Vortex Flow Type Water Surface Control Device for Draining Device

Information

  • Patent Application
  • 20080023074
  • Publication Number
    20080023074
  • Date Filed
    August 02, 2004
    20 years ago
  • Date Published
    January 31, 2008
    16 years ago
Abstract
In a conventional storm overflow chamber of a combined sewer system, inflowing floating debris do not flow into an intercepting pipe in a rainy weather, and flow out to a public water body, causing a water pollution in the public water body. According to a vortex flow type water surface control device for a draining device of the present invention, a control plate (6) higher than at least a separating weir (1) is provided between an opening of an inflow pipe (2) and an opening of an intercepting pipe (3) in a storm overflow chamber of a combined sewer system. Moreover, a guide wall (7) higher than at least the separating weir (1) is provided along the separating weir between the opening of the inflow pipe (2) and the separating weir (1).
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front vertical cross sectional view in a rainy weather of a storm overflow chamber of a combined sewer system using a vortex flow type water surface control device for a draining device according to the present invention;



FIG. 2A is a right side vertical cross sectional view in a rainy weather of the storm overflow chamber of the combined sewer system using the vortex flow type water surface control device for a draining device according to the present invention;



FIG. 2B is a plan view of the device shown in FIG. 1;



FIG. 3A is a front vertical cross sectional view in a rainy weather of the storm overflow chamber of the combined sewer system using a vortex flow type water surface control device for a draining device according to another embodiment of the present invention;



FIG. 3B is a plan view of the device shown in FIG. 3A;



FIG. 4 is a right side vertical cross sectional view in a rainy weather of the storm overflow chamber of the combined sewer system using the vortex flow type water surface control device for a draining device shown in FIG. 3A;



FIG. 5A is a plan view of a conventional storm overflow chamber of a combined sewer system;



FIG. 5B is a plan view of another conventional storm overflow chamber of a combined sewer system;



FIG. 6A is a vertical front sectional view in a fine weather of the conventional storm overflow chamber of the combined sewer system shown in FIG. 5A;



FIG. 6B is a vertical right side sectional view in a fine weather of the conventional storm overflow chamber of the combined sewer system shown in FIG. 5A;



FIG. 7A is a vertical front sectional view in a rainy weather of the conventional storm overflow chamber of the combined sewer system shown in FIG. 5A;



FIG. 7B is a vertical right side sectional view in a rainy weather of the conventional storm overflow chamber of the combined sewer system shown in FIG. 5A;



FIG. 8A is a vertical front sectional view in a rainy weather of the conventional storm overflow chamber of the combined sewer system shown in FIG. 5A when a water quantity further increases; and



FIG. 8B is a right side front sectional view in a rainy weather of the conventional storm overflow chamber of the combined sewer system shown in FIG. 5A when the water quantity further increases.





BEST MODE FOR CARRYING OUT THE INVENTION

A description will now be given of an embodiment of the present invention with reference to drawings.


According to the present invention, as shown in FIG. 1, FIG. 2A, and FIG. 2B, between an opening of an intercepting pipe 3 and an opening of an inflow pipe 2 is interposed a vertical control plate 6 in a direction to block a passage therebetween. Though a bottom end of the vertical control plate 6 is preferably higher than a top surface of the opening of the intercepting pipe 3 so as not to prevent waste water from flowing down in a fine weather, the bottom end may be lower than the top surface of the opening of the intercepting pipe 3. Though the top end of the vertical control plate 6 is preferably higher than a top surface of a separating weir 1 and a top surface of the opening of the inflow pipe 2, the top end may be lower than the top surface of the opening of the inflow pipe 2.


Since the vortex flow type water surface control device for a draining device according to the present invention has the configuration as described above, a vortex flow is generated on a rear surface (on an intercepting pipe 3 side) of the vertical control plate 6 by a flow which has passed between the vertical control plate 6 and the separating weir 1 from the inflow pipe 2 toward the intercepting pipe 3 in a rainy weather, and floating debris 5 almost entirely flow into the intercepting pipe 3 along the flow as shown in FIG. 1, FIG. 2A, and FIG. 2B.


If the quantity of the water flowing into the storm overflow chamber increases, and the water depth exceeds the height of the separating weir 1 in the storm overflow chamber, the water surface gradient is formed by an overflow over the separating weir 1 from the opening of the inflow pipe 2 toward the opening of the outflow pipe 4 as shown in FIG. 1, FIG. 2A and FIG. 2B.


If the quantity of the water further increases, influence of a surface flow toward the outflow pipe 4 increases, most of the floating debris 5 pass over the separating weir 1, and flow out to the outflow pipe 4, and only a part thereof flows into the intercepting pipe 3, resulting in an insufficient intercepting effect.


Thus, according to another embodiment of the present invention, a guide wall 7 whose bottom end is slightly lower than the top end of the separating weir 1, and whose top end is higher than the top surface of the opening of the inflow pipe 2 and the top end of the separating weir 1 is provided between the separating weir 1 and the opening of the inflow pipe 2 such that the side surface of the guide wall 7 is almost parallel with a side surface of the vertical control plate 6, as shown in FIG. 3A, FIG. 3B, and FIG. 4.


According to this embodiment, if the water depth is above the height of the separating weir 1 in the storm overflow chamber in a rainy weather, the water surface rises in a vicinity of the guide wall 7, and the water surface gradient is not formed from the opening of the inflow pipe 2 toward the separating weir 1 as shown in FIG. 3A. Moreover, a vortex flow is formed on the rear surface of the vertical control plate 6 as in the previous embodiment, and most of the floating debris 5 are thus brought into the intercepting pipe 3 by the flow thereof, resulting in a higher intercepting effect.


It should be noted that the present invention can be similarly applied to a conventional storm overflow chamber (water separating manhole) including an intercepting pipe 3 and an outflow pipe 4 formed on the same wall surface for a combined sewer system as shown in FIG. 5B.


INDUSTRIAL APPLICABILITY

According to the vortex flow type water surface control device for a draining device according to the present invention, there is formed a vortex flow which facilitates the inflow of the floating debris 5 into the intercepting pipe 3, and the floating debris 5 flowing out to a public water body are thus reduced, which is a large benefit.

Claims
  • 1. A vortex flow type water surface control device for a draining device that includes an inflow pipe, an outflow pipe, an intercepting pipe, and a separating weir that is disposed to block said intercepting pipe and said inflow pipe from said outflow pipe, comprising a control plate that is disposed between an opening of said inflow pipe and an opening of said intercepting pipe, the height of the control plate being higher than at least the height of said separating weir.
  • 2. The vortex flow type water surface control device for a draining device according to claim 1, further comprising a guide wall that is disposed between the opening of said inflow pipe and said separating weir, the height of the guide wall being higher than at least the height of said separating weir.
  • 3. The vortex flow type water surface control device for a draining device according to claim 1, further comprising a guide wall that is disposed between the opening of said inflow pipe and said separating weir, a bottom end of the guide wall being positioned below a top end of said separating weir, a top end of the guide wall being positioned above a pipe top of said intercepting pipe.
  • 4. A water surface control device for a draining device that includes an inflow pipe, an outflow pipe, an intercepting pipe, and a separating weir that is disposed to block said intercepting pipe and said inflow pipe from said outflow pipe, comprising a guide wall that is interposed between an opening of said inflow pipe and said separating weir, a bottom end of said guide wall being positioned below a top end of said separating weir, and a top end of said guide wall being positioned above the top end said separating weir.
  • 5. A water surface control device for a draining device that includes an inflow pipe, an outflow pipe, an intercepting pipe, and a separating weir that is disposed to block said intercepting pipe and said inflow pipe from said outflow pipe, comprising a guide wall that is interposed between an opening of said inflow pipe and said separating weir, a bottom end of said guide wall being positioned below a top end of said separating weir, and a top end of said guide wall being positioned above a pipe top of said intercepting pipe.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP04/11394 8/2/2004 WO 00 3/19/2007