1. Field of the Invention
The present invention relates generally to power regulation systems and, more particularly, to a system and method of determining a voltage output based on programming voltage data received from at least one of a variety of alternate sources.
2. Background of the Invention
Power converters, which are also referred to as Point-of-load (“POL”) regulators, voltage regulators or DC/DC converters, are commonly used in conjunction with electronic circuits. This is because the voltage/current requirements of electronic circuits typically differ from the voltage that is readily available or the current that can practically be delivered. For example, some electronic devices only include a single voltage input (e.g., 12 v), but require different voltages for circuits contained within (e.g., 3 v, 5 v, 9 v, etc.). A common solution is to design multiple power converters within the device for converting the single input voltage into multiple voltage levels.
Similarly, some electronic devices include circuits that require low voltage (e.g., 1 v), high current (e.g., 100 A) power supplies. This is problematic in that it is impractical to deliver high current at low voltages over a relatively long distance and still meet desired regulation performances. A common solution is to use a high voltage, low current power supply and design a power converter near the internal circuit. This allows low current to travel throughout the device, and provides a low voltage, high current power supply (i.e., using the power converter) near the internal circuit.
Traditionally, power converters operate in conjunction with a power supply controller (“controller”) that activates, programs, and monitors the power converters. Specifically, the controller uses a multi-connection parallel bus (e.g., a six bit parallel bus) to activate and program each power converter. The parallel bus includes an enable/disable bit for turning the power converter on and off and five VID code bits for programming the output voltage of the power converter. The controller further uses additional connections (e.g., three wires) to monitor the voltage/current that is being delivered by each power converter.
The drawback with this type of power converter is that it is only configured to be programmed via a six bit parallel bus. Not only does this limit the type of application in which it can be used, but its adds complexity and size to the overall electronic device.
For example, eighteen connections (i.e., eighteen wires or traces) are needed to program or operate three power converters. Thus, it would be advantageous to have a system and method of programming a power converter that overcame these disadvantages.
The present invention provides a system and method of determining a voltage output of a programmable power converter based on programming voltage data received from at least one of a variety of alternate sources. Embodiments of the present invention operate in accordance with a programmable power converter including a digital data serial interface (“serial interface”), a digital data parallel interface (“parallel interface”), an analog data interface (“analog interface”), a control unit, and an output voltage builder. In one embodiment of the present invention, the programmable power converter further includes a storage device for storing digital data. In another embodiment of the present invention, the control unit further includes an analog circuit and a processor.
In a preferred embodiment of the present invention, the control unit (or the processor) monitors the serial, parallel and analog interfaces to determine whether programming voltage data has been received. If more than one set of programming voltage data has been received, the control unit determines which set of data takes priority (or is more relevant). For example, in one embodiment of the present invention, data received by the serial interface takes priority over data received by the parallel and analog interface. In another embodiment of the present invention, data received by the parallel interface takes priority over data received by the analog interface. The selected set of programming voltage data is then used (at least in part) to determine an output voltage for the programmable power converter.
In one embodiment of the present invention, at least one of the interfaces includes a communication bus (or wire(s)) capable of receiving, and transmitting to the control unit, a particular format of data. In another embodiment of the present invention, the interface further includes at least one additional component capable of performing a particular operation or function on the received data and providing data (e.g., the resulting data) in response thereto to the control unit. In another embodiment of the present invention, the programming voltage data is received from a programming apparatus (e.g., a resistor network, a plurality of fixed digital values, a processor, etc.).
A more complete understanding of the system and method of determining a voltage output of a programmable power converter will be afforded to those skilled in the art, as well as a realization of additional advantages and objects thereof, by a consideration of the following detailed description of the preferred embodiment. References will be made to the appended sheets of drawings which will first be described briefly.
The present invention provides a system and method of determining a voltage output of a programmable power converter based on programming voltage data received from at least one of a variety of alternate sources. In the detailed description that follows, like element numerals are used to describe like elements illustrated in one or more figures.
As shown in
The problem with the DC/DC power converters depicted in
It should be appreciated that the programmable power converters depicted herein (e.g., 200) include, but are not limited to, point-of-load regulators, power-on-load regulators, DC/DC converters, voltage regulators, and all other programmable voltage regulating devices (including all single and multiple output devices) generally known to those skilled in the art. It should further be appreciated that the serial, parallel and analog interfaces depicted herein (e.g., 230, 250 and 240) are not limited to a particular type of interface, but instead include all devices (or combinations thereof) that are capable of receiving data in a particular format (e.g., serial, parallel, analog) and providing data (in any format) to the control unit 210 in response thereto. For example, an interface may include a communication bus (or wire(s)) capable of receiving, and transmitting to the control unit 210, a particular format of data. Alternatively, an interface may further include active and/or passive components capable of performing a particular operation on the received data (e.g., latching, buffering, amplifying, trimming, etc.), and providing data in response thereto to the control unit 210. It should further be appreciated that the output voltage builder depicted herein (e.g., 260) includes, but is not limited to, all voltage converting/trimming devices (or circuits) generally known to those skilled in the art. Thus, for example, a multi-stage output voltage builder (e.g., including a fixed or variable voltage reference, an error amplifier, a pulse width modulation controller, a power train, etc.) is within the spirit and scope of the present invention.
In one embodiment, the programmable power converter 200 may further include a storage device 220 for storing programming voltage data and/or look-up table data. For example, if the programming voltage data is received via the serial interface 230, it may be stored in the storage device 220 before it is used to determine the output voltage. Alternatively, if the programming voltage data is received via the parallel interface 230 and represents VID code data, then a look-up table, which could be stored in the storage device 220, is typically used to determine the output voltage. This is because the desired output voltage cannot be ascertained from the VID code value itself without using additional information (e.g., look-up table data). In other words, the VID code value and the look-up table enable the control unit 210 to determine the output voltage. It should be appreciated that the storage device 220 can be a long term or short term storage device, including, but not limited to, registers, RAM, ROM, EPROM, EEPROM, flash memory, and all other digital data storage devices generally known to those skilled in the art.
In one embodiment of the present invention, as shown in
The programmable power converter 200 described herein is capable of being used in a variety of applications (i.e., in a programmable power converter system that includes an analog programming source, a parallel programming source, or a serial programming source). For example,
One method of using the programmable voltage converter is illustrated in
Having thus described a preferred embodiment of a system and method of determining the voltage output of a programmable power converter based on programming voltage data received from at least one of a variety of alternate sources, it should be apparent to those skilled in the art that certain advantages of the system have been achieved. It should also be appreciated that various modifications, adaptations, and alternative embodiments thereof may be made within the scope and spirit of the present invention. The invention is further defined by the following claims.
This patent application is a continuation of U.S. patent application Ser. No. 10/388,829, for VOLTAGE SET POINT CONTROL SCHEME, filed Mar. 14, 2003, issued as U.S. Pat. No. 7,080,265 on Jul. 18, 2006.
Number | Name | Date | Kind |
---|---|---|---|
429581 | Tan | Jun 1890 | A |
3660672 | Berger et al. | May 1972 | A |
4194147 | Payne et al. | Mar 1980 | A |
4204249 | Dye et al. | May 1980 | A |
4328429 | Kublick et al. | May 1982 | A |
4335445 | Nercessian | Jun 1982 | A |
4451773 | Papathomas et al. | May 1984 | A |
4538073 | Freige et al. | Aug 1985 | A |
4538101 | Shimpo et al. | Aug 1985 | A |
4607330 | McMurray et al. | Aug 1986 | A |
4616142 | Upadhyay et al. | Oct 1986 | A |
4622627 | Rodriguez et al. | Nov 1986 | A |
4630187 | Henze | Dec 1986 | A |
4654769 | Middlebrook | Mar 1987 | A |
4677566 | Whittaker et al. | Jun 1987 | A |
4761725 | Henze | Aug 1988 | A |
4940930 | Detweiler | Jul 1990 | A |
4988942 | Ekstrand | Jan 1991 | A |
5004972 | Roth | Apr 1991 | A |
5053920 | Staffiere et al. | Oct 1991 | A |
5073848 | Steigerwald et al. | Dec 1991 | A |
5079498 | Cleasby et al. | Jan 1992 | A |
5117430 | Berglund | May 1992 | A |
5168208 | Schultz et al. | Dec 1992 | A |
5229699 | Chu et al. | Jul 1993 | A |
5270904 | Gulczynski | Dec 1993 | A |
5272614 | Brunk et al. | Dec 1993 | A |
5287055 | Cini et al. | Feb 1994 | A |
5349523 | Inou et al. | Sep 1994 | A |
5377090 | Steigerwald | Dec 1994 | A |
5398029 | Toyama et al. | Mar 1995 | A |
5426425 | Conrad et al. | Jun 1995 | A |
5481140 | Maruyama et al. | Jan 1996 | A |
5489904 | Hadidi | Feb 1996 | A |
5532577 | Doluca | Jul 1996 | A |
5627460 | Bazinet et al. | May 1997 | A |
5631550 | Castro et al. | May 1997 | A |
5646509 | Berglund et al. | Jul 1997 | A |
5675480 | Stanford | Oct 1997 | A |
5727208 | Brown | Mar 1998 | A |
5752047 | Darty et al. | May 1998 | A |
5815018 | Soborski | Sep 1998 | A |
5847950 | Bhagwat | Dec 1998 | A |
5870296 | Schaffer | Feb 1999 | A |
5872984 | Berglund et al. | Feb 1999 | A |
5874912 | Hasegawa | Feb 1999 | A |
5883797 | Amaro et al. | Mar 1999 | A |
5889392 | Moore et al. | Mar 1999 | A |
5892933 | Voltz | Apr 1999 | A |
5905370 | Bryson | May 1999 | A |
5917719 | Hoffman et al. | Jun 1999 | A |
5929618 | Boylan et al. | Jul 1999 | A |
5929620 | Dobkin et al. | Jul 1999 | A |
5935252 | Berglund et al. | Aug 1999 | A |
5943227 | Bryson et al. | Aug 1999 | A |
5946495 | Scholhamer et al. | Aug 1999 | A |
5990669 | Brown | Nov 1999 | A |
5994885 | Wilcox et al. | Nov 1999 | A |
6005377 | Chen et al. | Dec 1999 | A |
6021059 | Kennedy | Feb 2000 | A |
6055163 | Wagner et al. | Apr 2000 | A |
6057607 | Rader, III et al. | May 2000 | A |
6079026 | Berglund et al. | Jun 2000 | A |
6100676 | Burstein et al. | Aug 2000 | A |
6111396 | Line et al. | Aug 2000 | A |
6115441 | Douglass et al. | Sep 2000 | A |
6121760 | Marshall et al. | Sep 2000 | A |
6136143 | Winter et al. | Oct 2000 | A |
6137280 | Ackermann et al. | Oct 2000 | A |
6150803 | Varga | Nov 2000 | A |
6157093 | Giannopoulos et al. | Dec 2000 | A |
6157182 | Tanaka et al. | Dec 2000 | A |
6163143 | Shimamori | Dec 2000 | A |
6163178 | Stark et al. | Dec 2000 | A |
6170062 | Henrie | Jan 2001 | B1 |
6177787 | Hobrecht | Jan 2001 | B1 |
6181029 | Berglund et al. | Jan 2001 | B1 |
6191566 | Petricek et al. | Feb 2001 | B1 |
6194883 | Shimamori | Feb 2001 | B1 |
6198261 | Schultz et al. | Mar 2001 | B1 |
6199130 | Berglund et al. | Mar 2001 | B1 |
6208127 | Doluca | Mar 2001 | B1 |
6211579 | Blair | Apr 2001 | B1 |
6246219 | Lynch et al. | Jun 2001 | B1 |
6249111 | Nguyen | Jun 2001 | B1 |
6262900 | Suntio | Jul 2001 | B1 |
6288595 | Hirakata et al. | Sep 2001 | B1 |
6291975 | Snodgrass | Sep 2001 | B1 |
6294954 | Melanson | Sep 2001 | B1 |
6304066 | Wilcox et al. | Oct 2001 | B1 |
6304823 | Smit et al. | Oct 2001 | B1 |
6320768 | Pham et al. | Nov 2001 | B1 |
6351108 | Burstein et al. | Feb 2002 | B1 |
6355990 | Mitchell | Mar 2002 | B1 |
6366069 | Nguyen et al. | Apr 2002 | B1 |
6373334 | Melanson | Apr 2002 | B1 |
6385024 | Olson | May 2002 | B1 |
6392577 | Swanson et al. | May 2002 | B1 |
6396169 | Voegeli et al. | May 2002 | B1 |
6396250 | Bridge | May 2002 | B1 |
6400127 | Giannopoulos | Jun 2002 | B1 |
6411071 | Schultz | Jun 2002 | B1 |
6411072 | Feldman | Jun 2002 | B1 |
6421259 | Brooks et al. | Jul 2002 | B1 |
6429630 | Pohlman et al. | Aug 2002 | B2 |
6448745 | Killat | Sep 2002 | B1 |
6448746 | Carlson | Sep 2002 | B1 |
6456044 | Darmawaskita | Sep 2002 | B1 |
6465909 | Soo et al. | Oct 2002 | B1 |
6465993 | Clarkin et al. | Oct 2002 | B1 |
6469478 | Curtin | Oct 2002 | B1 |
6469484 | L'Hermite et al. | Oct 2002 | B2 |
6476589 | Umminger et al. | Nov 2002 | B2 |
6556158 | Steensgaard-Madsen | Apr 2003 | B2 |
6563294 | Duffy et al. | May 2003 | B2 |
6583608 | Zafarana et al. | Jun 2003 | B2 |
6590369 | Burstein et al. | Jul 2003 | B2 |
6608402 | Soo et al. | Aug 2003 | B2 |
6614612 | Menegoli et al. | Sep 2003 | B1 |
6621259 | Jones et al. | Sep 2003 | B2 |
6683494 | Stanley | Jan 2004 | B2 |
6686831 | Cook | Feb 2004 | B2 |
6693811 | Bowman et al. | Feb 2004 | B1 |
6717389 | Johnson | Apr 2004 | B1 |
6731023 | Rothleitner et al. | May 2004 | B2 |
6744243 | Daniels et al. | Jun 2004 | B2 |
6771052 | Ostojic | Aug 2004 | B2 |
6778414 | Chang et al. | Aug 2004 | B2 |
6788033 | Vinciarelli | Sep 2004 | B2 |
6788035 | Bassett et al. | Sep 2004 | B2 |
6791298 | Shenai et al. | Sep 2004 | B2 |
6791302 | Tang et al. | Sep 2004 | B2 |
6791368 | Tzeng et al. | Sep 2004 | B2 |
6795009 | Duffy et al. | Sep 2004 | B2 |
6801027 | Hann et al. | Oct 2004 | B2 |
6807070 | Ribarich | Oct 2004 | B2 |
6816758 | Maxwell, Jr. et al. | Nov 2004 | B2 |
6819537 | Pohlman et al. | Nov 2004 | B2 |
6828765 | Schultz et al. | Dec 2004 | B1 |
6829547 | Law et al. | Dec 2004 | B2 |
6833691 | Chapuis | Dec 2004 | B2 |
6850046 | Chapuis | Feb 2005 | B2 |
6850049 | Kono | Feb 2005 | B2 |
6850426 | Kojori et al. | Feb 2005 | B2 |
6853169 | Burstein et al. | Feb 2005 | B2 |
6853174 | Inn | Feb 2005 | B1 |
6888339 | Travaglini et al. | May 2005 | B1 |
6903949 | Ribarich | Jun 2005 | B2 |
6911808 | Shimamori | Jun 2005 | B1 |
6915440 | Berglund et al. | Jul 2005 | B2 |
6917186 | Klippel et al. | Jul 2005 | B2 |
6928560 | Fell, III et al. | Aug 2005 | B1 |
6933709 | Chapuis | Aug 2005 | B2 |
6933711 | Sutardja et al. | Aug 2005 | B2 |
6936999 | Chapuis | Aug 2005 | B2 |
6947273 | Bassett et al. | Sep 2005 | B2 |
6963190 | Asanuma et al. | Nov 2005 | B2 |
6965220 | Kernahan et al. | Nov 2005 | B2 |
6965502 | Duffy et al. | Nov 2005 | B2 |
6975494 | Tang et al. | Dec 2005 | B2 |
6977492 | Sutardja et al. | Dec 2005 | B2 |
7007176 | Goodfellow et al. | Feb 2006 | B2 |
7023672 | Goodfellow et al. | Apr 2006 | B2 |
7068021 | Chapuis | Jun 2006 | B2 |
7080265 | Thaker et al. | Jul 2006 | B2 |
7141956 | Chapuis | Nov 2006 | B2 |
7266709 | Chapuis et al. | Sep 2007 | B2 |
7394445 | Chapuis et al. | Jul 2008 | B2 |
20010033152 | Pohlman et al. | Oct 2001 | A1 |
20010052862 | Roelofs | Dec 2001 | A1 |
20020070718 | Rose | Jun 2002 | A1 |
20020073347 | Zafarana et al. | Jun 2002 | A1 |
20020075710 | Lin et al. | Jun 2002 | A1 |
20020104031 | Tomlinson et al. | Aug 2002 | A1 |
20020105227 | Nerone et al. | Aug 2002 | A1 |
20020144163 | Goodfellow et al. | Oct 2002 | A1 |
20030006650 | Tang et al. | Jan 2003 | A1 |
20030067404 | Ruha et al. | Apr 2003 | A1 |
20030122429 | Zhang et al. | Jul 2003 | A1 |
20030137912 | Ogura | Jul 2003 | A1 |
20030142513 | Vinciarelli | Jul 2003 | A1 |
20030201761 | Harris | Oct 2003 | A1 |
20040027101 | Vinciarelli | Feb 2004 | A1 |
20040080044 | Moriyama et al. | Apr 2004 | A1 |
20040090219 | Chapuis | May 2004 | A1 |
20040093533 | Chapuis et al. | May 2004 | A1 |
20040123164 | Chapuis et al. | Jun 2004 | A1 |
20040123167 | Chapuis | Jun 2004 | A1 |
20040135560 | Kernahan et al. | Jul 2004 | A1 |
20040155640 | Sutardja et al. | Aug 2004 | A1 |
20040174147 | Vinciarelli | Sep 2004 | A1 |
20040178780 | Chapuis | Sep 2004 | A1 |
20040189271 | Hansson et al. | Sep 2004 | A1 |
20040201279 | Templeton | Oct 2004 | A1 |
20040225811 | Fosler | Nov 2004 | A1 |
20040246754 | Chapuis | Dec 2004 | A1 |
20050093594 | Kim et al. | May 2005 | A1 |
20050117376 | Wilson | Jun 2005 | A1 |
20050146312 | Kenny et al. | Jul 2005 | A1 |
20050200344 | Chapuis | Sep 2005 | A1 |
20050289373 | Chapuis et al. | Dec 2005 | A1 |
20060022656 | Leung et al. | Feb 2006 | A1 |
20060149396 | Templeton | Jul 2006 | A1 |
20060174145 | Chapuis et al. | Aug 2006 | A1 |
20060244570 | Leung et al. | Nov 2006 | A1 |
20060250120 | King | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
2521825 | Nov 2002 | CN |
0255258 | Feb 1988 | EP |
315366 | May 1989 | EP |
0401562 | Dec 1990 | EP |
0660487 | Jun 1995 | EP |
0875994 | Nov 1998 | EP |
0877468 | Nov 1998 | EP |
0997825 | May 2000 | EP |
2377094 | Dec 2002 | GB |
60-244111 | Dec 1985 | JP |
1185329 | Mar 1999 | JP |
200284495 | Aug 2002 | KR |
1359874 | Dec 1985 | SU |
1814177 | May 1993 | SU |
WO9319415 | Sep 1993 | WO |
WO 0122585 | Mar 2001 | WO |
WO 0231943 | Apr 2002 | WO |
WO0231943 | Apr 2002 | WO |
WO0231951 | Apr 2002 | WO |
WO0250690 | Jun 2002 | WO |
WO02063688 | Aug 2002 | WO |
WO 03030369 | Apr 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060069935 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10388829 | Mar 2003 | US |
Child | 11281973 | US |