Voltage transient protection circuitry

Information

  • Patent Grant
  • 9853441
  • Patent Number
    9,853,441
  • Date Filed
    Tuesday, January 5, 2016
    8 years ago
  • Date Issued
    Tuesday, December 26, 2017
    7 years ago
  • CPC
  • Field of Search
    • US
    • 361 111000
    • 326 024000
    • 326 031000
    • 326 033000
    • 326 034000
    • 326 036000
    • 326 050000
    • 326 058000
    • 326 081000
    • 327 084000
    • 327 092000
    • 327 179000
    • 327 180000
    • 327 307000
    • 327 309000
    • 327 310000
    • 327 321000
    • 327 379000
    • 327 388000
    • 327 409000
    • 327 410000
    • 327 424000
    • 327 530000
    • 327 545-547
    • 327 551000
    • CPC
    • H02H3/22
    • H02H9/04
    • H01L27/0248
    • H01L27/0251
    • H01L27/0266
  • International Classifications
    • H02H3/22
    • Disclaimer
      This patent is subject to a terminal disclaimer.
Abstract
Disclosed are advances in the arts with novel and useful voltage transient protection circuitry in configurations which include a bridge circuit in combination with one or more voltage reference, load to ground circuit, and/or snub circuit such that the output node is held at a selected voltage level, preferably mid-rail, and potentially damaging transient voltages are avoided.
Description
TECHNICAL FIELD

The invention relates to apparatus for protecting circuits from voltage transients. More particularly, the invention relates to apparatus providing voltage transient protection circuits for use with low voltage components in relatively higher voltage systems.


BACKGROUND GND OF THE INVENTION

In general with electronic components, and in particular when using integrated power FETs, the size of the device is directly proportional to the voltage rating of the device; The higher the breakdown and/or operating voltage of the device, the larger the silicon area that is used. As the size of devices increases, so does their cost, as well as the area and costs to implement any associated system. Traditionally, device operating voltages are selected based on the absolute maximum voltage the device can be expected to withstand, even in applications wherein it is not anticipated that the device should actually be operating at the theoretical maximum voltage level. This often results in wasted area and increased costs.


Due to these and other problems remaining in the state of the art, it would be useful and advantageous to provide circuitry designed to avoid or mitigate the occurrence of high transient voltage events, thereby facilitating the use of low voltage, smaller, circuit components.


SUMMARY OF THE INVENTION

In carrying out the principles of the present invention, in accordance with preferred embodiments, the invention provides advances in the arts with novel apparatus and systems directed to useful and advantageous voltage transient protection circuitry. According to aspects of the invention, preferred embodiments include circuit designs configured to use lower voltage components in circuits which may be anticipated to be subjected to relatively higher voltages.


According to one aspect of the invention, an example of a preferred embodiment of a voltage transient protection circuit is based on either a full or a half-H bridge circuit having a high-side device and a low-side device coupled to a power supply and ground, respectively. The high- and low-side devices each have a suitable gate drive. A voltage reference circuit is connected via a switch to the gate of the high-side device. The bridge circuit also includes an output node, and a load to ground circuit is connected to the output node. The circuit is configured such that the high-side device may be operated under selected voltage conditions and deactivated in the event of a selected high voltage condition, such that the output node is held at, and is not permitted to exceed, a selected voltage level.


According to another aspect of the invention, in an exemplary embodiment a voltage transient protection circuit as described above is implemented to hold an output node at a mid-rail voltage level.


According to an aspect of the invention, in a preferred embodiment, a voltage transient protection circuit is provided in an implementation including a bridge circuit with a high-side device connected with a power supply and gate drive, and a low-side device connected to ground and a gate drive. An output node of the bridge circuit is switchably connected with a voltage reference circuit. The voltage reference circuit may be operated under selected voltage conditions and deactivated in the event of a selected high voltage condition, such that the output node is held at a selected voltage level.


According to another aspect of the invention, in an exemplary embodiment similar to that described immediately above, the voltage transient protection circuit output node is held at a mid-rail voltage level.


According to one aspect of the invention, in an example of a preferred embodiment, a voltage transient protection circuit configuration includes a half-H or full bridge circuit with a high-side device coupled to a power supply and a gate drive, the bridge circuit further includes a low-side device connected to ground and a gate drive. The bridge circuit also has an output node. A voltage reference circuit is connected, via a switch, to the gate of the high-side device such that the high-side device may be operated under first selected voltage conditions and deactivated in the event of a selected high voltage condition. Additionally, a low-side snub circuit is provided between the low-side gate and the output node such that the low-side device may be operated under second selected voltage conditions and deactivated in the event of a selected low voltage condition. Accordingly, this configuration provides a circuit through which a deadband voltage region is defined wherein neither the high-side device nor the low-side device operates.


The invention has advantages including but not limited to providing at least one of the following features, area and/or cost savings. These and other advantageous features and benefits of the present invention can be understood by one of ordinary skill in the arts upon careful consideration of the detailed description of representative embodiments of the invention in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be more clearly understood from consideration of the following detailed description and drawings in which:



FIG. 1 is a simplified schematic diagram depicting an example of a preferred embodiment of a voltage transient protection circuit implementing the principles of the invention;



FIG. 2 is a simplified schematic diagram illustrating another example of a preferred embodiment of a voltage transient protection circuit according to the invention; and



FIG. 3 is simplified schematic diagram showing an example of a preferred embodiment of a voltage transient protection circuit.





References in the detailed description correspond to like references in the various drawings unless otherwise noted. Descriptive and directional terms used in the written description such as front, back, top, bottom, upper, side, et cetera; refer to the drawings themselves as laid out on the paper and not to physical limitations of the invention unless specifically noted. The drawings are not to scale, and some features of embodiments shown and discussed are simplified or amplified for illustrating principles and features, as well as advantages of the invention.


DESCRIPTION OF PREFERRED EMBODIMENTS

While the making and using of various exemplary embodiments of the invention are discussed herein, it should be appreciated that the present invention provides inventive concepts which can be embodied in a wide variety of specific contexts. It should be understood that the invention may be practiced with various equivalent circuit arrangements and substitute electronic components without altering the principles of the invention. For purposes of clarity, detailed descriptions of functions, components, circuits and systems familiar to those skilled in the applicable arts are not included. In general, the invention provides novel and advantageous advances in terms of improving voltage transient protection circuitry area and cost savings.


In an example of an embodiment of voltage transient protection circuitry useful for biasing low voltage components in a higher voltage system, FIG. 1 shows a circuit 100 in which a half-H bridge configuration 102 has power supplies at PVDD and ground GND, where PVDD can be as high as 60V for absolute maximum rating, although maximum operating voltage is <30V. A full H-bridge circuit may also be used. For voltages >30V on PVDD, the circuit 100 is designed to detect over-voltage and stop the high- and low-side devices, in this example FETs, 104, 106 respectively, from switching. For the duration of this over-voltage condition, the voltage at the output node 108 is held at mid-rail, in this example 30V, which does not exceed the breakdown voltage of either the high-side device or the low-side device 106. Suitable gate drives 110, 112 are provided for operation of the high- and low-side devices 104, 106. Some of the advantages inherent in the use of this circuit structure 100 can be observed at the output node 108 voltage by raising the power supply voltage PVDD, while connecting a load tied to the output 108 and either ground GND or supply PVDD. In the event the output node 108 remains at or near mid-rail voltage under this condition, this demonstrates that the circuit 100 is holding this output 108 at the mid-rail voltage. In this example, it can be seen that a voltage reference 109 from the high-side device 104 gate to ground GND is provided in combination with a load to ground GND connection on the output node 108. During operation, the high-side device 104 functionally becomes a source-follower, providing a pull-up voltage on the output node 108. However, the voltage that it can pull up is limited to the voltage reference 109 minus the gate-to-source voltage (Vgs) of the high-side device 104. The load on the output node 108 provides a pull-down to ground GND to keep the high-side source-follower device 104 biased. The voltage reference circuit 109 may be implemented using a diode/zener stack, and connected to the high-side device 104 gate via a switch 113 as needed. Alternatively, the voltage reference circuit 109 may be configured as resistor divider from the power supply PVDD and ground GND. The load to ground circuit component 111 may be implemented using a resistor, current source, the low-side device 106 turned-on weakly, or load(s) external to the circuit 100 connected at the output node 108 (e.g., feedback resistors, pull-down resistors, and the like). Advantages of this circuit configuration 100 include providing the ability to enable the use of smaller, low voltage components in order to save area and cost.


An alternative preferred embodiment of the invention is depicted in FIG. 2. As shown, a circuit 200 includes a half-H bridge configuration 202 with power supplies at PVDD and ground GND, where PVDD can be as high as 60V for absolute maximum rating, although maximum operating voltage is <30V. For voltages >30V on PVDD, the circuit 200 is designed to detect over-voltage and stop the high and low-side devices, FETs 204, 206 respectively, from switching. For the duration of this condition, the voltage at the output node 208 is held at mid-rail, in this example 30V, which does not exceed the breakdown voltage of either of the FETs 204, 206. Suitable gate drives 210, 212 are provided for operation of the high and low-side devices 204, 206. In this exemplary embodiment, a voltage reference circuit 209 is provided between ground GND and the output node 208. During operation, the high and low-side 204, 206 devices are maintained in an “off” state when transient voltage protection is required, and the voltage reference circuit 209 maintains the output node 208 at a selected voltage level, such as mid-rail. The voltage reference circuit 209 may preferably be implemented using an amplifier, which may be used to apply a selected voltage at the output node 209 in applications wherein it is desirable to bias the output node 208 to a selected voltage level prior to switching. For example, this configuration may be used to advantage to eliminate pop and click noise in an audio system requiring biasing of an output node to a common-mode voltage prior to switching. The voltage reference circuit 209 may alternatively also be implemented using a diode or zener stack, or in the form of a resistor divider circuit. As with the other exemplary embodiments shown and described, a full H-bridge architecture may also be used.


Another alternative for applying the principles of the invention is to use the high-side device 310 as a source follower, and the low-side device 308 as a snub device by the addition of a snub circuit 309. An example of an embodiment of a voltage transient protection circuit 300 developed employing this approach is shown in FIG. 3. It should be appreciated by those skilled in the art that, in this case, there is an overlapping voltage region in which the low-side device 306 turns on once the output node 308 reaches a higher voltage than the voltage at which the source-follower 304 turns on. This provides a deadband voltage region where neither the high-side device 304 nor the low-side device 306 is turned on, thereby saving current. The deadband voltage region is preferably near to the mid-rail voltage level so as not to approach the breakdown voltage of the high- and low-side devices 304, 306, e.g., FETs. In the event the voltage at the output node 308 drifts outside of the deadband region, then either the high-side device 304 or low-side device 306 responds by turning on to pull the output node 308 voltage back to the deadband region. In this way, a selected voltage level may be maintained, in this example, approximately mid-rail voltage, e.g., between 31V and 34V. The snub circuit 309 may be implemented using a suitable device such as a diode.


Many variations of the voltage transient protection circuitry shown and described herein are possible within the scope of the invention. Implementations may include alternative equivalent circuit configurations and various component selections. The principles and examples described may be used individually and/or in combination with one another and in the context of larger electronic circuits and systems.


The apparatus of the invention provide one or more advantages including but not limited to, providing opportunities for reductions in device size and saving in costs. While the invention has been described with reference to certain illustrative embodiments, those described herein are not intended to be construed in a limiting sense. For example, variations or combinations of steps or materials in the embodiments shown and described may be used in particular cases without departure from the invention. All of the aspects of implementations of the voltage transient protection circuitry can be combined in various ways. Various modifications and combinations of the illustrative embodiments as well as other advantages and embodiments of the invention will be apparent to persons skilled in the arts upon reference to the drawings, description, and claims.

Claims
  • 1. A voltage transient protection circuit in a configuration comprising: a voltage reference circuit operably coupled by a switch to a gate of a high-side device; anda load to ground circuit operably coupled to an output node;wherein the high-side device is configured to be operated under selected voltage conditions and deactivated in response to a selected high voltage condition, to hold the output node at a selected voltage level.
  • 2. A voltage transient protection circuit according to claim 1 wherein the output node is held at a mid-rail voltage level.
  • 3. A voltage transient protection circuit according to claim 1 wherein the voltage reference circuit further comprises a diode.
  • 4. A voltage transient protection circuit according to claim 1 wherein the voltage reference circuit further comprises a zener diode.
  • 5. A voltage transient protection circuit according to claim 1 wherein the voltage reference circuit further comprises an amplifier.
  • 6. A voltage transient protection circuit according to claim 1 wherein the voltage reference circuit further comprises a resistor divider circuit electrically connected between power supply and ground.
  • 7. A voltage transient protection circuit according to claim 1 wherein the load to ground circuit further comprises a resistor.
  • 8. A voltage transient protection circuit according to claim 1 wherein the load to ground circuit further comprises a current source.
  • 9. A voltage transient protection circuit according to claim 1 wherein the load to ground circuit further comprises the low-side device in an “on” state.
  • 10. A voltage transient protection circuit according to claim 1 wherein the load to ground circuit further comprises an external load.
  • 11. A voltage transient protection circuit in a configuration comprising: a bridge circuit having an output node;a voltage reference circuit operably coupled by a switch to the output node; andwherein the voltage reference circuit is configured to operate under selected voltage conditions and to be deactivated in response to a selected high voltage condition, such that the output node is held at a selected voltage level.
  • 12. A voltage transient protection circuit according to claim 11 wherein the output node is held at a mid-rail voltage level.
  • 13. A voltage transient protection circuit according to claim 11 wherein the bridge circuit further comprises a half-H bridge circuit.
  • 14. A voltage transient protection circuit according to claim 11 wherein the bridge circuit further comprises a full H-bridge circuit.
  • 15. A voltage transient protection circuit according to claim 11 wherein the voltage reference circuit further comprises a diode.
  • 16. A voltage transient protection circuit in a configuration comprising: a voltage reference circuit operably coupled by a switch to a gate of a high-side device, whereby the high-side device is configured to be deactivated in response to a selected high voltage condition;a low-side snub circuit operably coupled between a gate of a low-side device and an output node, whereby the low-side device is configured to be deactivated in response to a selected low voltage condition; andwherein a deadband voltage region is provided by the configuration of the high side device and the low side device where neither the high-side device nor the low-side device operates.
  • 17. A voltage transient protection circuit according to claim 16 wherein the deadband region approximately encompasses a mid-rail voltage level.
  • 18. A voltage transient protection circuit according to claim 16 wherein the high-side device and the low-side device further comprise a half-H bridge circuit.
  • 19. A voltage transient protection circuit according to claim 16 wherein the high-side device and the low-side device further comprise further comprise a full H-bridge circuit.
  • 20. A voltage transient protection circuit according to claim 16 wherein the low-side snub circuit further comprises a diode.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/540,902, filed Jul. 3, 2012, now U.S. Pat. No. 9,231,400, which claims Priority to and benefit of U.S. Provisional Patent Application Ser. No. 61/506,118, filed on Jul. 10, 2011, which is hereby incorporated by reference for all purposes as if set forth herein in its entirety.

US Referenced Citations (67)
Number Name Date Kind
5864227 Borden et al. Jan 1999 A
6229273 Kelly et al. May 2001 B1
7808127 Teggatz et al. Oct 2010 B2
7827334 Teggatz et al. Nov 2010 B2
7859911 Teggatz et al. Dec 2010 B2
7982492 Atrash et al. Jul 2011 B2
8102713 Teggatz et al. Jan 2012 B2
8102718 Teggatz et al. Jan 2012 B2
8300375 Teggatz et al. Oct 2012 B2
8373436 Atrash et al. Feb 2013 B2
8408900 Teggatz et al. Apr 2013 B2
8441866 Teggatz et al. May 2013 B2
8461847 Teggatz et al. Jun 2013 B2
8552336 Blackall et al. Oct 2013 B2
8583037 Atrash et al. Nov 2013 B2
8584961 Teggatz et al. Nov 2013 B2
8664745 Teggatz et al. Mar 2014 B2
8687385 Teggatz et al. Apr 2014 B2
8693261 Teggatz et al. Apr 2014 B2
8704450 Chen et al. Apr 2014 B2
8743522 Terratz et al. Jun 2014 B2
8768455 Teggatz et al. Jul 2014 B2
8896318 Teggatz et al. Nov 2014 B2
8964418 Atrash et al. Feb 2015 B2
9083391 Teggatz et al. Jul 2015 B2
9089029 Teggatz et al. Jul 2015 B2
9106221 Atrash et al. Aug 2015 B2
9134741 Atrash et al. Sep 2015 B2
9214867 Teggatz et al. Dec 2015 B2
9225199 Teggatz et al. Dec 2015 B2
9225293 Teggatz et al. Dec 2015 B2
9231400 Chen et al. Jan 2016 B2
9343988 Teggatz et al. May 2016 B2
9354268 Teggatz et al. May 2016 B2
20080061876 Kaya Mar 2008 A1
20080252372 Williams Oct 2008 A1
20110008527 Teggatz et al. Jan 2011 A1
20110163794 Soma Jul 2011 A1
20120025752 Teggatz et al. Feb 2012 A1
20120028845 Teggatz et al. Feb 2012 A1
20120139357 Teggatz et al. Jun 2012 A1
20120139358 Teggatz et al. Jun 2012 A1
20120188673 Teggatz et al. Jul 2012 A1
20120242164 Teggatz et al. Sep 2012 A1
20120248893 Teggatz et al. Oct 2012 A1
20120274838 Teggatz et al. Nov 2012 A1
20130062967 Teggatz et al. Mar 2013 A1
20130175982 Teggatz et al. Jul 2013 A1
20130181724 Teggatz et al. Jul 2013 A1
20130193771 Teggatz Aug 2013 A1
20130224679 Teggatz et al. Aug 2013 A1
20130241465 Teggatz et al. Sep 2013 A1
20130257171 Teggatz et al. Oct 2013 A1
20130257172 Teggatz et al. Oct 2013 A1
20140062381 Teggatz et al. Mar 2014 A1
20140225447 Teggatz Aug 2014 A1
20140329720 Teggatz et al. Nov 2014 A1
20150171758 Atrash et al. Jun 2015 A1
20150256227 Teggatz et al. Sep 2015 A1
20150318899 Teggatz et al. Nov 2015 A1
20150326118 Teggatz et al. Nov 2015 A1
20150341087 Moore et al. Nov 2015 A1
20150372676 Teggatz et al. Dec 2015 A1
20160004267 Atrash et al. Jan 2016 A1
20160033979 Teggatz et al. Feb 2016 A1
20160105115 Teggatz et al. Apr 2016 A1
20160134191 Teggatz et al. May 2016 A1
Foreign Referenced Citations (3)
Number Date Country
2015195403 Dec 2015 WO
2016019137 Feb 2016 WO
2016019139 Feb 2016 WO
Related Publications (1)
Number Date Country
20160134099 A1 May 2016 US
Provisional Applications (1)
Number Date Country
61506118 Jul 2011 US
Continuations (1)
Number Date Country
Parent 13540902 Jul 2012 US
Child 14988647 US