This patent application is related to the U.S. patent application Ser. No. 13/617,521, filed Sep. 14, 2012, entitled “Volumetric Toner Cartridge Having Driven Toner Platform” and assigned to the assignee of the present application.
This patent application is related to the U.S. patent application Ser. No. 13/617,682, filed Sep. 14, 2012, entitled “Volumetric Toner Cartridge Having Removable Exit Paddle” and assigned to the assignee of the present application.
This patent application is related to the U.S. patent application Ser. No. 13/617,785, filed Sep. 14, 2012, entitled “Volumetric Toner Cartridge Having Toner Agitators” and assigned to the assignee of the present application.
None.
None.
1. Field of the Disclosure
The present disclosure relates generally to toner cartridges used in electrophotographic imaging devices such as printers or multifunction devices having printing capability and more particularly to a volumetric toner cartridge having a driven platform.
2. Description of the Related Art
In toner cartridge design, it is now common practice to separate the longer lived components from those having a shorter life. This has lead to having the longer lived developing components, such as the developer roll, toner adder roll, doctor blade, the foregoing are also referred to as a developing unit, photoconductive drum, cleaning and charge rollers and a waste bin, to be in separate assemblies from the toner cartridge. The toner supply, which is consumed relatively quickly in comparison to the previously described components, is provided in a reservoir in a separate toner cartridge that mates with the developer unit. The toner cartridge has a reduced number of components and is often referred to as a toner bottle even though it is more than a mere bottle for holding toner.
To deliver the toner from the toner cartridge to the developer unit, an auger in the toner cartridge may be used to feed toner from the toner cartridge via an exit port on the toner cartridge into an entry port on the developer unit and into a second auger that disperses the toner within the developer unit. As the toner is drawn out of the cartridge unit, it is augured through a shutter used for sealing the exit port of the toner cartridge when it is not inserted in the imaging apparatus.
While moving toner through the restriction formed by the shutter, auger and exit port, the opening from the exit port into the toner reservoir in the toner cartridge is relatively air tight. A low pressure condition or vacuum-like condition is created in the toner cartridge as toner is removed, as air cannot enter to fill the void. If the toner cartridge were viewed as being a pump supplying toner from the toner reservoir, this low pressure condition would be analogous to cavitation in a pump. The number of rotations of the auger is used to estimate toner delivery from the toner cartridge. However, low flow due to the discussed pressure differential may lead to inaccuracies in using this approach.
It would be advantageous to have a toner feeding system that provides for more accurate toner delivery and helps to avoid a number of previously mentioned toner delivery failures.
A toner cartridge for an electrophotographic imaging device has a housing comprising two opposed end walls and an elongated body therebetween and an exit port. The body has an inner surface defining a toner reservoir for containing a quantity of toner with the toner reservoir being in fluid communication with the exit port. A drive shaft is rotatably mounted within the toner reservoir. A toner platform having a front surface, a rear surface and an edge surface is positioned in slidable contact with the inner surface of the reservoir. The toner platform is nonrotatable relative to the housing. The front surface moves toner within the reservoir toward the exit port. A coupling movably couples the toner platform to the drive shaft and the coupling is detachably affixed to the toner platform. An exit paddle is positioned in the reservoir adjacent the exit port and is rotatable by the drive shaft. A stop is positioned within the reservoir wherein when the drive shaft rotates the toner platform translates toward the exit paddle for moving toner within the reservoir toward the exit port and when the drive shaft rotates the exit paddle rotates for delivering toner out of the exit port and when the toner platform translates to the stop, the coupling detaches from the toner platform.
The reservoir and toner platform may be configured in several different ways. The reservoir may have an upper portion having a cuboid shape and a lower portion having a semi-cylindrical shape with the toner platform having an upper portion having a rectangular shape corresponding to the cross section of the upper portion of the reservoir and a lower portion having a semi-circular shape corresponding to the cross section of the lower portion of the reservoir. The reservoir may also have an upper portion having a trapezium shape and a lower portion having a semi-cylindrical shape with the toner platform having an upper portion having a trapezoidal shape corresponding to the cross section of the upper portion of the reservoir and a lower portion having a semi-circular shape corresponding to the cross section of the lower portion of the reservoir. In another configuration, the reservoir may have an upper portion having a semi-cylindrical shape and a lower portion having a semi-cylindrical shape with the toner platform having an upper portion having a semi-circular shape corresponding to the cross section of the upper portion of the reservoir and a lower portion having a semi-circular shape corresponding to the cross section of the lower portion of the reservoir. Orienting features may be provided on the toner platform and on the inner surface of the body to prevent rotation of the toner platform relative to the housing.
In one form the stop is positioned on the inner surface of the body and projects into the reservoir to prevent translation of the toner platform past a predetermined point. In another form, a region of the toner platform surrounding the coupling is frangible such that when the toner platform contacts the stop continued rotation of the drive shaft causes a drive torque to exceed a predetermined magnitude detaching the coupling from the toner platform. The frangible region may be a recess in the rear and/or front surface of the toner platform. In a further form, the front surface of the toner platform has a recess sized to receive and frictionally engage the coupling so that when the toner platform contacts the stop further rotation of the drive shaft overcomes the frictional engagement of the coupling with the toner platform to disengage the coupling from the toner platform. A compressible restraint positioned in the recess may also be provided.
The toner cartridge may have a circumferential edge seal positioned on the edge surface of the toner platform for providing a slidable sealing contact between the toner platform and the inner surface of the body.
The above-mentioned and other features and advantages of the disclosed embodiments, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of the disclosed embodiments in conjunction with the accompanying drawings.
It is to be understood that the present disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.
Spatially relative terms such as “top”, “bottom”, “front”, “back”, “rear” and “side”, “under”, “below”, “lower”, “over”, “upper”, and the like, are used for ease of description to explain the relative positioning of one element to a second element. Terms like “horizontal” and “vertical” are used in a similar relative positioning as illustrated in the figures. These terms are generally used in reference to the position of an element in its intended working position within an imaging device. The terms “left” and “right” are as viewed with respect to the insertion direction of a unit into the imaging device. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as “first”, “second”, and the like, are also used to describe various elements, regions, sections, etc. and are also not intended to be limiting. Like terms refer to like elements throughout the description. The articles “a”, “an” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise.
The term “image” as used herein encompasses any printed or digital form of text, graphic, or combination thereof. The term “output”, as used herein, encompasses output from any printing device such as color and black-and-white copiers, color and black-and-white printers, and so-called “all-in-one devices” that incorporate multiple functions such as scanning, copying, and printing capabilities in one device. The term “button” as used herein means any component, whether a physical component or graphic user interface icon, that is engaged to initiate output.
Referring now to the drawings and particularly to
In the embodiment shown in
Controller 28 includes a processor unit and associated memory 29, and may be formed as one or more Application Specific Integrated Circuits (ASICs). Memory 29 may be any volatile or non-volatile memory or combinations thereof such as, for example, random access memory (RAM), read only memory (ROM), flash memory, and/or non-volatile RAM (NVRAM). Alternatively, memory 29 may be in the form of a separate electronic memory (e.g., RAM, ROM, and/or NVRAM), a hard drive, a CD or DVD drive, or any memory device convenient for use with controller 28. Controller 28 may be, for example, a combined printer and scanner controller.
In the present embodiment, controller 28 communicates with print engine 30 via a communications link 50. Controller 28 communicates with imaging unit 32 and processing circuitry 44 thereon via a communications link 52. Controller 28 communicates with toner cartridge 35 and processing circuitry 45 therein via a communications link 51. Controller 28 communicates with media feed system 38 via a communications link 54. Controller 28 communicates with scanner system 40 via a communications link 53. User interface 36 is communicatively coupled to controller 28 via a communications link 55. Processing circuits 44, 45 may provide authentication functions, safety and operational interlocks, operating parameters and usage information related to imaging unit 32 and toner cartridge 35, respectively. Controller 28 serves to process print data and to operate print engine 30 during printing, as well as to operate scanner system 40 and process data obtained via scanner system 40.
Computer 24, which may be optional, may be, for example, a personal computer, network server, tablet computer, smartphone or other hand-held electronic device, including memory 60, such as volatile and/or non-volatile memory, input device 62, such as a keyboard, and a display, such as monitor 64. Computer 24 further includes a processor, input/output (I/O) interfaces, and may include at least one mass data storage device, such as a hard drive, a CD-ROM and/or a DVD unit (not shown).
Computer 24 includes in its memory a software program including program instructions that function as an imaging driver 66, e.g., printer/scanner driver software, for imaging apparatus 22. Imaging driver 66 is in communication with controller 28 of imaging apparatus 22 via communications link 26. Imaging driver 66 facilitates communication between imaging apparatus 22 and computer 24. One aspect of imaging driver 66 may be, for example, to provide formatted print data to imaging apparatus 22, and more particularly, to print engine 30, to print an image. Another aspect of imaging driver 66 may be, for example, to facilitate collection of scanned data.
In some circumstances, it may be desirable to operate imaging apparatus 22 in a standalone mode. In the standalone mode, imaging apparatus 22 is capable of functioning without computer 24. Accordingly, all or a portion of imaging driver 66, or a similar driver, may be located in controller 28 of imaging apparatus 22 so as to accommodate printing and scanning functionality when operating in the standalone mode.
Print engine 30 may include a laser scan unit (LSU) 31, an imaging unit 32, a toner cartridge 35, and a fuser 37, all mounting within imaging apparatus 22. The imaging unit 32 further includes a cleaner unit 33 housing a waste toner removal system and a photoconductive drum, and a developer unit 34 that are removably mounted within imaging unit 32. In one embodiment the cleaner unit 33 and developer unit 34 are assembled together and installed into a frame forming the imaging unit 32. The toner cartridge 35 is then installed in the frame in a mating relation with the developer unit 34. Laser scan unit 31 creates a latent image on the photoconductive drum in the cleaner unit 33. The developer unit 34 has a toner sump containing toner which is transferred to the latent image on the photoconductive drum to create a toned image. The toned image is subsequently transferred to a media sheet received in the imaging unit 32 from media input tray 39 for printing. Toner remnants are removed from the photoconductive drum by the waste toner removal system. The toner image is bonded to the media sheet in the fuser 37 and then sent to an output location or to one or more finishing options such as a duplexer, a stapler or hole punch.
The toner cartridge 35 removably mates with the developer unit 34 in imaging unit 32. An exit port on the toner cartridge 35 communicates with an inlet port on the developer unit 34 allowing toner to be periodically transferred from the toner cartridge 35 to resupply the toner sump in the developer unit 34.
Referring now to
The imaging apparatus 22 includes one or more imaging units 32 mounted within housing 23. In some embodiments, the toner cartridge 35 and the imaging unit 32 comprise a single unit. Alternatives include those wherein the toner cartridge 35 and the imaging unit 32 comprise multiple units that are operatively connected to one another. Each of the imaging units 32 is mounted such that photoconductor (PC) drums 80 of the imaging units 32 are substantially parallel. In one embodiment, each of the imaging units 32 is substantially the same except for the color of toner stored and transferred. The toner cartridges 35 are shown being horizontally inserted into a frame 78 using one or more guide rails 79 provided, as illustrated, on the top of each toner cartridge 35. It should be realized that the mounting orientation of the toner cartridges 35 can be other than horizontal. The toner cartridges 35 can be vertically inserted or inserted at any angle between horizontal and vertical and its mounting orientation is not critical. When mounted in a non-horizontal orientation the exit port would normally be lower than the bulk of the cartridge to allow gravity to encourage toner flow. However, the present form of the toner cartridge would also allow the exit port to be at a higher position than the bulk of the toner cartridge.
The developer unit 34 in one example embodiment includes a toner adder roll 82, a doctor blade 83 and a developer roll 84 and a sump 85 for toner. The toner adder roll 82 coats the developer roll 84 with toner while electrostatically charging the toner particles. As the toner is placed on the developer roll 84, the doctor blade 83 evens the toner to a predetermined thickness. In one embodiment, the toner sumps 85 each contain one of black, magenta, cyan, or yellow toner. In one embodiment, each of the toner sumps 85 is substantially the same. In another embodiment, the toner sumps 85 include different capacities.
Each imaging unit 32 further includes a charging roll 86 and a cleaning blade 87. PC drum 80, charging roll 86, and cleaning blade 87 can be housed in the cleaner unit 33. The charging roll 86 forms a nip with PC drum 80 and charges the surface of PC drum 80 to a specified voltage. A laser beam, as indicated by the vertical arrow, from a LSU 31 is directed to the surface of the PC drum 80 and discharges those areas it contacts to form a latent image. The developer roll 84, which also forms a nip with the PC drum 80, then transfers toner to the PC drum 80 to form a toner image. The toner is attracted to the areas of the surface of PC drum 80 discharged by the laser beam. The cleaning blade 87 then removes any remaining particles of toner from the PC drum 80 after the toner image is transferred to either the media or an intermediate transfer mechanism.
In the embodiment shown in
After receiving the toner images, the media sheets are moved further along the media path 70 and into a fuser 37. The fuser 37 includes a fusing roll 95, or belt, and a backup roll 96 that form a fuser nip 97 to apply pressure and/or heat to the toner image on the media sheet as it passes through the fuser nip 97. The combination of heat and/or pressure fuses or adheres the toner image to the media sheet. The fused media sheet then passes through exit rolls 98 located downstream from the fuser 37 and into an output bin 99 or through a duplex path (not shown) for duplex printing.
In the embodiment illustrated, the imaging apparatus 22 is a color laser printer. In another embodiment, the imaging apparatus 22 is a mono printer comprising a single toner cartridge 35 and a single imaging unit 32 for forming toner images in a single color. In another embodiment, the imaging apparatus 22 is a direct transfer device that transfers the toner images from the one or more PC drums 80 directly to the media sheet. As used herein, the term media sheet is meant to encompass not only paper but also labels, envelopes, fabrics, photographic paper or any other desired substrate that can receive a toner image.
Controller 28 oversees the functioning of the imaging apparatus 22 including movement of the media along media path 70, imaging unit(s) 32, ITM 90, laser scan units 31, and user interface 36. Each toner cartridge 35 and/or imaging unit 32 may also contain its own associated memory as discussed above.
The imaging apparatus 22 includes various consumable items that must be replaced at various times over the life of the imaging apparatus 22. These may include, but are not limited to, for example, each PC drum 80, each toner cartridge 35 and/or the toner stored therein, each toner adder roll 82, each doctor blade 83, each developer roll 84, each charging roll 86 and each cleaner blade 87. The imaging apparatus 22 also includes one or more gauges for tracking the remaining life of one or more of these consumable items. For example, the imaging apparatus 22 can include a toner gauge that estimates and tracks the amount of toner remaining in one or more toner cartridges 35. In those embodiments that contain multiple toner cartridges 35 and imaging units 32, the imaging apparatus 22 can include a separate gauge for each respective consumable item. For example, the imaging apparatus 22 can include separate gauges for the amounts of black, cyan, yellow and magenta toner remaining and/or for the PC drums 80 associated with each imaging unit 32.
Referring now to
Aligned openings 118-1, 118-2 are provided in end walls 108, 110. A drive shaft 120 extends the length of the body 102 with first and second ends 121, 122 thereof extending through end walls 108, 110, respectively. Drive shaft 120 has a threaded portion 123 and an unthreaded portion 124 that meet at a junction 125. Unthreaded portion 124 is shown having a slightly smaller diameter than threaded portion 123. Coupled to drive shaft 120 is a drive coupler 133, a toner platform 200 and an exit paddle 300. As illustrated, drive coupler 133 is attached to first end 121 of drive shaft 120 and, when cartridge 35 is inserted into imaging apparatus 22, drive coupler 133 removably engages with a drive mechanism (not shown) provided within imaging apparatus 22 to receive rotational force. First end 104 of body 102 may also be termed the drive end of toner cartridge 35 while second end 106 of body 102 may be termed the non-drive end of toner cartridge 35. The size and configuration of drive coupler 133 is a matter of design choice and may include a gear or gear train or a coupler such as an Oldham coupler as is known in the art. First and second bearings 130, 131, if provided, may be mounted in aligned openings 118-1, 118-2 in end walls 108, 110 about first and second ends 121, 122, respectively, of drive shaft 120. End walls 108 and 110 may be fabricated from a bearing-grade plastic obviating the need for separate bearings. One or both bearings 130, 131, may be a clutched bearing to provide for uni-directional rotation of drive shaft 120, if desired.
An end cap, such as end cap 160 as shown in
A vent hole 136 may be provided in one or both of the end walls 108, 110, such as end wall 110 as illustrated, or in body 102 as shown by hole 136A to allow pressure equalization or to prevent cavitation that may lead to toner starvation that may occur during feeding of toner from toner reservoir 112. Vent holes 136, 136A can be covered by vent caps 138, 138A, respectively that snap fit or screw into vent holes 136, 136A. Vent caps 138, 138A can be a labyrinth style cap or can be formed of a filter or foam material that is inserted into vent holes 136, 136A or is applied to the outer surface of the end walls 108, 110 or body 102. The type and attachment of vent caps 138, 138A is a matter of design choice.
As illustrated with end wall 110 (see
The toner platform 200 includes a front surface 202 that is used to push the toner within the reservoir 112 toward the exit port 114, a rear surface 204, and an edge surface 206 interconnecting the front and rear surfaces 202, 204. Based on design choice, toner platform 200 may be a solid or hollow structure. The front surface 202 of toner platform 200 is generally smooth and planar and is generally orthogonal to the axis of rotation of drive shaft 120. The rear surface 204 of toner platform can also be generally planar but it may also comprise one or more ribs 205 for stiffening the front surface 202. The number, pattern, and shape of the ribs 205 are a matter of design choice. One of skill in the art will recognize that other shapes, including non-planar, angled or curvilinear shapes, may be used for the front surface 202 and rear surface 204 and that the shapes of the front surface 202 and rear surface 204 can be different from each other. Drive shaft 120 is inserted through opening 208 provided in toner platform 200. A coupling 210 is mounted in or on toner platform 200 about opening 208 to movably couple toner platform 200 to drive shaft 120. A drive shaft seal 214 may be provided in or on front surface 202 to minimize toner leaking through opening 208 of toner platform 200 as it is driven toward the exit port 114. Drive shaft seal 214 may be made of an elastomeric or foam material. Toner platform 200 travels along the threaded portion 123 while the drive shaft 120 is rotated during toner feeding. One form of coupling 210 is a traveling nut such as threaded nut 210 provided on either the front surface 202 or rear surface 204 (when viewed in the direction of travel of the toner platform 200 toward exit port 114). Drive shaft 120 may be rotated in a first direction to cause toner platform 200 to move toward the exit port 114. Drive shaft 120 may be rotated in a second direction to move toner platform 200 toward second end wall 110.
It should be noted that the toner platform 200 is termed herein as being “nonrotatable” with respect to the housing 102 or toner reservoir 112 so that it will translate within the toner reservoir 112 when the drive shaft 120 is rotated. In actuality, the nonrotatable toner platform 200 will rotate a minor amount because of gap between the inner surface 103i of body 102 and the toner platform 200 allowing the toner platform 200 to rotate slightly when the drive shaft 120 begins rotating. This slight movement is due to the friction between the coupling 210 and the drive shaft 120 (See
A front recess 230 (see
Various shapes as illustrated in
As shown in
The respective upper reservoirs 112U of bodies 102, 102A, 102B differ in volumetric shape from one another. The volume shape of upper reservoir 112U of body 102 may be termed a rectangular prism or a cuboid, upper reservoir 112U of body 102A termed a trapezium, and upper reservoir 112U of body 102B termed a half-cylinder. Various combinations of shapes can be used for the upper and lower reservoirs.
It will be realized that the configuration of outer surface 103e of body 102 can be made to vary from that of its inner surface 103i. For example, the lower toner reservoir 112L of body 102 is shown in
As can be seen, the shapes of bodies 102, 102A are self orientating when inserted into imaging apparatus 22. For example, assuming a horizontal operating position for toner cartridge 35, the upper flat portion of body 102 and the upper angled portion of body 102A would be recognized by a user as their respective tops. Body 102B, however, is circular and accordingly is provided with external orienting features 150 such as a keyway 151 and/or a key 152 on its outer surface 103e. Similarly, toner platform 200B is also provided with one or more orienting features 250 such as keyway 251 and/or key 252 with corresponding internal orienting features 154 on the inner surface of body 102B such as keyway 155 or key 156. As shown in the inset provided in
The lower portions 200L, 200AL, 200BL of platforms 200, 200A, 200B, respectively, are shaped to conform to the shape of lower reservoirs 112L of bodies 102, 102A, 102B, respectively. The upper portions 200U, 200AU, 200BU of platforms 200, 200A, 200B, respectively, are similarly shaped to conform to the shape of upper reservoir 112U of bodies 102, 102A, 102B, respectively. As shown in
In illustrating the features shown in
As shown in
Exit paddle 300 is attached to drive shaft 120 and positioned to push toner out of reservoir 112 through exit port 114 as it rotates. As shown in
In addition to the radial scrapers 330 and arm extensions 340, exit paddle 300 may also be provided with one or more lateral scrapers, generally designated with the reference numeral 350 as shown in
Referring now to FIGS. 4 and 14-16, along edge surface 206 of toner platform 200, one of more circumferential edge seals 212 may be provided to close the gap between toner platform 200 and the interior wall reservoir 112 of body 102 to prevent toner from leaking behind the toner platform 200 as it is driven along drive shaft 120 toward exit port 114. Edge seal 212 may be an adhesively applied foam strip or be an o-ring seal 220 as shown in
When the toner cartridge 35 is initially filled, the toner platform 200 is positioned adjacent to one of the end walls 108, 110. As shown in
Drive shaft 120 is rotated to drive nut 210 and toner platform 200 in forward translation along the threaded portion 123 thereof to push the toner, when present, within reservoir 112 toward exit port 114. Threaded portion 123 extends from adjacent one end of the drive shaft near one wall (e.g., second end wall 110) that is farthest from the exit paddle 300 to the junction 125 which is a predetermined distance away from the other end wall (e.g., first end wall 108) closest to the exit paddle 300. The unthreaded portion 124 is large enough to accommodate the toner platform 200 between the junction 125 and the exit paddle 300. The minimum width of unthreaded portion 124 between the exit paddle 300 and the junction 125 is equal to or greater than the thickness of toner platform 200 including that of drive nut 210. For example, if the overall thickness of the toner platform 200 and drive nut 210 is 100 mm and the width of exit paddle 300 is 100 mm, then the predetermined distance of the junction 125 from the end wall 108 would be approximately 200 mm or greater with the minimum width of the unthreaded portion 124 of the drive shaft 120 between the junction 125 and the exit paddle 300 being at least 100 mm. These dimensions are a matter of design choice.
When drive nut 210 travels off of the threaded portion 123 during forward translation and onto the unthreaded portion 124 of drive shaft 120 at junction 125, toner platform 200 stops translating preventing toner platform 200 from being driven into exit paddle 300. This allows any residual toner T contained between the front face 202 of toner platform 200 and first end wall 108 to continue to be fed out through exit port 114 by exit paddle 300. Without the unthreaded portion 124, toner platform 200 would be driven into exit paddle 300 leading to possible binding or breakage of drive shaft 120 while deliverable toner T remained in housing 100. The slightly smaller diameter of unthreaded portion 124 helps to ensure that nut 210 disengages from drive shaft 120 at junction 125.
During forward translation when the drive nut 210 is on the threaded portion 123, each revolution of the drive shaft 120 causes a known volume of toner to be delivered through the exit port 114. Accordingly, counting the number of revolutions of drive shaft 120 provides a means for determining the amount of toner remaining in the toner cartridge 35. When the drive nut 210 has traveled onto the unthreaded portion 124 of the drive shaft 120 or has otherwise broken free or become disconnected from toner platform 200, toner cartridge 35 is near empty and the torque load on the drive shaft 120 will be significantly reduced as only the exit paddle 300 is being driven by drive shaft 120. Thus, by monitoring the torque needed to rotate the drive shaft 120, a user can be alerted that the toner cartridge 35 is at the end of its life and will need replacement.
Where clutches or other unidirectional mechanisms are not employed, toner platform 200 may be driven in reverse translation. This may be done to clear the threaded portion 123 of a plug of toner or to allow toner within toner reservoir 112 to decompress.
In
Stop 170 is positioned axially inset from first end wall 108 to minimize the distance between the exit paddle 300 and the front surface 202 of toner platform 200 to reduce the amount of residual toner left in housing 100 but yet to be at a sufficient distance such that drive nut 210 can break free of toner platform 200. With reference to second end wall 110, threaded portion 123 extends a predetermined length toward the exit port 114 or first end wall 108. Stop 170 is positioned at a predetermined position within the reservoir 112 along threaded portion 123 away from junction 125.
As previously explained, exit paddle 300 having radial scrapers 330 and axial scrapers 350 may be used to deliver the toner remaining between the front surface 202 of toner platform 200 and exit paddle 300 from toner cartridge 35. As shown in
By making coupling 210 detachable, the threaded portion 123 of drive shaft 120 may be extended up to or beyond where exit paddle 300 is mounted on drive shaft 120.
In
In
In
In
Also shown in
In
It should be mentioned that the detachable couplings shown in
In
In
Aligned openings 1118-1, 1118-2 are provided in first and second end walls 1108, 1110, respectively. A drive shaft 1120 extends the length of the body 1102B with first and second ends 1121, 1122 thereof received in opening 1118-1, 1118-2, respectively. First end 1121 of drive shaft 1120 is illustrated as extending through first end wall 1108 beyond outer surface 11090 thereof. Drive shaft 1120 has a threaded portion 1123 and an unthreaded portion 1124 that meet at a junction 1125. Unthreaded portion 1124 is shown having a slightly smaller diameter than threaded portion 1123. Coupled to drive shaft 1120 are an exit paddle 1300 and a toner platform 1200B that is again substantially the same as toner platform 200B. As shown, exit paddle 1300 is threadably engaged with the first end 1121 of drive shaft 1120. A drive coupler 1133 is attached to exit paddle 1300 and, when housing 1102B is inserted into imaging apparatus 22, drive coupler 1133 removably engages with a drive mechanism (not shown) provided within imaging apparatus 22 to receive rotational force. First end 1104 of body 1102B may also be termed the drive end while second end 1106 of body 1102B may be termed the non-drive end. The size and configuration of drive coupler 1133 is a matter of design choice and may include a gear or gear train or a coupler such as an Oldham coupler as is known in the art. First and second bearings 1130, 1131, if provided, may be mounted in aligned opening 1118-1, 1118-2 in end walls 1108, 1110. Second bearing 1131 is shown mounted about second end 1122 of drive shaft 1120 while first bearing 1130 is shown mounted about a drive hub extension 1303 of exit paddle 1300. End walls 1108 and 1110 may be fabricated from a bearing-grade plastic obviating the need for separate bearings. One or both bearings 1130, 1131, may be a clutched bearing to provide for uni-directional rotation of drive shaft 1120, if desired.
An end cap including a handle, as previously described, may be provided at second end 1106 of body 1102B. A vent hole as previously described may also be provided in end walls 1108, 1110 or body 1102. Keying features, previously described, may be provided on first end wall 1108. The attachment of first and second end walls 1108, 1110 to body 1102 may be made by any of the means previously described. Further, one of the end walls 1108, 1110 may be integrally formed with the body 1102.
Toner platform 1200B is illustrated as being circular and corresponds in shape to toner platform 200B. The toner platform 1200B includes a front surface 1202 that is used to push the toner within the reservoir 1112 toward the exit port 1114, a rear surface 1204, and an edge surface 1206 interconnecting the front and rear surfaces 1202, 1204. An opening 1208 is provided through toner platform 1200B for the drive shaft 1120. A coupling 1210 is mounted in or on toner platform 1200B about opening 1208 to movably couple toner platform 1200B to drive shaft 1120. As shown, coupling 1210, such as drive nut 1210, is attached to rear surface 1204 of toner platform 1200. The other forms of attaching coupling 1210 to toner platform 1200B previously illustrated may also be used and will not be further described. An edge seal 1212 is provided on toner platform 1200B. The other features previously described for toner platforms 200, 200A, and 200B may also be provided for toner platform 1200B. Toner platform 1200 may also contain orienting features as shown in
As shown in
Exit paddle 1300 has a plurality of radial arms 1320 mounted on drive hub 1302. However, unlike radial arms 320 that extend across the width of exit port 114, radial arms 1320 are narrower in width and more spoke-like. At the free end 1321 of one or more of arms 1320 is an axial extending finger 1323 that in one form extends toward first end wall 1108 or parallel to drive hub 1302. Provided in the inner surface 1109i of first end wall 1108 is an annular recess 1115 that is sized to receive the axial fingers 1323 while allowing them to be rotatable therein. Exit port 1114 is in fluid communication with the annular recess 1115.
Toner platform 1200B is coupled via drive nut 1210 on the threaded portion 1123 of drive shaft 1120. The second end 1122 of drive shaft 1120 is received into opening 1118-2 of second end wall 1110 that is attached to second end 1106 of body 1102. Initially, toner platform 1200B is positioned adjacent to second end wall 1210. Exit paddle 1300 is threaded onto second threaded portion 1127 of drive shaft 1120. First end wall 1108 is then placed over first end 1104 of body 1102 with drive hub extension 1303 passing through opening 1118-1. A flange 1111 having a channel 1113 therein depends from first end wall 1108. The first end 1104 of body 1102 is received into channel 1113 sealing the first end 1104 of body 1102. The first end wall 1108 is attached to body 1102 by adhesives, ultrasonic welding, or other fasteners. Toner reservoir 1112 may be filled with toner T prior to attachment of first end wall 1108 or afterward through a fill port provided, for example, in either first or second end walls 1108, 1110.
During operation, as drive shaft 1120 is rotated in a first direction, toner platform 1200B is driven toward first end wall 1108 pushing the toner through the radial arms 1320 of exit paddle 1300 into annular recess 1115 of first end wall 1108. Toner T is substantially confined between the front face 1202 of toner platform 1200B and the inner surface 1109i of first end wall 1108. Exit paddle 1300 rotates synchronously with drive shaft 1120 with axial fingers 1323 sweeping toner T within annular recess 1115 and into exit port 1114 for delivery to imaging apparatus 22.
Because the radial arms 1320 of exit paddle 1300 are thin, approximately 1.5 mm in thickness as viewed in
Toner platform 1200B disengages from drive shaft 1120 when drive nut 1210 passes the junction 1125 and travels onto the unthreaded portion 1124 of drive shaft 1120 so that toner platform 1200B will not be driven into exit paddle 1300.
The retention devices, thread followers, seals, and frangible portions previously described may also be employed with housing 1100, toner platform 1200B and/or drive shaft 1120. Drive shaft 1120 may also be provided with one or more stirring rod assemblies 174 as desired.
Exit paddle 1300A shown in
Exit paddle 1300B shown in
In
Aligned openings 4118-1, 4118-2 are provided in first and second end walls 4108, 4110, respectively. A drive shaft 4120 extends the length of the body 4102 with first and second ends 4121, 4122 thereof received in opening 4118-1, 4118-2, respectively. Drive shaft 4120 has a threaded portion 4123 and an unthreaded portion 4124 that meet at a junction 4125. Unthreaded portion 4124 is shown having a slightly smaller diameter than threaded portion 4123. Coupled to drive shaft 1120 are an exit paddle 4300 and a toner platform 4200 that are again substantially the same as exit paddle 300 and toner platform 200. However drive shaft 4120 and exit paddle 4300 may be of any of the configurations described previously. As shown, exit paddle 4300 is mounted on drive shaft 4120 adjacent the inner surface 4109i of first end wall 4108.
A drive coupler 4133 is attached to the first end 4121 of drive shaft 4120 external to first end wall 4108. Drive coupler 4133 removably engages with a drive mechanism (not shown) provided within imaging apparatus 22 to receive rotational force. The size and configuration of drive coupler 4133 is a matter of design choice and may include a gear or gear train or a coupler such as an Oldham coupler as is known in the art. Bearings or clutched bearings, as previously described, may be provided in aligned opening 4118-1, 4118-2 in end walls 4108, 4110. End walls 4108 and 4110 may be fabricated from a bearing-grade plastic obviating the need for separate bearings.
Toner platform 4200 includes a front surface 4202 that is used to push the toner within the reservoir 4112 toward the exit port 4114, a rear surface 4204, and an edge surface 4206 interconnecting the front and rear surfaces 4202, 4204. An opening 4208 is provided through toner platform 4200 for the drive shaft 4120. A coupling 4210 is mounted in or on toner platform 4200 about opening 4208 to movably couple toner platform 4200 to drive shaft 4120. As shown, coupling 4210, such as drive nut 4210, is attached to toner platform 4200 in a recess 4230 provided in front surface 4202. The other forms of attaching coupling 4210 to toner platform 4200 previously illustrated may also be used and will not be further described. An edge seal 4212 is provided on toner platform 4200. The other features previously described for toner platforms 200, 200A, and 200B may also be provided for toner platform 4200. Toner platform 4200 may also contain orienting features as shown in
An agitator assembly 4126 is provided in housing 4100. Agitator assembly 4126 comprises an agitator shaft 4127 having first and second ends 4128, 4129, respectively and one or more agitator bars or wipers 4143 mounted thereon. A second opening 4240 is provided through toner platform 4200 that as shown is above opening 4208. Second opening 4240 is aligned with openings 4119-1, 4119-2 provided in first and second end wall 4108, 4110, respectively. Rotatably received in these openings is agitator shaft 4127. First end 4128 of agitator shaft 4127 extends through first end wall 4108. Second end 4129 of drive shaft 4127 is received in opening 4119-2. An agitator drive coupling 4134 is mounted on first end 4128 of drive shaft 4127. Agitator drive coupling 4134 is shown rotatably coupled with drive coupling 4133. Agitator drive coupling 4134 may also be directly coupled to imaging apparatus 22 to receive torque. More than one agitator shaft may be provided. Agitator shaft 4127 may be vertically aligned with drive shaft 4120 as shown in
As agitator assembly 4126 is rotated by agitator drive coupling 4134, wipers or bars 4143 sweep through the upper portion of reservoir 4112 to prevent toner bridging that may occur as toner platform translates toward exit port 4114. The location of the agitator assembly 4126 in relation to drive shaft 4120 and exit paddle 4300 is a matter of design choice. In one form, the agitator assembly 4126 is located so that the wiper or bars 4143 would slidably contact the inner surface 4103i of body 4102 during a portion of their rotational travel.
Wiper or bars 4143 may be formed of a flexible material to allow them to pass through second opening 4240 in toner platform 4200. As shown, wiper or bar 4143-1 is wrapped around agitator shaft 4127 within opening 4240 as it passes through toner platform 200. Opening 4240 may also be flared having the larger end at front surface 4202 to ease the transition of the wiper or bars 4143 therethrough. As shown with wiper or bar 4143-2, the wipers or bars 4143 may also be mounted at an acute angle with respect to the rotational centerline of the agitator shaft 4127 to further ease their transition through toner platform 4200. Alternatively wipers or bars 4143 may be spring biased and fold into recesses provided in agitator shaft 4127 in a similar manner to stirring rod assemblies 174 (See
As a person of skill in the art would recognize, the retention devices, thread followers, seals, and frangible portions previously described may also be employed with housing 4100, toner platform 4200 and/or drive shaft 4120. Drive shaft 4120 may also be provided with one or more stirring rod assemblies 174 as desired. An end cap including a handle, as previously described, may be provided at second end 4106 of body 4102. A vent hole as previously described may also be provided in end walls 4108, 4110 or body 1102. Keying features, previously described, may be provided on first end wall 4108. The attachment of first and second end walls 4108, 4110 to body may be made by any of the means previously described. Further, one the end walls 4108, 4110 may be integrally formed with the body 4102.
For all of the various toner cartridge configurations shown, the toner cartridge 35 may be oriented within the imaging apparatus 22 horizontally, vertically or at any angle therebetween. Further the location of the exit port 114 may be moved from the body 102 into the first end wall 108 to accommodate the orientation that is used for the toner cartridge 35.
The foregoing description of several embodiments of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
3946910 | Case | Mar 1976 | A |
5084734 | Yoshino et al. | Jan 1992 | A |
5331388 | Marotta et al. | Jul 1994 | A |
5425481 | Makie et al. | Jun 1995 | A |
6266505 | Ban et al. | Jul 2001 | B1 |
6594458 | Ban et al. | Jul 2003 | B2 |
6792228 | Ban et al. | Sep 2004 | B2 |
6853828 | Ban et al. | Feb 2005 | B2 |
6968139 | Ban et al. | Nov 2005 | B2 |
6978101 | Ban et al. | Dec 2005 | B2 |
7386250 | Ban et al. | Jun 2008 | B2 |
7606520 | Dawson | Oct 2009 | B2 |
8649710 | Buchanan et al. | Feb 2014 | B2 |
20010008590 | Katada et al. | Jul 2001 | A1 |
20050169672 | Ban et al. | Aug 2005 | A1 |
20070172252 | Koyama et al. | Jul 2007 | A1 |
20080138113 | Murrell et al. | Jun 2008 | A1 |
20130170868 | Acosta et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2006011273 | Jan 2006 | JP |
Entry |
---|
U.S. Appl. No. 13/617,521, filed Sep. 14, 2012. |
U.S. Appl. No. 13/617,682, filed Sep. 14, 2012. |
U.S. Appl. No. 13/617,785, filed Sep. 14, 2012. |
Ex Parte Quayle Action dated Jul. 10, 2014 for U.S. Appl. No. 13/617,682. |
Non-Final Office Action dated Sep. 8, 2014 for U.S. Appl. No. 13/617,521. |
Notice of Allowance dated Sep. 5, 2014 for U.S. Appl. No. 13/617,682. |
Notice of Allowance dated Sep. 18, 2014 for U.S. Appl. No. 13/617,785. |
Number | Date | Country | |
---|---|---|---|
20140079439 A1 | Mar 2014 | US |