This invention is directed to the field of vortex tubes. More particularly, the present invention relates to a manufacture using a method of a vortex tube design, which provides a vortex tube having a high efficiency by eliminating freeze up in operations with natural gas.
A vortex tube (VT) comprises a slender tube with a diaphragm with a discharge hole in the center of the diaphragm, closing one end of the tube, one or more tangential inlet nozzles piercing the tube just inside of the diaphragm and, depending on the vortex tube's desirable performance, a controlled discharge opening (throttle valve) or plug (U.S. Pat. No. 5,911,740) on the other end of the slender tube.
In the vortex tube, the inlet high-pressure gas passes through the tangential nozzles resulting in a pressure decrease and velocity increase of the gas. The low pressure highly rotating gas then undergoes energy separation (vortex phenomenon) forming two internal low-pressure currents.
One current is cold and the other is hot. Under some circumstances a cold fraction or cold gas discharged from the vortex tube through the diaphragm opening may freeze up and reduce the diameter of the discharge orifice due to the formation of ice, resulting in the vortex tube's performance deterioration.
It is known to use a vortex tube's hot fraction to prevent freezing in the discharge diaphragm (U.S. Pat. Nos. 5,749,231 and 5,937,654) as well as, as it is practiced in the vortex tubes of the present invention to use the hot fraction to warm up the vortex tube's inlet nozzles.
The present invention provides for improving the reliability of the vortex tubes designed per U.S. Pat. Nos. 5,749,231 and 5,937,654 in operation with compressed natural gas. The improvement is achieved by specifying the VT diaphragm hole preferably in a range of 0.25 to 0.80 of the slender tube's diameter, the vortex tube's length, preferably, as no less than 3 diameters of the slender tube and the vortex tube's uncontrolled opening diameter as no greater than 0.60 of the slender tube's diameter.
The present invention will now be described in terms of the presently preferred embodiment thereof as illustrated in the drawings. Those of ordinary skill in the art will recognize that this embodiment is merely exemplary of the present invention and many obvious modifications may be made thereto without departing from the spirit or scope of the present invention as set forth in the appended claims.
The transmission of natural gas starts with the extraction point (typically a wellhead) at very high pressures through a pipeline to distribution hubs and then ultimately into low pressure networks for delivery of natural gas to the end user. This process from wellhead to end user is comprised of a series of pressure reducing operations. It is common practice to preheat the gas at pipeline pressure regulation stations along the transmission line in an effort to compensate for the Joule-Thompson temperature drop in depressurized gas. This pre-heating process prevents water in the form of hydrocarbons condensing and freezing in the pressure regulating valves along the transmission system. At the wellhead—where heating the gas cannot be employed—a glycol additive is used to prevent freezing.
The problem to be solved to which the present invention is directed is how to prevent non-preheated, non-glycol treated natural gas (and other non-dried gases) from freezing as the gas is expanded in pressure regulation. The problem arises when the temperature of the gas being transmitted is dropped as a result of the pressure reduction that takes place with the use of a vortex tube in the transmission line. This results in cooling (refrigeration) in the vortex tube pressure reducing nozzle, which is what the present invention is directed to eliminate/reduce.
One way in which this refrigeration effect is minimized is to use the hot portion air of the vortex tube and direct it onto the cold flow portion where freezing is occurring. See, Tunkel U.S. Pat. No. 5,749,231. Further, the present invention discloses vortex tube geometric relationships aimed at increasing the vortex tube thermal efficiency by generating more heat out of the “hot side” of the vortex tube. This facilitates the more efficient warming pressure reducing nozzle on the “cold side” of the vortex tube.
The flow diagram in
It is known that a small portion of the vortex tube's inlet gas flow does not participate in the vortex energy division but moves alongside the diaphragm inward surface directly into the diaphragm hole. The existence of such a bypass flow is due to the presence of the radial pressure gradient uncompensated by the centrifugal forces in the stationary boundary layer on the wall of the diaphragm. Mixture of the bypass flow that keeps the original inlet gas temperature with the cold gas passing through the diaphragm hole increases the vortex cold outlet temperature. Such thermal influence, at times noticeable, does not affect the vortex tube operations unless compressed natural gas is used as the vortex tube's working medium.
Here the gas passing through the VT's pressure reducing nozzles, generally, carries some liquid (water and hydrocarbons) condensed under the depressurized gas low thermodynamic temperatures and Joule-Thomson temperature drop. The condensed liquid, due to its gravity, provides for a substantial portion of the by-pass flow. The two-phase chilled mixture mixing up with the vortex tube's cold outlet or with the vortex tube's single discharge flow (per U.S. Pat. No. 5,911,740) results in freezing of the diaphragm hole which reduces the interior diameter of the orifice 16 and accordingly the vortex tube performance deteriorates.
Reduction of the diaphragm's hole 16 diameter is an efficient way to reduce the by-pass stream flow rate. However, a smaller diaphragm hole increases the gas pressure in the vortex tube. This results in decreasing the vortex pressure ratio (ratio of the inlet gas pressure to the gas pressure in the vortex tube). This, in turn, reduces the intensity of the vortex energy division in the gas flow.
The best results with the present invention can be achieved by specifying the diaphragm's hole diameter 16, preferably, in a range of 0.25 to 0.80 of the slender tube diameter D. See,
This application is a continuation of U.S. application Ser. No. 15/975,951, filed May 10, 2018, which is a continuation-in-part of U.S. application Ser. No. 14/559,334, filed Dec. 3, 2014.
Number | Date | Country | |
---|---|---|---|
Parent | 15975951 | May 2018 | US |
Child | 16696486 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14559334 | Dec 2014 | US |
Child | 15975951 | US |