The present disclosure relates, in general, to aircraft configured to convert between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation and, in particular, to aircraft having an altitude sensor array configured to obtain multifocal altitude data for generating a three-dimensional terrain map of a landing site.
Fixed-wing aircraft, such as airplanes, are capable of flight using wings that generate lift responsive to the forward airspeed of the aircraft, which is generated by thrust from one or more jet engines or propellers. The wings generally have an airfoil cross section and generate a lifting force as the aircraft moves forward to support the aircraft in flight. Fixed-wing aircraft, however, typically require a runway that is hundreds or thousands of feet long for takeoff and landing. Unlike fixed-wing aircraft, vertical takeoff and landing (VTOL) aircraft do not require runways. Instead, VTOL aircraft are capable of taking off and landing vertically. Rotorcraft such as helicopters, tiltrotors, tiltwings, quadcopters and other multicopters are examples of VTOL aircraft. Each of these rotorcraft utilizes one or more rotors to provide lift and thrust to the aircraft. The rotors not only enable vertical takeoff and landing, but may also enable hover, forward flight, backward flight and lateral flight. These attributes make VTOL aircraft highly versatile for use in congested, isolated or remote areas. It has been found, however, that identifying a suitable landing site remains a concern, particularly for autonomous VTOL aircraft which may sometimes be referred to as unmanned aerial vehicles (UAVs), unmanned aerial systems (UASs) or drones. For example, if an autonomous VTOL aircraft lands on a surface having an excessive slope, this can create a tip-over risk for the aircraft while it is on the ground. Accordingly, a need has arisen for an autonomous VTOL aircraft capable of identifying a suitable landing site during flight such that the aircraft has a stable orientation upon landing.
In a first aspect, the present disclosure is directed to an aircraft having a VTOL orientation. The aircraft includes an airframe having a thrust array attached thereto that includes a plurality of propulsion assemblies. A flight control system is coupled to the airframe and is operable to independently control each of the propulsion assemblies. A landing gear assembly is coupled to the airframe. The landing gear assembly includes a plurality of landing feet. An altitude sensor array includes a plurality of altitude sensors each of which is disposed within one of the landing feet such that when the aircraft is in the VTOL orientation, the altitude sensor array is configured to obtain multifocal altitude data relative to a surface. The flight control system is configured to generate a three-dimensional terrain map of the surface based upon the multifocal altitude data.
In some embodiments, the altitude sensors may be radar altimeters configured to reflect radio waves off the surface. In certain embodiments, the altitude sensor array may include three altitude sensors, four altitude sensors or more. In some embodiments, each of the altitude sensors may be disposed proximate a distal end of the respective one of the landing feet. In certain embodiments, the flight control system may be configured to determine whether one or more of the landing feet are in contact with the surface based upon the multifocal altitude data. In some embodiments, the flight control system may be configured to identify a suitable landing site based upon the three-dimensional terrain map.
In certain embodiments, the flight control system may be configured to autonomously orient the aircraft in a preferred landing orientation relative to the surface based upon the three-dimensional terrain map. In some embodiments, the flight control system may be configured to autonomously orient the aircraft in a preferred landing orientation relative to a slope of the surface based upon the three-dimensional terrain map. In certain embodiments, the flight control system may be configured to autonomously orient a lateral axis of the aircraft to be substantially parallel to a slope of the surface prior to the aircraft making a four point landing on the surface. In some embodiments, the flight control system may be configured to autonomously maintain a level flight attitude prior to the aircraft making a two point by two point landing on a portion of the surface having a slope.
In certain embodiments, the airframe may include first and second wings with first and second pylons extending therebetween. In such embodiments, the thrust array may be a two-dimensional distributed thrust array in which the plurality of propulsion assemblies includes at least two propulsion assemblies coupled to the first wing and at least two propulsion assemblies coupled to the second wing. In some embodiments, the propulsion assemblies may be thrust vectoring propulsion assemblies.
In a second aspect, the present disclosure is directed to a method of operating an aircraft that includes locating the aircraft in a VTOL orientation over a surface, the aircraft including an airframe, a plurality of propulsion assemblies coupled to the airframe, a landing gear assembly coupled to the airframe and including a plurality of landing feet each having an altitude sensor disposed therein and a flight control system in communication with the altitude sensors and operable to control the propulsion assemblies. The method also includes obtaining multifocal altitude data from the altitude sensors and generating a three-dimensional terrain map of the surface with the flight control system based upon the multifocal altitude data.
The method may include determining whether one or more of the landing feet are in contact with the surface based upon the multifocal altitude data; identifying a suitable landing site based upon the three-dimensional terrain map; autonomously orienting the aircraft in a preferred landing orientation relative to the surface based upon the three-dimensional terrain map; autonomously orienting the aircraft in a preferred landing orientation relative to a slope of the surface based upon the three-dimensional terrain map; autonomously orienting a lateral axis of the aircraft to be substantially parallel to a slope of the surface prior to making a four point landing on the surface and/or autonomously maintaining a substantially level flight attitude prior to making a two point by two point landing on a portion of the surface having a slope.
For a more complete understanding of the features and advantages of the present disclosure, reference is now made to the detailed description along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
While the making and using of various embodiments of the present disclosure are discussed in detail below, it should be appreciated that the present disclosure provides many applicable inventive concepts, which can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative and do not delimit the scope of the present disclosure. In the interest of clarity, not all features of an actual implementation may be described in the present disclosure. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present disclosure, the devices, members, apparatuses, and the like described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction. As used herein, the term “coupled” may include direct or indirect coupling by any means, including moving and/or non-moving mechanical connections.
Referring to
In the illustrated embodiment, aircraft 10 has an airframe 12 including wings 14, 16 each having an airfoil cross-section that generates lift responsive to the forward airspeed of aircraft 10. Wings 14, 16 may be formed as single members or may be formed from multiple wing sections. The outer skins for wings 14, 16 are preferably formed from high strength and lightweight materials such as fiberglass, carbon, plastic, metal or other suitable material or combination of materials. As best seen in
Aircraft 10 includes a cargo pod 22 that is coupled between pylons 18, 20. Cargo pod 22 may be fixably or removably coupled to pylons 18, 20. In addition, in the coupled position, cargo pod 22 may be fixed, shiftable or rotatable relative to pylons 18, 20. Cargo pod 22 has an aerodynamic shape configured to minimize drag during high speed forward flight. Cargo pod 22 is preferably formed from high strength and lightweight materials such as fiberglass, carbon, plastic, metal or other suitable material or combination of materials. Cargo pod 22 has an interior region that may receive a payload 24 therein such as one or more packages. Aircraft 10 may autonomously transport and deliver payload 24 to a desired location in which case, aircraft 10 may be referred to as an unmanned aerial vehicle (UAV), an unmanned aerial system (UAS) or a drone.
One or more of cargo pod 22, wings 14, 16 and/or pylons 18, 20 may contain flight control systems, energy sources, communication lines and other desired systems. For example, as best seen in
One or more of cargo pod 22, wings 14, 16 and/or pylons 18, 20 may contain one or more electrical power sources depicted as a plurality of batteries 32 in pylon 20, as best seen in
Cargo pod 22, wings 14, 16 and/or pylons 18, 20 also contain a wired and/or wireless communication network that enables flight control system 30 to communicate with the distributed thrust array of aircraft 10. In the illustrated embodiment, aircraft 10 has a two-dimensional distributed thrust array that is coupled to airframe 12. As used herein, the term “two-dimensional thrust array” refers to a plurality of thrust generating elements that occupy a two-dimensional space in the form of a plane. A minimum of three thrust generating elements is required to form a “two-dimensional thrust array.” A single aircraft may have more than one “two-dimensional thrust array” if multiple groups of at least three thrust generating elements each occupy separate two-dimensional spaces thus forming separate planes. As used herein, the term “distributed thrust array” refers to the use of multiple thrust generating elements each producing a portion of the total thrust output. The use of a “distributed thrust array” provides redundancy to the thrust generation capabilities of the aircraft including fault tolerance in the event of the loss of one of the thrust generating elements. A “distributed thrust array” can be used in conjunction with a “distributed power system” in which power to each of the thrust generating elements is supplied by a local power system instead of a centralized power source. For example, in a “distributed thrust array” having a plurality of propulsion assemblies acting as the thrust generating elements, a “distributed power system” may include individual battery elements housed within the nacelle of each propulsion assembly.
The two-dimensional distributed thrust array of aircraft 10 includes a plurality of propulsion assemblies, individually denoted as 34a, 34b, 34c, 34d and collectively referred to as propulsion assemblies 34. In the illustrated embodiment, propulsion assemblies 34a, 34b are coupled at the wingtips of wing 14 and propulsion assemblies 34c, 34d are coupled at the wingtips of wing 16. By positioning propulsion assemblies 34a, 34b, 34c, 34d at the wingtip of wings 14, 16, the thrust and torque generating elements are positioned at the maximum outboard distance from the center of gravity of aircraft 10 located, for example, at the intersection of axes 10a, 10b, 10c. The outboard locations of propulsion assemblies 34 provide dynamic stability to aircraft 10 in hover and a high dynamic response in the VTOL orientation of aircraft 10 enabling efficient and effective pitch, yaw and roll control by changing the thrust, thrust vector and/or torque output of certain propulsion assemblies 34 relative to other propulsion assemblies 34.
Even though the illustrated embodiment depicts four propulsion assemblies, the distributed thrust array of aircraft 10 could have other numbers of propulsion assemblies both greater than or less than four. Also, even though the illustrated embodiment depicts propulsion assemblies 34 in a wingtip mounted configuration, the distributed thrust array of aircraft 10 could have propulsion assemblies coupled to the wings and/or pylons in other configurations such as mid-span configurations. Further, even though the illustrated embodiment depicts propulsion assemblies 34 in a mid-wing configuration, the distributed thrust array of aircraft 10 could have propulsion assemblies coupled to the wings in a low wing configuration, a high wing configuration or any combination or permutation thereof. In the illustrated embodiment, propulsion assemblies 34 are variable speed propulsion assemblies having fixed pitch rotor blades and thrust vectoring capability. Depending upon the implementation, propulsion assemblies 34 may have longitudinal thrust vectoring capability, lateral thrust vectoring capability or omnidirectional thrust vectoring capability. In other embodiments, propulsion assemblies 34 may operate as single speed propulsion assemblies, may have variable pitch rotor blades and/or may be non-thrust vectoring propulsion assemblies.
Propulsion assemblies 34 may be independently attachable to and detachable from airframe 12 and may be standardized and/or interchangeable units and preferably line replaceable units (LRUs) providing easy installation and removal from airframe 12. The use of line replaceable propulsion units is beneficial in maintenance situations if a fault is discovered with one of the propulsion assemblies. In this case, the faulty propulsion assembly 34 can be decoupled from airframe 12 by simple operations and another propulsion assembly 34 can then be attached to airframe 12. In other embodiments, propulsion assemblies 34 may be permanently coupled to wings 14, 16.
Referring to
Flight control system 30 communicates via a wired communications network within airframe 12 with electronics nodes 36d of propulsion assemblies 34. Flight control system 30 receives sensor data from sensors 36e and sends flight command information to the electronics nodes 36d such that each propulsion assembly 34 may be individually and independently controlled and operated. For example, flight control system 30 is operable to individually and independently control the speed and the thrust vector of each propulsion system 36f Flight control system 30 may autonomously control some or all aspects of flight operation for aircraft 10. Flight control system 30 is also operable to communicate with remote systems, such as a ground station via a wireless communications protocol. The remote system may be operable to receive flight data from and provide commands to flight control system 30 to enable remote flight control over some or all aspects of flight operation for aircraft 10.
Aircraft 10 has a landing gear assembly 38 that includes a plurality of landing feet depicted as landing foot 38a coupled to a lower or aft end of propulsion assembly 34a, landing foot 38b coupled to a lower or aft end of propulsion assembly 34b, landing foot 38c coupled to a lower or aft end of propulsion assembly 34c and landing foot 38d coupled to a lower or aft end of propulsion assembly 34d. By positioning landing feet 38a, 38b, 38c, 38d at the lower end of wingtip mounted propulsion assemblies 34, landing feet 38a, 38b, 38c, 38d are positioned at the maximum outboard distance from the center of gravity of aircraft 10 located, for example, at the intersection of axes 10a, 10b, 10c, which provides for maximum landing stability and tip-over stability for aircraft 10. To enhance the landing stability and tip-over stability of aircraft 10, however, aircraft 10 employs multifocal landing sensors depicted as plurality of altitude sensors 40a, 40b, 40c, 40d that are respectively disposed within landing feet 38a, 38b, 38c, 38d and may be collectively referred to as altitude sensor array 40. In the illustrated embodiment, altitude sensors 40a, 40b, 40c, 40d are disposed in the distal ends of landing feet 38a, 38b, 38c, 38d such that when aircraft 10 is in the VTOL orientation, altitude sensor array 40 is configured to obtain multifocal altitude data relative to the ground or other surface below aircraft 10. Flight control system 30 receives this multifocal altitude data from altitude sensors 40a, 40b, 40c, 40d and generates a three-dimensional terrain map of the surface which may be used to identify a suitable landing site and to orient aircraft 10 relative to the selected landing site. Even though the altitude sensors of altitude sensor array 40 have been described as being disposed within the landing feet of landing gear assembly 38, it should be understood by those having ordinary skill in the art that altitude sensors could additionally or alternatively be coupled to or embedded within lower surfaces of cargo pod 22, wings 14, 16 and/or pylons 18, 20 such that when aircraft 10 is in the VTOL orientation, altitude sensor array 40 is configured to obtain multifocal altitude data relative to the surface below aircraft 10.
Referring additionally to
As best seen in
After vertical ascent to the desired elevation, aircraft 10 may begin the transition from thrust-borne lift to wing-borne lift. As best seen from the progression of
As best seen in
As aircraft 10 approaches the desired location, aircraft 10 may begin its transition from wing-borne lift to thrust-borne lift. As best seen from the progression of
Once aircraft 10 has completed the transition to the VTOL orientation, aircraft 10 may hover and commence its vertical descent to a landing site. As illustrated,
This process may occur when aircraft 10 is between twenty and several hundred feet above the ground or other suitable height such that flight control computer 30 can evaluate a relatively large potential landing area to determine the location of an obstructions or other dangers. Once flight control computer 30 has identified a suitable landing site within the potential landing area, aircraft 10 may descend to between ten and fifty feet above the ground or other suitable height, such as near but above the landing decision point, and utilize altitude sensor array 40 again to make a finer evaluation of the selected landing site. In this evaluation, flight control computer 30 may determine, for example, whether the selected landing site has a slope that would impact the landing stability and/or tip-over stability of aircraft 10.
Referring now to
Once aircraft 10 is in a preferred landing orientation relative to the surface of the selected landing site, aircraft 10 may commence its final descent to the surface. For example, as best seen from the progression of
Another example of aircraft 10 landing in a preferred landing orientation relative to a sloped surface is depicted in the progression of
Referring next to
Propulsion assembly 102b includes an electronics node 104b depicted as including one or more batteries, one or more controllers and one or more sensors including an altitude sensor. Propulsion assembly 102b also includes a propulsion system 106b and a two-axis gimbal 108b operated by one or more actuators 110b. Propulsion assembly 102c includes an electronics node 104c depicted as including one or more batteries, one or more controllers and one or more sensors including an altitude sensor. Propulsion assembly 102c also includes a propulsion system 106c and a two-axis gimbal 108c operated by one or more actuators 110c. Propulsion assembly 102d includes an electronics node 104d depicted as including one or more batteries, one or more controllers and one or more sensors including an altitude sensor. Propulsion assembly 102d also includes a propulsion system 106d and a two-axis gimbal 108d operated by one or more actuators 110d. A flight control system 112 is operably associated with each of propulsion assemblies 102a, 102b, 102c, 102d and is linked to the electronic nodes 104a, 104b, 104c, 104d by a fly-by-wire communications network depicted as arrows 114a, 114b, 114c, 114d. Flight control system 112 receives sensor data from and sends commands to propulsion assemblies 102a, 102b, 102c, 102d to enable flight control system 112 to independently control each of propulsion assemblies 102a, 102b, 102c, 102d, as discussed herein.
Referring additionally to
In the illustrated embodiment, flight control system 112 includes a command module 132 and a monitoring module 134. It is to be understood by those skilled in the art that these and other modules executed by flight control system 112 may be implemented in a variety of forms including hardware, software, firmware, special purpose processors and combinations thereof. Flight control system 112 receives input from a variety of sources including internal sources such as sensors 136, controllers/actuators 138, propulsion assemblies 102a, 102b, 102c, 102d and altitude sensors 144a, 144b, 144c, 144d as well as external sources such as remote system 124, global positioning system satellites or other location positioning systems and the like.
During the various operating modes of aircraft 100 such as the vertical takeoff flight mode, the hover flight mode, the forward flight mode, transition flight modes and the vertical landing flight mode, command module 132 provides commands to controllers/actuators 138. These commands enable independent operation of propulsion assembly 102a, 102b, 102c, 102d including rotor speed, thrust vector and the like as well as independent or collective operation altitude sensors 144a, 144b, 144c, 144d. Flight control system 112 receives feedback from controllers/actuators 138, propulsion assembly 102a, 102b, 102c, 102d and altitude sensors 144a, 144b, 144c, 144d. This feedback is processes by monitoring module 134 that can supply correction data and other information to command module 132 and to controllers/actuators 138. Sensors 136, such as an attitude and heading reference system (AHRS) with solid-state or microelectromechanical systems (MEMS) gyroscopes, accelerometers and magnetometers as well as other sensors including positioning sensors, speed sensors, environmental sensors, fuel sensors, temperature sensors, location sensors and the like also provide information to flight control system 112 to further enhance autonomous control capabilities. Prior to landing, flight control system 112 receives multifocal altitude data from altitude sensors 144a, 144b, 144c, 144d and may generate one or more three-dimensional terrain maps of the surface which may be used to identify a suitable landing site, to orient the aircraft relative to the selected landing site and to land the aircraft, as discussed herein.
Some or all of the autonomous control capability of flight control system 112 can be augmented or supplanted by remote flight control from, for example, remote system 124. Remote system 124 may include one or computing systems that may be implemented on general-purpose computers, special purpose computers or other machines with memory and processing capability. The computing systems may be microprocessor-based systems operable to execute program code in the form of machine-executable instructions. In addition, the computing systems may be connected to other computer systems via a proprietary encrypted network, a public encrypted network, the Internet or other suitable communication network that may include both wired and wireless connections. Remote system 124 communicates with flight control system 112 via a communication link 130 that may include both wired and wireless connections.
While operating remote control application 128, remote system 124 is configured to display information relating to one or more aircraft of the present disclosure on one or more flight data display devices 140. Display devices 140 may be configured in any suitable form, including, for example, liquid crystal displays, light emitting diode displays or any suitable type of display. Remote system 124 may also include audio output and input devices such as a microphone, speakers and/or an audio port allowing an operator to communicate with other operators or a base station. The display device 140 may also serve as a remote input device 142 if a touch screen display implementation is used, however, other remote input devices, such as a keyboard or joystick, may alternatively be used to allow an operator to provide control commands to an aircraft being operated responsive to remote control.
Referring next to
Referring next to
Once the landing site is selected, the aircraft descends to a location above the selected landing site in step 312. The flight control system now commands the altitude sensor array to obtain multifocal altitude data relative to the selected landing site in step 314. The flight control system combines the multifocal altitude data to generate a refined three-dimensional terrain map of the selected landing site in step 316. Based upon the three-dimensional terrain map, the flight control system determines whether the landing site has a slope that could impact the landing stability and/or tip-over stability of the aircraft at decision 318. If the flight control system determines the slope of the landing site will not impact the landing stability and/or tip-over stability of the aircraft, the aircraft maintains a level flight attitude in step 320 and makes a four point landing at the landing site in step 322. If the flight control system determines the slope of the landing site could impact the landing stability and/or tip-over stability of the aircraft, the flight control system commands the propulsion assemblies to orient the aircraft in a preferred landing orientation relative to the slope in step 324 such as by orienting the lateral axis of the aircraft to be aligned with the slope.
Once the aircraft is in a preferred landing orientation relative to the slope, the flight control system determines whether to perform a four point landing at decision 326. If the flight control system determines that the aircraft should perform a four point landing, the flight control system commands the propulsion assemblies to roll the aircraft to orient the lateral axis of the aircraft to be substantially parallel with the slope in step 328 then makes a four point landing at the landing site in step 322. If the flight control system determines that the aircraft should not perform a four point landing, the aircraft maintains a level flight attitude in step 330 and makes a two point by two point landing at the landing site in step 332.
The foregoing description of embodiments of the disclosure has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosure. The embodiments were chosen and described in order to explain the principals of the disclosure and its practical application to enable one skilled in the art to utilize the disclosure in various embodiments and with various modifications as are suited to the particular use contemplated. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the embodiments without departing from the scope of the present disclosure. Such modifications and combinations of the illustrative embodiments as well as other embodiments will be apparent to persons skilled in the art upon reference to the description. It is, therefore, intended that the appended claims encompass any such modifications or embodiments.
Number | Name | Date | Kind |
---|---|---|---|
1655113 | Nikola | Jan 1928 | A |
2601090 | James | Jun 1952 | A |
2655997 | Peterson | Oct 1953 | A |
2688843 | Pitt | Sep 1954 | A |
3002712 | Sterling | Oct 1961 | A |
3081964 | Quenzler | Mar 1963 | A |
3181810 | Olson | May 1965 | A |
3259343 | Roppel | Jul 1966 | A |
3289980 | Gardner | Dec 1966 | A |
3350035 | Schlieben | Oct 1967 | A |
3592412 | Glatfelter | Jul 1971 | A |
3618875 | Kappus | Nov 1971 | A |
3783618 | Kawamura | Jan 1974 | A |
3916588 | Magill | Nov 1975 | A |
4243358 | Carlock et al. | Jan 1981 | A |
4458864 | Colombo et al. | Jul 1984 | A |
4571157 | Eickmann | Feb 1986 | A |
4596368 | Schmittle | Jun 1986 | A |
4613098 | Eickmann | Sep 1986 | A |
4741672 | Breuner | May 1988 | A |
4771967 | Geldbaugh | Sep 1988 | A |
4913377 | Eickmann | Apr 1990 | A |
4925131 | Eickmann | May 1990 | A |
5131605 | Kress | Jul 1992 | A |
5188512 | Thornton | Feb 1993 | A |
5592894 | Johnson | Jan 1997 | A |
5842667 | Jones | Dec 1998 | A |
6086015 | MacCready | Jul 2000 | A |
6170778 | Cycon et al. | Jan 2001 | B1 |
6260793 | Balayn et al. | Jul 2001 | B1 |
6270038 | Cycon et al. | Aug 2001 | B1 |
6402088 | Syrovy et al. | Jun 2002 | B1 |
6655631 | Austen-Brown | Dec 2003 | B2 |
6845939 | Baldwin | Jan 2005 | B1 |
6886776 | Wagner et al. | May 2005 | B2 |
6892980 | Kawai | May 2005 | B2 |
7059562 | Baldwin | Jun 2006 | B2 |
7150429 | Kusic | Dec 2006 | B2 |
7210654 | Cox et al. | May 2007 | B1 |
7465236 | Wagels | Dec 2008 | B2 |
7472863 | Pak | Jan 2009 | B2 |
7555893 | Okai et al. | Jul 2009 | B2 |
7984684 | Hinderks | Jul 2011 | B2 |
8152096 | Smith | Apr 2012 | B2 |
8393564 | Kroo | Mar 2013 | B2 |
8427360 | Longstaff | Apr 2013 | B2 |
8505846 | Sanders | Aug 2013 | B1 |
8602348 | Bryant | Dec 2013 | B2 |
8646720 | Shaw | Feb 2014 | B2 |
8733690 | Bevirt et al. | May 2014 | B2 |
8800912 | Oliver | Aug 2014 | B2 |
8820672 | Erben et al. | Sep 2014 | B2 |
8833692 | Yoeli | Sep 2014 | B2 |
8909391 | Peeters et al. | Dec 2014 | B1 |
8948935 | Peeters et al. | Feb 2015 | B1 |
9022312 | Kosheleff | May 2015 | B2 |
9045226 | Piasecki et al. | Jun 2015 | B2 |
9087451 | Jarrell | Jul 2015 | B1 |
9108744 | Takeuchi | Aug 2015 | B2 |
9109575 | Weddendorf et al. | Aug 2015 | B2 |
9120560 | Armer et al. | Sep 2015 | B1 |
9127908 | Miralles | Sep 2015 | B2 |
9162753 | Panto et al. | Oct 2015 | B1 |
9187174 | Shaw | Nov 2015 | B2 |
9193460 | Laudrain | Nov 2015 | B2 |
9221538 | Takahashi et al. | Dec 2015 | B2 |
9242714 | Wang et al. | Jan 2016 | B2 |
9254916 | Yang | Feb 2016 | B2 |
9284049 | Wang et al. | Mar 2016 | B1 |
9321530 | Wang et al. | Apr 2016 | B2 |
9376208 | Gentry | Jun 2016 | B1 |
9388794 | Weddendorf et al. | Jul 2016 | B2 |
9403593 | Downey et al. | Aug 2016 | B2 |
9440736 | Bitar | Sep 2016 | B2 |
9463875 | Abuelsaad et al. | Oct 2016 | B2 |
9493225 | Wang et al. | Nov 2016 | B2 |
9610817 | Piasecki et al. | Apr 2017 | B1 |
9643720 | Hesselbarth | May 2017 | B2 |
9694908 | Razroev | Jul 2017 | B2 |
9694911 | Bevirt et al. | Jul 2017 | B2 |
9714087 | Matsuda | Jul 2017 | B2 |
9798322 | Bachrach et al. | Oct 2017 | B2 |
9800091 | Nugent, Jr. et al. | Oct 2017 | B2 |
9821909 | Moshe | Nov 2017 | B2 |
9963228 | McCullough et al. | May 2018 | B2 |
9994313 | Claridge et al. | Jun 2018 | B2 |
10011351 | McCullough et al. | Jul 2018 | B2 |
10124890 | Sada-Salinas et al. | Nov 2018 | B2 |
10183746 | McCullough et al. | Jan 2019 | B2 |
10214285 | McCullough et al. | Feb 2019 | B2 |
10220944 | McCullough et al. | Mar 2019 | B2 |
10227133 | McCullough et al. | Mar 2019 | B2 |
10232950 | McCullough et al. | Mar 2019 | B2 |
10266249 | Shue | Apr 2019 | B2 |
10301016 | Bondarev et al. | May 2019 | B1 |
10322799 | McCullough et al. | Jun 2019 | B2 |
10964221 | Vana | Mar 2021 | B2 |
20020100834 | Baldwin | Aug 2002 | A1 |
20020100835 | Kusic | Aug 2002 | A1 |
20030062443 | Wagner et al. | Apr 2003 | A1 |
20040245374 | Morgan | Dec 2004 | A1 |
20060091258 | Chiu et al. | May 2006 | A1 |
20060266881 | Hughey | Nov 2006 | A1 |
20070212224 | Podgurski | Sep 2007 | A1 |
20070221780 | Builta | Sep 2007 | A1 |
20080125920 | Miles et al. | May 2008 | A1 |
20090008499 | Shaw | Jan 2009 | A1 |
20100147993 | Annati et al. | Jun 2010 | A1 |
20100193644 | Karem | Aug 2010 | A1 |
20100295321 | Bevirt | Nov 2010 | A1 |
20110001001 | Bryant | Jan 2011 | A1 |
20110042508 | Bevirt | Feb 2011 | A1 |
20110042509 | Bevirt et al. | Feb 2011 | A1 |
20110057453 | Roberts | Mar 2011 | A1 |
20110121570 | Bevirt et al. | May 2011 | A1 |
20110315806 | Piasecki et al. | Dec 2011 | A1 |
20120209456 | Harmon et al. | Aug 2012 | A1 |
20120234968 | Smith | Sep 2012 | A1 |
20130020429 | Kroo | Jan 2013 | A1 |
20130175404 | Shefer | Jul 2013 | A1 |
20130341458 | Sutton et al. | Dec 2013 | A1 |
20140018979 | Goossen et al. | Jan 2014 | A1 |
20140097290 | Leng | Apr 2014 | A1 |
20140339372 | Dekel et al. | Nov 2014 | A1 |
20150012154 | Senkel et al. | Jan 2015 | A1 |
20150014475 | Taylor et al. | Jan 2015 | A1 |
20150136897 | Seibel et al. | May 2015 | A1 |
20150284079 | Matsuda | Oct 2015 | A1 |
20150285165 | Steinwandel et al. | Oct 2015 | A1 |
20160068265 | Hoareau et al. | Mar 2016 | A1 |
20160180717 | Ubhi et al. | Jun 2016 | A1 |
20160214712 | Fisher et al. | Jul 2016 | A1 |
20170008627 | Soto et al. | Jan 2017 | A1 |
20170021924 | Kubik et al. | Jan 2017 | A1 |
20170066531 | McAdoo | Mar 2017 | A1 |
20170072755 | Zhou | Mar 2017 | A1 |
20170097644 | Fegely et al. | Apr 2017 | A1 |
20170144746 | Schank et al. | May 2017 | A1 |
20170158312 | Alber et al. | Jun 2017 | A1 |
20170174342 | Huang | Jun 2017 | A1 |
20170240274 | Regev | Aug 2017 | A1 |
20170297699 | Alber et al. | Oct 2017 | A1 |
20170327219 | Alber | Nov 2017 | A1 |
20170334557 | Alber et al. | Nov 2017 | A1 |
20180002011 | McCullough et al. | Jan 2018 | A1 |
20180002012 | McCullough et al. | Jan 2018 | A1 |
20180002013 | McCullough et al. | Jan 2018 | A1 |
20180002014 | McCullough et al. | Jan 2018 | A1 |
20180002015 | McCullough et al. | Jan 2018 | A1 |
20180002016 | McCullough et al. | Jan 2018 | A1 |
20180002026 | Oldroyd et al. | Jan 2018 | A1 |
20180002027 | McCullough et al. | Jan 2018 | A1 |
20180022467 | Alber | Jan 2018 | A1 |
20180044011 | Reichert | Feb 2018 | A1 |
20180244377 | Chan | Aug 2018 | A1 |
20180244383 | Valente et al. | Aug 2018 | A1 |
20180257761 | Oldroyd et al. | Sep 2018 | A1 |
20180265193 | Gibboney et al. | Sep 2018 | A1 |
20180273160 | Baldwin et al. | Sep 2018 | A1 |
20180327092 | Deng et al. | Nov 2018 | A1 |
20180362158 | Zhang et al. | Dec 2018 | A1 |
20190031331 | McCullough et al. | Jan 2019 | A1 |
20190031334 | McCullough et al. | Jan 2019 | A1 |
20190031335 | McCullough et al. | Jan 2019 | A1 |
20190031336 | McCullough et al. | Jan 2019 | A1 |
20190031337 | McCullough et al. | Jan 2019 | A1 |
20190031338 | McCullough et al. | Jan 2019 | A1 |
20190031339 | McCullough et al. | Jan 2019 | A1 |
20190031361 | McCullough et al. | Jan 2019 | A1 |
20190144108 | McCullough et al. | May 2019 | A1 |
20190263516 | McCullough et al. | Aug 2019 | A1 |
20190389573 | Kahou et al. | Dec 2019 | A1 |
20200023964 | Valente | Jan 2020 | A1 |
20220250740 | Lee | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
105539833 | May 2016 | CN |
106054903 | Nov 2019 | CN |
3002214 | Apr 2016 | EP |
3633482 | Apr 2020 | EP |
3653500 | May 2020 | EP |
2977865 | Jan 2013 | FR |
587388 | Apr 1947 | GB |
618475 | Feb 1949 | GB |
654089 | Jun 1951 | GB |
2581833 | Sep 2020 | GB |
2586055 | Feb 2021 | GB |
6395866 | Sep 2018 | JP |
2001074659 | Oct 2001 | WO |
2005039973 | May 2005 | WO |
2014067563 | May 2014 | WO |
Entry |
---|
Air Launched Unmanned Disaster Relief Delivery Vehicle, 33rd Annual AHS Student Design Competition, University of Maryland, Undated but admitted prior art. |
Bell and NASA Partner for UAV Development; Transportup.com; Sep. 9, 2018. |
Bell APT—Automatic Pod Transport; SUASNEWS.com; Dec. 6, 2017. |
Bell Autonomous Pod Transport; MONCH.com; May 2, 2018. |
Wolfe, Frank; Bell Moving to Scale Up Antonymous Delivery Drones for US Military; Rotor & Wing International; Sep. 27, 2018. |
Number | Date | Country | |
---|---|---|---|
20220197308 A1 | Jun 2022 | US |