek | Jul 2015 | A1 |
20150318829 | Astgimath | Nov 2015 | A1 |
20160124448 | Murukumpet | May 2016 | A1 |
Number | Date | Country |
---|---|---|
1633630 | Jun 2005 | CN |
101520667 | Sep 2009 | CN |
103019285 | Apr 2013 | CN |
103186155 | Jul 2013 | CN |
104699163 | Jun 2015 | CN |
M502863 | Jun 2015 | TW |
Entry |
---|
“Office Action of Taiwan Counterpart Application”, dated Jun. 7, 2016, p. 1-p. 4, in which the listed reference was cited. |
Min-Hung Hu et al., “Current Source for Voltage Regulator and Voltage Regulator Thereof”, Unpublished U.S. Appl. No. 14/554,009, filed Nov. 25, 2014, The specification, claims, and the drawings of the unpublished pending U.S. application have been stored in the Image File Wrapper (IFW) system. |
“Office Action of China Counterpart Application,” dated Aug. 25, 2017, p. 1-p. 5, in which the listed references were cited. |
Number | Date | Country | |
---|---|---|---|
20170108883 A1 | Apr 2017 | US |