The description herein relates to a vortex pump that pumps a gas. The vortex pump may also be called a Wesco pump, a cascade pump, or a regenerative pump.
Japanese Patent Application Publication No. 2012-163099 describes a fuel pump that supplies fuel to a vehicle engine. The fuel pump includes an impeller having a plurality of blades arranged along a circumferential direction. Blade grooves are provided between respective pairs of adjacent blades. The plurality of blades and the plurality of blade grooves are arranged on both surfaces of the impeller. Each of the plurality of blade grooves arranged on one of the surfaces of the impeller communicates with a corresponding one of the plurality of blade grooves arranged on the other surface of the impeller.
A vortex pump generates a vortex (which is also called a swirling flow) about a center axis along a rotation direction of an impeller by rotating the impeller. Fluid is thereby pressurized and discharged. Due to this, shapes of blades and blade grooves arranged on the impeller affect pump efficiency. In the description herein, a technique that improves pump efficiency by shapes of blades and blade grooves arranged in an impeller of a vortex pump that pumps a gas is provided.
The description herein discloses a vortex pump configured to pump a gas. The vortex pump may comprise a housing and an impeller housed in the housing and configured to rotate about a rotation axis. The impeller may comprise a plurality of blades disposed along a rotation direction in an outer circumferential portion of at least one end surface of two end surfaces of the impeller, a plurality of blade grooves, each of the plurality of blade grooves being disposed between adjacent blades, and an outer circumferential wall disposed at an outer circumferential edge and closing the plurality of grooves at an outer circumferential side of the impeller. The housing may comprise an opposing groove opposing a blade groove region and extending along the rotation direction of the impeller. Each of the plurality of the blade grooves may be opened at the one end surface of the two end surfaces of the impeller, and closed at the other end surface of the two end surfaces of the impeller. In a plan view of the one end surface of the two end surfaces of the impeller, each of the plurality of the blades may be curved, and a central portion of each of the blades may be positioned frontward in the rotation direction of the impeller than both ends of the blade.
The inventors discovered that occurrences of separated flows in a vortex (or swirling flow) generated in a space between the blade grooves and the opposing groove may be suppressed and the gas can be smoothly swirled by shapes of the blades and the blade grooves as above. According to the above configuration, pump efficiency may be improved in the vortex gas pump.
In the plan view of the one end surface of the impeller, in each of the plurality of the blades, a line connecting an end thereof on an outer circumferential side of the impeller and a center of the impeller may be positioned backward in the rotation direction of the impeller than a line connecting an end thereof on a central side of the impeller and the center of the impeller. The pump efficiency may be improved by the shapes of the blades and the blade grooves as above.
In each of the plurality of the blades, an end portion thereof on the one end surface side of the impeller may be positioned frontward in the rotation direction of the impeller than an end portion thereof on the other end surface side of the impeller. The pump efficiency may be improved by the shapes of the blades and the blade grooves as above.
Each of the plurality of the blades may be inclined such that the end portion thereof on the one end surface side of the impeller may be positioned frontward in the rotation direction of the impeller than the end portion thereof on the other end surface side of the impeller.
The vortex pump may be mounted on an automobile, suction vaporized fuel from a canister adsorbing the vaporized fuel in a fuel tank into the vortex pump and supply the suctioned vaporized fuel to an intake pipe of an engine of the automobile. The vortex pump having the shapes of the blades and the blade grooves of present embodiment may smoothly generate a vortex even with a gas with a relatively small density. Due to this, the gas may be pressurized without setting a revolution speed of the impeller high. By employing the vortex pump of the present embodiment in the aforementioned system, the vaporized fuel may suitably be supplied to the suction pipe of the engine.
A purge pump 10 of a first embodiment will be described with reference to the drawings. As shown in
The main supply passage 2 includes a fuel pump unit 7, a supply pipe 70, and an injector 5 arranged thereon. The fuel pump unit 7 includes a fuel pump, a pressure regulator, a control circuit, and the like. In the fuel pump unit 7, the control circuit controls the fuel pump according to a signal supplied from an ECU (abbreviation of Engine Control Unit) 6 to be described later. The fuel pump pressurizes and discharges the fuel in the fuel tank 3. The fuel discharged from the fuel pump is regulated by the pressure regulator, and is supplied from the fuel pump unit 7 to the supply pipe 70.
The supply pipe 70 communicates the fuel pump unit 7 and the injector 5. The fuel supplied to the supply pipe 70 flows in the supply pipe 70 to the injector 5. The injector 5 includes a valve of which aperture is controlled by the ECU 6. When this valve is opened, the injector 5 supplies the fuel supplied from the supply pipe 70 to the engine 8.
The purge supply passage 4 is provided with a canister 73, a purge pump 10, a VSV (abbreviation of Vacuum Switching Valve) 100, and communicating pipes 72, 74, 76, 78 communicating them. The canister 73 absorbs vaporized fuel generated in the fuel tank 3. The canister 73 includes a tank port, a purge port, and an open-air port.
The purge port of the canister 73 connects to the purge pump 10 via the communicating pipe 74. Although a detailed structure will be described later, the purge pump 10 is a so-called vortex pump that pressure-feeds gas. The purge pump 10 is controlled by the ECU 6. The purge pump 10 suctions the vaporized fuel absorbed in the canister 73 and pressurizes and discharges the same. During when the purge pump 10 is driving, air is suctioned from the open-air port in the canister 73, and is flown to the purge pump 10 together with the vaporized fuel.
The vaporized fuel discharged from the purge pump 10 passes through the communicating pipe 76, the VSV 100, and the communicating pipe 78, and flows into the suction pipe 80. The VSV 100 is an electromagnetic valve controlled by the ECU 6. The ECU 60 controls the VSV 100 for adjusting a vaporized fuel amount supplied from the purge supply passage 4 to the suction pipe 80. The VSV 100 is connected to the suction pipe 80 upstream of the injector 5. The suction pipe 80 is a pipe that supplies air to the engine 8. A throttle valve 82 is arranged on the suction pipe 80 upstream of a position where the VSV 100 is connected to the suction pipe 80. The throttle valve 82 controls an aperture of the suction pipe 80 to adjust the air flowing into the engine 8. The throttle valve 82 is controlled by the ECU 6.
An air cleaner 84 is arranged on the suction pipe 80 upstream of the throttle valve 82. The air cleaner 84 includes a filter that removes foreign particles from the air flowing into the suction pipe 80. In the suction pipe 80, when the throttle valve 82 opens, the air is suctioned from the air cleaner 84 toward the engine 8. The engine 8 internally combusts the air and the fuel from the suction pipe 80 and discharges exhaust after the combustion.
In the purge supply passage 4, the vaporized fuel absorbed in the canister 73 can be supplied to the suction pipe 80 by driving the purge pump 10. In a case where the engine 8 is running, a negative pressure is generated in the suction pipe 80. Due to this, even in a state where the purge pump 10 is at a halt, the vaporized fuel absorbed in the canister 73 is suctioned into the suction pipe 80 by passing through the halted purge pump 10 due to the negative pressure in the suction pipe 80. On the other hand, in cases of terminating idling of the engine 8 upon stopping the vehicle and running by a motor while the engine 8 is halted as in a hybrid vehicle, that is, in other words in a case of controlling an operation of the engine 8 in an ecofriendly mode, a situation arises in which the negative pressure in the suction pipe 80 by the operation of the engine 8 is hardly generated. In such a situation, the purge pump 10 can supply the vaporized fuel absorbed in the canister 73 to the suction pipe 80 by taking over this role from the engine 8. In a variant, the purge pump 10 may be driven to suction and discharge the vaporized fuel even in the situation where the engine 8 is running and the negative pressure is being generated in the suction pipe 80.
Next, a configuration of the purge pump 10 will be described.
The purge pump 10 includes a motor unit 20 and a pump unit 50. The motor unit 20 includes a brushless motor. The motor unit 20 is provided with an upper housing 26, a rotor (not shown), a stator 22, and a control circuit 24. The upper housing 26 accommodates the rotor, the stator 22, and the control circuit 24. The control circuit 24 converts DC power supplied from a battery of the vehicle to three-phase AC power in U phase, V phase, and W phase, and supplies the same to the stator 22. The control circuit 24 supplies the power to the stator 22 according to a signal supplied from the ECU 6. The stator 22 has a cylindrical shape, at a center of which the rotor is arranged. The rotor is arranged rotatable relative to the stator 22. The rotor includes permanent magnets along its circumferential direction, which are magnetized alternately in different directions. The rotor rotates about a center axis X (called a “rotation axis X” hereinafter) a shaft 30 by the power being supplied to the stator 22.
The pump unit 50 is arranged below the motor unit 20. The pump unit 50 is driven by the motor unit 20. The pump unit 50 includes a lower housing 52 and an impeller 54. The lower housing 52 is fixed to a lower end of the upper housing 26. The lower housing 52 includes a bottom wall 52a and a cover 52b. The cover 52b includes an upper wall 52c, a circumferential wall 52d, a suction port 56, and a discharge port 58 (see
The upper wall 52c includes an opposing groove 52e extending from the suction port 56 to the discharge port 58 along the circumferential wall 52d. The bottom wall 52a similarly includes an opposing groove 52f (see
As shown in
As shown in
Each of the blades 54a is curved such that its central portion in the radial direction of the impeller 54 protrudes in the rotation direction R. Due to this, the central portion of each blade 54a is located frontward in the rotation direction R of the impeller 54 than a line L1 connecting both ends of this blade 54a. Moreover, a line L2 connecting an end of each blade 54a on an outer circumferential side of the impeller 54 and the center X of the impeller 54 is located backward in the rotation direction R of the impeller 54 than a line L3 connecting an end of this blade 54a on a center X side of the impeller 54 and the center X of the impeller 54. Hereinbelow, an angle α formed by the lines L2 and L3 is termed a “sweep forward angle α”, and in a case where the line L2 is located backward than the line L3 as in the impeller 54 of this embodiment, the sweep forward angle α is smaller than 0 degrees.
As shown in
Next, results of simulation carried out using the purge pump 10 will be shown with reference to
In the simulation, a rate D2/D1 of an opposing groove depth D2 to a blade groove depth D1 shown in
In a simulation, the flow rates for the case of varying the inclined angle γ (see
Further, in the impeller 54, the blade grooves 54b opened at the upper surface 54g are not opened at the lower surface 54h and are closed thereat. The blade grooves 54b opened at the lower surface 54h are not opened at the upper surface 54g and are closed thereat. According to this configuration, due to the blade grooves 54b, the gas can be guided in the swirling direction in the space defined by the blade grooves 54b and the opposing groove 52e or by the space defined by the blade grooves 54b and the opposing groove 52f. Due to this, the gas can smoothly be swirled to pressurize it.
According to the configuration of the purge pump 10 of the present embodiment, the gas in the space defined by the blade grooves 54b and the opposing groove 52e or by the blade grooves 54b and the opposing groove 52f can smoothly be swirled, and occurrences of separated flows can be suppressed. Further, the gas suctioned from the canister 73 has a relatively small density. By using the purge pump 10, even such a gas with the relatively small density can be pressurized without setting the revolution speed of the impeller 54 high. Due to this, the purge pump 10 can be configured less power consuming. Further, by suppressing the revolution speed, wear in a bearing of the shaft 30 can be suppressed.
Specific examples of the present disclosure have been described in detail, however, these are mere exemplary indications and thus do not limit the scope of the claims. The art described in the claims include modifications and variations of the specific examples presented above.
For example, the shape of the outer circumferential wall 54c of the impeller 54 is not limited to the shape in the embodiment. For example, the outer circumferential wall 54c may be arranged at a central portion in an up and down direction of the impeller 54 while not being arranged at upper and lower end portions of the impeller 54. In this case, an upper end of the outer circumferential wall 54c may be located at a same position as the vortex center or thereabove in the up and down direction. Similarly, for a lower end of the outer circumferential wall 54c, it may be located at the same position as the vortex center or therebelow in the up and down direction.
Further, in the above embodiment, the blades 54a and the blade grooves 54b of the impeller 54 have same shapes on the upper and lower surfaces 54g, 54h. However, the shapes of the blades 54a and the blade grooves 54b may be different in the upper surface 54g from those of the lower surface 54h. Alternatively, the blades 54a and the blade grooves 54b may be arranged on only one of the upper and lower surfaces 54g, 54h. Further, the shapes of the plurality of blades 54a may differ from each other in each of the upper and lower surfaces 54g, 54h, and the plurality of blades 54a do not have to be arranged at regular intervals. Similarly, the shapes of the plurality of blade grooves 54b may differ from each other, and the plurality of blade grooves 54b do not have to be arranged at regular intervals.
Further, in the above embodiment, the suction port 56 and the discharge port 58 of the pump unit 50 extend in the direction perpendicular to the rotation axis X of the impeller 54. However, the suction port 56 and the discharge port 58 of the pump unit 50 may be extending in parallel to the rotation axis X.
The “vortex pump” disclosed herein is not limited to the purge pump 10, and may be used in other systems. For example, it may be used as a pump that supplies an exhaust to the suction pipe 80 in an exhaust recirculation (that is, EGR (abbreviation of Exhaust Gas Recirculation)) for circulating the exhaust of the engine 8, mixing it with suctioned air, and supplying the same to a fuel chamber of the engine 8. Further, it may be used as an industrial pump other than for the vehicle.
Technical features described in the description and the drawings may technically be useful alone or in various combinations, and are not limited to the combinations as originally claimed. Further, the art described in the description and the drawings may concurrently achieve a plurality of aims, and technical significance thereof resides in achieving any one of such aims.
Number | Date | Country | Kind |
---|---|---|---|
2015-229106 | Nov 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/082586 | 11/2/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/090398 | 6/1/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3095820 | Sanborn | Jul 1963 | A |
5310308 | Yu et al. | May 1994 | A |
5395210 | Yamazaki et al. | Mar 1995 | A |
5472321 | Radermacher | Dec 1995 | A |
5536139 | Yamazaki et al. | Jul 1996 | A |
5697152 | Yamazaki et al. | Dec 1997 | A |
6224323 | Murase | May 2001 | B1 |
6468051 | Lampe et al. | Oct 2002 | B2 |
6695895 | Hyodo | Feb 2004 | B2 |
6767179 | Kusagaya | Jul 2004 | B2 |
6846155 | Takami | Jan 2005 | B2 |
8070417 | Ikeya | Dec 2011 | B2 |
8297913 | Hanai | Oct 2012 | B2 |
9249806 | Talaski | Feb 2016 | B2 |
20020162457 | Hyodo | Nov 2002 | A1 |
20030108418 | Yu | Jun 2003 | A1 |
20030118438 | Usui et al. | Jun 2003 | A1 |
20160208747 | Hidaka | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
201874711 | Jun 2011 | CN |
H2-215997 | Aug 1990 | JP |
H02215997 | Aug 1990 | JP |
H7-167081 | Jul 1995 | JP |
H7-180626 | Jul 1995 | JP |
2000-329096 | Nov 2000 | JP |
2002-081392 | Mar 2002 | JP |
2003-042014 | Feb 2003 | JP |
2003-193992 | Jul 2003 | JP |
2007-247421 | Sep 2007 | JP |
2008-031889 | Feb 2008 | JP |
2012-163099 | Aug 2012 | JP |
Entry |
---|
English Translation of International Preliminary Examination Report for PCT/JP2016/082586 dated Feb. 2, 2018 (8 pages). |
International Search Report for PCT/JP2016/082586 dated Jan. 24, 2017 (2 pages). |
Chinese Office Action for Chinese Pat. App. No. 201680057749.7 dated Mar. 14, 2019 with English Translation (13 pages). |
Chinese Office Action for CN Pat. App. No. 201680057749.7 dated Oct. 23, 2019 (12 pages including English Translation). |
Number | Date | Country | |
---|---|---|---|
20190032672 A1 | Jan 2019 | US |