Voltage stabilization circuit

Information

  • Patent Grant
  • 6600302
  • Patent Number
    6,600,302
  • Date Filed
    Wednesday, October 31, 2001
    23 years ago
  • Date Issued
    Tuesday, July 29, 2003
    21 years ago
Abstract
A voltage stabilization circuit includes a band gap reference circuit to generate a stable output voltage that is temperature-independent, and a folded cascode feedback circuit to generate a feedback potential that is applied to stabilize the band gap reference circuit. The folded cascode feedback circuit is implemented with current mirror circuits.
Description




TECHNICAL FIELD




This invention relates to an electrical circuit and, in particular, to systems and methods for a voltage stabilization circuit.




BACKGROUND




A band gap reference circuit is typically utilized to generate an output voltage that can be applied as a reference voltage to another circuit. The temperature of an operating environment affects properties of circuit components, and variations in temperature tend to result in output voltage variations. Typically, a band gap reference circuit in a particular operating environment is designed to generate an acceptable voltage output range that accounts for temperature variability.




Additionally, a supply voltage can oscillate and introduce unwanted noise when the power source is not stable, or when the supply voltage is subjected to varying loads. Subjecting a band gap reference circuit to unwanted noise can also vary the output voltage, and subsequently affect the circuit to which the reference voltage is applied.




The following description discusses systems and methods for generating a reference voltage that is stable and temperature-independent.




SUMMARY




A voltage stabilization circuit includes a band gap reference circuit to generate a stable output voltage that is temperature-independent, and a folded cascode feedback circuit to generate a feedback potential that is applied to stabilize the band gap reference circuit. The folded cascode feedback circuit is implemented with current mirror circuits.











BRIEF DESCRIPTION OF THE DRAWINGS




The same numbers are used throughout the drawings to reference like features and components.





FIG. 1

is a circuit diagram that illustrates a band gap reference circuit with a folded cascode feedback circuit in one embodiment of the present invention.





FIG. 2

is a circuit diagram that illustrates the band gap reference circuit with the folded cascode feedback circuit shown in

FIG. 2

with a voltage divider to modify the output voltage.





FIG. 3

is a circuit diagram that illustrates the band gap reference circuit with the folded cascode feedback circuit shown in

FIG. 2

with components to modify the output drive current.





FIG. 4

is a circuit diagram that illustrates the band gap reference circuit with the folded cascode feedback circuit shown in

FIG. 2

with a circuit stabilization component.





FIG. 5

is a circuit diagram that illustrates the band gap reference circuit with the folded cascode feedback circuit shown in

FIG. 2

with the additional circuit components shown in

FIGS. 3-5

.





FIG. 6

is a flow diagram that describes a method for a band gap reference circuit with a folded cascode feedback circuit in one embodiment of the present invention.











DETAILED DESCRIPTION




Introduction




The following describes systems and methods for a band gap reference circuit with a folded cascode feedback that generates a stable and temperature-independent reference voltage, and improves power supply rejection without limiting supply voltage headroom.




In the exemplary embodiments, specific electrical circuits and methods are illustrated and described. However, the specific examples are not meant to limit the scope of the claims or the description, but are meant to provide a specific understanding of the described implementations.




Exemplary Circuits





FIG. 1

illustrates an exemplary electrical circuit


100


that includes a band gap reference circuit


102


with a folded cascode feedback circuit


104


that provides feedback for the band gap reference circuit


102


. The folded cascode feedback circuit


104


includes current mirror circuits


106


,


108


, and


110


. The band gap reference circuit


102


includes a first bipolar junction transistor


112


and a second bipolar junction transistor


114


. Each of the transistors


112


and


114


have a current


116


and


118


, respectively, input to the collector from the current mirror circuit


106


.




Current mirror circuit


106


includes a first MOSFET (metal oxide semiconductor field-effect transistor)


120


and a second MOSFET


122


. Each of the field-effect transistors


120


and


122


have an input voltage (Vin) applied to the source, and a bias voltage (Vbias


1


) applied to the gate. In this example, the field-effect transistors of the current mirror circuits have a one volt threshold voltage, and the input voltage Vin can operate the circuits at 4.5 volts.




A current


116


output from field-effect transistor


120


is input to transistor


112


of the band gap reference circuit


102


. Similarly, current


118


output from field-effect transistor


122


is input to transistor


114


of the band gap reference circuit


102


. Ideally, current


116


output from field-effect transistor


120


and current


118


output from field-effect transistor


122


have the same ampere value.




Bipolar junction transistor


114


of the band gap reference circuit


102


has a base emitter area “A”, and bipolar junction transistor


112


has a base emitter area “m*A”, where “m” is a constant eight (8) for this example. The ratio between the two base emitter areas results in a voltage difference (□Vbe) between the base emitter voltage of transistor


112


and the base emitter voltage of transistor


114


. The band gap reference circuit


102


includes a first resistor


124


and a second resistor


126


. The voltage difference □Vbe is applied across resistor


124


and is proportional to the ratio between the two base emitter areas of the two transistors and the operating environment temperature.




A current “i” is generated when the voltage difference □Vbe is applied across resistor


124


. Resistor


124


has a value of “R” ohms, and resistor


126


has a value of “n*R” ohms, where “n” is a constant five (5) for this example. In this example, resistor


124


is 1.6K ohms and resistor


126


is 8K ohms. The current through resistor


126


is “2i”, and with the ratio between the two resistor values, the voltage across resistor


126


is proportional to both the constant “n” and to the voltage difference □Vbe. Effectively, the resistance is null and the result is a voltage gain across resistor


126


that is proportional to the operating environment temperature.




The base emitter voltage of each transistor


112


and


114


is complimentary to temperature. A resultant temperature-stable voltage (Vout) is achieved when the base emitter voltage of transistor


114


is added to the temperature proportional voltage across resistor


124


. The resultant output voltage Vout is seen at the base of both transistors


112


and


114


, and is independent of temperature variations in the operating environment and/or variations of Vin.




The current mirror circuits


106


,


108


, and


110


are configured to form the folded cascode feedback circuit


104


. Current mirror circuit


108


includes a first MOSFET


128


and a second MOSFET


130


. Each of the field-effect transistors


128


and


130


have an input voltage (Vin) applied to the source, and a bias voltage (Vbias


2


) applied to the gate. A current


132


from transistor


120


of current mirror


106


is input to field-effect transistor


128


. Similarly, a current


134


from transistor


122


of current mirror


106


is input to field-effect transistor


130


.




Current mirror circuit


110


of the folded cascode feedback circuit


104


includes a first MOSFET


136


and a second MOSFET


138


. A current


140


output from field-effect transistor


128


of current mirror circuit


108


is input to the drain of field-effect transistor


136


and to the gates of both transistors


136


and


138


. The gates of transistors


136


and


138


are driven by the drain of transistor


136


. A current


142


output from field-effect transistor


130


of current mirror circuit


108


is input to the drain of field-effect transistor


138


.




The bias voltages Vbias


1


and Vbias


2


are generated by an external bias generator circuit. The voltage Vbias


1


is applied at current mirror circuit


106


such that each field-effect transistor


120


and


122


generate “2i” currents


116


plus


132


, and currents


118


plus


134


. The voltage Vbias


2


is applied at current mirror circuit


108


such that each field-effect transistor


128


and


130


generate “i” currents


140


and


142


.




The feedback from the folded cascode feedback circuit


104


drives the base voltage of the two bipolar junction transistors


112


and


114


of the band gap reference circuit


102


to 1.2 volts. The feedback also stabilizes the base voltage of the two transistors


112


and


114


so that they sink the same amount of current


116


and


118


, respectively. The resultant output voltage Vout is seen at the base of both transistors


112


and


114


, and is independent of temperature variations in the operating environment and/or variations of Vin. The output voltage Vout does not vary as a function of temperature and is stable over a broad range of temperatures, such as from zero (0) to one-hundred (100) degrees C.




The exemplary electrical circuit


100


is compact and stable, and produces a temperature-stable reference voltage (Vout) with good supply rejection using a low input voltage Vin of 4.5 volts with one (1) volt transistors. Those skilled in the art will recognize that exemplary electrical circuit


100


can implemented with lower voltage transistors, and a lower input voltage Vin. For example, exemplary electrical circuit


100


can be implemented in low-voltage bi-CMOS analog circuits. Those skilled in the art will also recognize that all of the component values are exemplary, and that any number and combination of components can be utilized to implement the exemplary electrical circuit


100


and the other exemplary electrical circuits described herein. It is to be appreciated that substitute component configurations should take into account the complimentary aspects of the components, such as resistors


124


and


126


of the band gap reference circuit


102


.




Implementing the exemplary electrical circuit


100


with a low supply voltage avoids the need for two-gate processes when combining the exemplary circuit with a low-voltage digital circuit. For example, exemplary electrical circuit


100


can provide a stable and precise 1.2 volt reference voltage for input to an analog-to-digital converter when a precision digital scale is required. The digital range of the analog-to-digital converter will not change as a function of temperature variations in the operating environment and/or variations of the input voltage Vin to electrical circuit


100


.




Additional components can be added to the exemplary electrical circuit


100


to modify the output voltage Vout, increase output current drive capability of the band gap reference circuit


102


, and/or improve stability of the band gap reference circuit


102


without compromising the temperature-stability of the exemplary circuit.





FIG. 2

illustrates an exemplary electrical circuit


200


which includes a folded cascode feedback circuit


202


that provides feedback for the band gap reference circuit


102


(FIG.


1


). The folded cascode feedback circuit


202


is the same as the folded cascode feedback circuit


104


(

FIG. 1

) with the addition of a voltage divider


204


to modify the output voltage Vout. Voltage divider


204


includes a first resistor


206


and a second resistor


208


which have a ratio value between them that is determined independently of resistors


124


and


126


of the band gap reference circuit


102


. In this example, resistor


206


is 1.6K ohms and resistor


208


is 6.4K ohms.




Voltage divider


204


can be used to modify the output voltage Vout from 1.2 volts if resistor


206


is zero ohms, to above 1.2 volts for a resistor


206


value above zero ohms. The output voltage can be modified from 1.2 volts up to a voltage that is less than the input voltage Vin, which is 4.5 volts in this example.





FIG. 3

illustrates an exemplary electrical circuit


300


which includes a folded cascode feedback circuit


302


that provides feedback for the band gap reference circuit


102


(FIG.


1


). The folded cascode feedback circuit


302


is the same as the folded cascode feedback circuit


104


(

FIG. 1

) with the addition of transistor components that increase the output current drive capability of the band gap reference circuit


102


.




The folded cascode feedback circuit


302


includes a MOSFET


304


, another MOSFET


306


, and a bipolar junction transistor


308


. The field-effect transistor


304


has an input voltage (Vin) applied to the source, and a bias voltage (Vbias


1


) applied to the gate. The field-effect transistor


306


, in combination with transistor


308


, applies a voltage to the base of each transistor


112


and


114


, and increases the output drive current so that the exemplary electrical circuit


300


can drive a larger load on Vout.





FIG. 4

illustrates an exemplary electrical circuit


400


which includes a folded cascode feedback circuit


402


that provides feedback for the band gap reference circuit


102


(FIG.


1


). The folded cascode feedback circuit


402


is the same as the folded cascode feedback circuit


104


(

FIG. 1

) with the addition of a capacitor


404


that improves stability of the exemplary electrical circuit


400


by preventing a positive feedback potential from being applied to the band gap reference circuit


102


. In this example, capacitor


404


is sized at ten (10) picofarads.





FIG. 5

illustrates an exemplary electrical circuit


500


which includes a folded cascode feedback circuit


502


that provides feedback for the band gap reference circuit


102


(FIG.


1


). The folded cascode feedback circuit


502


is the same as the folded cascode feedback circuit


104


(

FIG. 1

) with the addition of the components that can be implemented to modify the output voltage Vout (FIG.


2


), increase output current drive capability of the band gap reference circuit (FIG.


3


), and improve the stability (

FIG. 4

) of exemplary circuit


500


.

FIG. 5

illustrates the circuit configuration for the components of

FIGS. 1-4

that can be implemented as an exemplary band gap reference circuit with a folded cascode feedback circuit.




Exemplary electrical circuit


500


is configured to provide an improved power supply rejection over a conventional band gap reference circuit. Variations of the input voltage Vin can cause mismatched currents


116


and


118


(

FIG. 1

) which disrupts the temperature-stable nature of a band gap reference circuit. The folded cascode feedback circuit


502


, which is implemented with current mirror circuits, compensates for variations of the input voltage Vin. Additionally, the folded aspect of feedback circuit


502


compensates for the input voltage variations without requiring a higher input voltage Vin.




Exemplary circuit


500


operates such that if the voltage at the base of transistors


112


and


114


of the band gap reference circuit


102


is too low, then the current through each of the transistors


112


and


114


will not be equivalent. Similarly, if the voltage at the base of the transistors


112


and


114


is too high, the current through each of the two transistors will not be equivalent.




If the current through transistor


114


of the band gap reference circuit


102


is lower than the current through transistor


112


, then there will be more current through field-effect transistor


130


than through field-effect transistor


128


. The gate voltage of field-effect transistor


306


will increase which in turn increases the base voltage of transistors


112


and


114


. This increases the current through transistor


114


to match the current through transistor


112


. Conversely, if the current through transistor


114


is higher than the current through transistor


112


, then there will be less current through field-effect transistor


130


than through field-effect transistor


128


, the gate voltage of field-effect transistor


306


will decrease, the base voltage of transistors


112


and


114


will decrease, and the current through transistor


114


will be decreased to match the current through transistor


112


.




The folded cascode feedback circuit


502


is designed to drive the voltage at the base of transistors


112


and


114


to a value that results in matching currents through the two transistors. This generates the temperature-stable output voltage Vout.




Methods for Exemplary Circuits





FIG. 6

illustrates methods for a band gap reference circuit with a folded cascode feedback. The order in which the method is described is not intended to be construed as a limitation.




At block


600


, a current differential is sensed with a folded cascode feedback circuit. At block


602


, a feedback potential corresponding to the current differential is generated to stabilize a band gap reference circuit. The feedback potential is generated with current mirror circuits of the folded cascode feedback circuit.




At block


604


, a current is input to the collector of a first and second transistor of the band gap reference circuit. At block


606


, the feedback potential is applied to the base of the first and second transistor of the band gap reference circuit. Applying the feedback potential generates equivalent currents through each of the first and second transistors at block


608


. The current through the first transistor is equivalent to the current through the second transistor.




At block


610


, a stable output voltage is generated with the band gap reference circuit. At block


612


, the stable output voltage is increased with a voltage divider implemented as a component of the folded cascode feedback circuit.




At block


614


, an output current of the band gap reference circuit is increased with transistor components that are implemented with the folded cascode feedback circuit. At block


616


, a positive feedback potential is prevented from being applied to the first or second transistors of the band gap reference circuit.




Conclusion




The electrical circuits and methods illustrated and described for a band gap reference circuit with a folded cascode feedback generate a stable and temperature-independent reference voltage, and improve power supply rejection without limiting supply voltage headroom. Additionally, the exemplary circuits do not require a startup circuit or other preconditioning circuitry to force component voltages to a useful level.




Although the invention has been described in language specific to structural features and/or methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or steps described. Rather, the specific features and steps are disclosed as preferred forms of implementing the claimed invention.



Claims
  • 1. A voltage stabilization circuit, comprising:a first circuit configured to generate a stable output voltage that is temperature-independent; and a second circuit implemented with current mirror circuits in a folded cascode configuration, the second circuit configured to generate a feedback potential that is applied to the first circuit to stabilize the first circuit.
  • 2. A voltage stabilization circuit as recited in claim 1, wherein the first circuit is a band gap reference circuit.
  • 3. A voltage stabilization circuit as recited in claim 1, wherein the first circuit is a band gap reference circuit that includes a first transistor and a second transistor, and wherein the feedback potential, when applied to the first circuit, generates a current through the first transistor that is equivalent to a current generated by the feedback potential through the second transistor.
  • 4. A voltage stabilization circuit as recited in claim 1, wherein:the first circuit is a band gap reference circuit that includes a first bipolar junction transistor and a second bipolar junction transistor; the feedback potential generated by the second circuit is applied to a base of the first bipolar junction transistor and to a base of the second bipolar junction transistor; and the feedback potential, when applied to the first circuit, generates a current through the first bipolar junction transistor that is equivalent to a current generated by the feedback potential through the second bipolar junction transistor.
  • 5. A voltage stabilization circuit as recited in claim 1, wherein the second circuit is further implemented with a voltage divider configured to increase the stable output voltage of the first circuit.
  • 6. A voltage stabilization circuit as recited in claim 1, wherein the second circuit is further implemented with transistor components configured to increase an output current of the first circuit.
  • 7. A voltage stabilization circuit as recited in claim 1, wherein the second circuit is further implemented with a stabilization component configured to prevent a positive feedback potential from being applied to the first circuit.
  • 8. A voltage stabilization circuit as recited in claim 1, wherein the second circuit is further implemented with a capacitor coupled to the first circuit, the capacitor configured to prevent a positive feedback potential from being applied to the first circuit.
  • 9. A voltage stabilization circuit as recited in claim 1, wherein the second circuit is further implemented with:a voltage divider configured to increase the stable output voltage of the first circuit; transistor components configured to increase an output current of the first circuit; and a stabilization component configured to prevent a positive feedback potential from being applied to the first circuit.
  • 10. A voltage stabilization circuit as recited in claim 9, wherein the stabilization component is a capacitor, and wherein the transistor components include a field-effect transistor coupled to a bipolar junction transistor, the field-effect transistor coupled to the current mirror circuits and to the capacitor, and the bipolar junction transistor coupled to the voltage divider.
  • 11. An electrical circuit, comprising:a band gap reference circuit configured to generate a stable output voltage; a first current mirror circuit configured to generate current input to the band gap reference circuit; a second current mirror circuit coupled to the first current mirror circuit; and a third current mirror circuit coupled to the second current mirror circuit, wherein the first current mirror circuit, the second current mirror circuit, and the third current mirror circuit are implemented in a folded cascode configuration to form a folded cascode feedback circuit configured to generate a feedback potential that is applied to the band gap reference circuit.
  • 12. An electrical circuit as recited in claim 11, further comprising at least one other current mirror circuit implemented as a component of the folded cascode feedback circuit.
  • 13. An electrical circuit as recited in claim 11, wherein the band gap reference circuit includes a first transistor and a second transistor, and wherein a current through the first transistor is equivalent to a current through the second transistor when the feedback potential is applied to the first transistor and to the second transistor.
  • 14. An electrical circuit as recited in claim 11, wherein:the band gap reference circuit includes a first bipolar junction transistor and a second bipolar junction transistor; the first current mirror circuit includes a first field-effect transistor coupled to the first bipolar junction transistor, and a second field-effect transistor coupled to the second bipolar junction transistor; a current generated by the first field-effect transistor is input to the first bipolar junction transistor, and a current generated by the second field-effect transistor is input to the second bipolar junction transistor; and the current through the first bipolar junction transistor is equivalent to the current through the second bipolar junction transistor when the feedback potential is applied to the first bipolar junction transistor and to the second bipolar junction transistor.
  • 15. An electrical circuit as recited in claim 11, further comprising a voltage divider configured to increase the stable output voltage of the band gap reference circuit.
  • 16. An electrical circuit as recited in claim 11, further comprising a voltage divider coupled to the folded cascode feedback circuit and to the band gap reference circuit, the voltage divider configured to increase the stable output voltage of the band gap reference circuit.
  • 17. An electrical circuit as recited in claim 11, further comprising transistor components configured to increase an output current of the band gap reference circuit, the transistor components including a field-effect transistor coupled to the folded cascode feedback circuit and a bipolar junction transistor coupled to the field-effect transistor and to the band gap reference circuit.
  • 18. An electrical circuit as recited in claim 11, further comprising a capacitor configured to prevent a positive feedback potential from being applied to the band gap reference circuit.
  • 19. An electrical circuit as recited in claim 11, further comprising a capacitor coupled to the folded cascode feedback circuit and to the band gap reference circuit, the capacitor configured to prevent a positive feedback potential from being applied to the band gap reference circuit.
  • 20. An electrical circuit as recited in claim 1, further comprising:a voltage divider configured to increase the stable output voltage of the band gap reference circuit; transistor components configured to increase an output current of the band gap reference circuit; and a capacitor configured to prevent a positive feedback potential from being applied to the band gap reference circuit.
  • 21. An electrical circuit as recited in claim 11, further comprising:a voltage divider coupled to the band gap reference circuit, the voltage divider configured to increase the stable output voltage of the band gap reference circuit; transistor components configured to increase an output current of the band gap reference circuit, the transistor components including a field-effect transistor coupled to the folded cascode feedback circuit and a bipolar junction transistor coupled to the field-effect transistor and to the voltage divider; and a capacitor coupled to the folded cascode feedback circuit and to the field-effect transistor, the capacitor configured to prevent a positive feedback potential from being applied to the band gap reference circuit.
  • 22. A method, comprising:sensing a current differential with a folded cascode feedback circuit; generating a feedback potential corresponding to the current differential to stabilize a band gap reference circuit; applying the feedback potential to a first transistor of the band gap reference circuit, the feedback potential generating a current through the first transistor; and applying the feedback potential to a second transistor of the band gap reference circuit, the feedback potential generating a current through the second transistor, wherein the current through the first transistor is equivalent to the current through the second transistor.
  • 23. A method as recited in claim 22, further comprising inputting a current to a collector of the first transistor, and further comprising inputting a current to a collector of the second transistor.
  • 24. A method as recited in claim 22, further comprising inputting a current to a collector of the first transistor, and wherein applying the feedback potential to the first transistor includes applying the feedback potential to a base of the first transistor.
  • 25. A method as recited in claim 22, further comprising generating a stable output voltage with the band gap reference circuit.
  • 26. A method as recited in claim 22, further comprising generating a stable output voltage with the band gap reference circuit, and increasing the stable output voltage with a voltage divider.
  • 27. A method as recited in claim 22, further comprising increasing an output current of the band gap reference circuit.
  • 28. A method as recited in claim 22, further comprising preventing a positive feedback potential from being applied to the first or second transistors of the band gap reference circuit.
US Referenced Citations (5)
Number Name Date Kind
4588941 Kerth et al. May 1986 A
4882548 Marrah et al. Nov 1989 A
5038053 Djenguerian et al. Aug 1991 A
5570008 Goetz Oct 1996 A
6111396 Lin et al. Aug 2000 A