This invention is related to vortex induced vibration suppression devices, and to systems and methods for attaching the devices to structures to reduce drag and/or vortex induced vibration (VIV).
Whenever a bluff body in a fluid environment, such as a cylinder, is subjected to a current in the fluid, it is possible for the body to experience vortex-induced vibrations (VIV). These vibrations may be caused by oscillating hydrodynamic forces on the surface, which can cause substantial vibrations of the structure, especially if the forcing frequency is at or near a structural natural frequency.
Drilling for and/or producing hydrocarbons or the like from subterranean deposits which exist under a body of water exposes underwater drilling and production equipment to water currents and the possibility of VIV. Equipment exposed to VIV may include structures ranging from the tubes of a riser system, anchoring tendons, hoses, umbilicals, and other subsea members.
There are generally two kinds of water current induced stresses to which elements of a system may be exposed. The first kind of stress as mentioned above is caused by vortex-induced alternating forces that vibrate the underwater structure in a direction perpendicular to the direction of the current. These are referred to as vortex-induced vibrations (VIV). When water flows past the structure, vortices are alternately shed from each side of the structure. This produces a fluctuating force on the structure transverse to the current. These vibrations can, depending on the stiffness and the strength of the structure and any welds, lead to unacceptably short fatigue lives. The second type of stress is caused by drag forces which push the structure in the direction of the current due to the structure's resistance to fluid flow. The drag forces may be amplified by vortex induced vibrations of the structure. For instance, a structure that is vibrating due to vortex shedding will disrupt the flow of water around it more so than a stationary umbilical. This results in greater energy transfer from the current to the structure, and hence more drag.
Many methods have been developed to reduce vibrations of sub sea structures. Some of these methods to reduce vibrations caused by vortex shedding from subsea structures operate by stabilization of the wake. These methods include streamlined fairings, wake splitters and flags. Streamlined or teardrop shaped, fairings that swivel around a structure have been developed that almost eliminate the shedding or vortexes. Other conventional methods to reduce vibrations caused by vortex shedding from sub sea structures operate by modifying the boundary layer of the flow around the structure to prevent the correlation of vortex shedding along the length of the structure. Examples of such methods include the use of helical strakes around a structure, or axial rod shrouds and perforated shrouds.
U.S. Pat. No. 6,695,539 discloses an apparatus and methods for remotely installing vortex-induced vibration (VIV) reduction and drag reduction devices on elongated structures in flowing fluid environments. The apparatus is a tool for transporting and installing the devices. The devices installed can include clamshell-shaped strakes, shrouds, fairings, sleeves and flotation modules. U.S. Pat. No. 6,695,539 is herein incorporated by reference in its entirety.
Referring now to
When VIV suppression devices are installed on subsea structures, each suppression device needs to be transported from a surface vessel to the desired installation location on the structure. One method to achieve this is to have a ROV travel to the surface and install one device at a time. Other tools have been proposed which can transport more than one device at a time on the tool. Each trip to the surface to retrieve a device increases the time and complexity of the installation.
There is a need in the art for improved systems and methods for suppressing VIV. There is a need in the art for systems and methods for suppressing VIV that do not suffer from the disadvantages of the prior art.
There is a need in the art for systems and methods for providing VIV suppression devices to structures, and for improved installation systems and methods for the VIV suppression devices. There is a need for systems and methods of installing VIV suppression devices with fewer trips required to the surface.
These and other needs will become apparent to those of skill in the art upon review of this specification, including its drawings and claims.
In one aspect, the invention provides a system comprising a subsea structure beneath a body of water, subject to a water current; an installation vessel floating on the body of water; a line connected to the subsea structure and the installation vessel; and one or more vortex induced vibration suppression devices connected to the line, which have been lowered from the vessel to be installed on the subsea structure.
In another aspect, the invention provides a method, comprising installing a subsea structure in a body of water, wherein the subsea structure is subject to one or more water currents; covering at least a portion of an outside surface of the subsea structure; connecting at least one line to the subsea structure and to a surface vessel; lowering at least one vortex induced vibration suppression device from the vessel on the line; and installing the vortex induced vibration suppression device from the line to the exterior of the subsea structure, covering at least a portion of an outside surface of the subsea structure.
Advantages of the invention may include one or more of the following:
improved systems and methods for suppressing VIV;
systems and methods for suppressing VIV that do not suffer from the disadvantages of the prior art;
systems and methods for providing VIV suppression devices to structures, and for improved installation systems and methods for the VIV suppression devices; and/or
systems and methods of installing VIV suppression devices with fewer trips required to the surface.
a-2e illustrate a system to install suppression devices on an underwater structure.
a-3b illustrate a fairing system being installed around a structure.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In operation, fairing 314 moves towards structure 304 as shown by the arrow, so that structure 304 disables member 316, and fairing 314 closes due to biasing force.
When fairing 314 closes, male member 318a is locked within female member 318b, as shown in
A space may be defined between the exterior of structure 304 and the interior of fairing 314, which allows fairing 314 to weathervane with varying current directions.
One or more portions of the system may be or contain copper to retard marine growth.
Fairings may be replaced with strakes, shrouds, wake splitters, tail fairings, buoyancy modules, or other devices as are known in the art. Suitable sleeves, suitable collars, and suitable devices to install exterior to structures, and methods of their installation are disclosed in U.S. patent application Ser. No. 10/839,781, having attorney docket number TH1433; U.S. patent application Ser. No. 11/400,365, having attorney docket number TH0541; U.S. patent application Ser. No. 11/419,964, having attorney docket number TH2508; U.S. patent application Ser. No. 11/420,838, having attorney docket number TH2876; U.S. patent application Ser. No. 60/781,846 having attorney docket number TH2969; U.S. Patent Application Number 60/805,136, having attorney docket number TH1500; U.S. Patent Application Number 60/866,968, having attorney docket number TH3112; U.S. Patent Application Number 60/866,972, having attorney docket number TH3190; U.S. Pat. No. 5,410,979; U.S. Pat. No. 5,410,979; U.S. Pat. No. 5,421,413; U.S. Pat. No. 6,179,524; U.S. Pat. No. 6,223,672; U.S. Pat. No. 6,561,734; U.S. Pat. No. 6,565,287; U.S. Pat. No. 6,571,878; U.S. Pat. No. 6,685,394; U.S. Pat. No. 6,702,026; U.S. Pat. No. 7,017,666; and U.S. Pat. No. 7,070,361, which are herein incorporated by reference in their entirety.
Suitable methods for installing fairings, collars, and other devices to install exterior to structures, are disclosed in U.S. patent application Ser. No. 10/784,536, having attorney docket number TH1853.04; U.S. patent application Ser. No. 10/848,547, having attorney docket number TH2463; U.S. patent application Ser. No. 11/596,437, having attorney docket number TH2900; U.S. patent application Ser. No. 11/468,690, having attorney docket number TH2926; U.S. patent application Ser. No. 11/612,203, having attorney docket number TH2875; U.S. Patent Application Number 60/806,882, having attorney docket number TH2879; U.S. Patent Application Number 60/826,553, having attorney docket number TH2842; U.S. Pat. No. 6,695,539; U.S. Pat. No. 6,928,709; and U.S. Pat. No. 6,994,492; which are herein incorporated by reference in their entirety.
The collars and/or fairings may be installed on the connector member before or after the connector member is placed in a body of water. The collars, fairings and/or other devices exterior to the structure may have a clamshell configuration, and may be hinged with a closing mechanism opposite the hinge, for example a mechanism that can be operated with an ROV.
Collars may be placed between adjacent fairings, or between every 2 to 10 fairings. The collar may be a copper ring.
Fairings may be provided with copper plates on their ends to allow them to weathervane with adjacent fairings or collars. Fairings may be partially manufactured from copper.
A biodegradable spacer may be placed between adjacent fairings to keep them from binding and allow them to weathervane after the spacer has degraded.
Illustrative Embodiments In one embodiment, there is disclosed a system comprising a subsea structure beneath a body of water, subject to a water current; a collar exterior to the subsea structure, covering at least a portion of an outside surface of the subsea structure; an installation vessel floating on the body of water; a line connected to the collar and the installation vessel; and one or more vortex induced vibration suppression devices connected to the line, which have been lowered from the vessel to be installed on the subsea structure. In some embodiments, the subsea structure is selected from an umbilical, a tubular, a riser, and a tendon. In some embodiments, the vortex induced vibration suppression device comprises a fairing or a helical strake. In some embodiments, the line comprises at least two lines, the votex induced vibration suppression devices connected to the at least two lines. In some embodiments, the vortex induced vibration suppression devices are negatively buoyant in water. In some embodiments, the vortex induced vibration suppression devices comprise one or more shoulders adapted to interface with the collar and/or other vortex induced vibration suppression devices. In some embodiments, the system also includes a collar between two adjacent vortex induced vibration suppression devices, the collar connected to the line.
In one embodiment, there is disclosed a method, comprising installing a subsea structure in a body of water, wherein the subsea structure is subject to one or more water currents; installing a collar exterior to the subsea structure, covering at least a portion of an outside surface of the subsea structure; connecting at least one line to the collar and to a surface vessel; lowering at least one vortex induced vibration suppression device from the vessel towards the collar on the line; and installing the vortex induced vibration suppression device from the line to the exterior of the subsea structure, covering at least a portion of an outside surface of the subsea structure. In some embodiments, the method also includes installing additional collars exterior to the subsea structure, the collars adapted to retain the vortex induced vibration suppression devices in an axial location along the subsea structure. In some embodiments, the collar is installed on the subsea structure before the subsea structure is installed in the body of water. In some embodiments, the vortex induced vibration suppression device is installed on the subsea structure with a remotely operated vehicle (ROV). In some embodiments, the vortex induced vibration suppression device comprises an automatic closing mechanism. In some embodiments, the vortex induced vibration suppression device is installed by moving the device adjacent to the subsea structure to activate the automatic closing mechanism. In some embodiments, connecting at least one line to the collar and to a surface vessel comprises connecting at least two lines; and lowering at least one vortex induced vibration suppression device from the vessel towards the collar comprises lowering on the at least two lines.
Those of skill in the art will appreciate that many modifications and variations are possible in terms of the disclosed embodiments, configurations, materials and methods without departing from their spirit and scope. Accordingly, the scope of the claims appended hereafter and their functional equivalents should not be limited by particular embodiments described and illustrated herein, as these are merely exemplary in nature.
This application claims priority to co-pending U.S. Provisional Application 60/894,748, filed Mar. 14, 2007, and having attorney docket number TH3214. U.S. Provisional Application 60/894,748 is herein incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/56655 | 3/12/2008 | WO | 00 | 1/5/2010 |
Number | Date | Country | |
---|---|---|---|
60894748 | Mar 2007 | US |