Turning now to the drawings,
The body 12 and optic 14, as well as outer thickened footplate ends 20, are formed of silicone or other suitable flexible material. The lens 10 also preferably includes fixation loops 24 of polymide or similar material. A typical outer loop-to-loop length is 11.0-12.5 mm. The thickened ends 20 fully engulf the fixation loops 24 in the silicon thus to provide a strong matrix to hold the loops 24. There is an additional function of these thickened areas of the plate. They also serve to elevate the anterior capsule of the human lens away from the optic and from the posterior capsule after the cataract has been removed and the lens implanted. This may serve to reduce capsular pacification and contraction. The haptics 15 can be any typical shape, such as in the present Figures, rectangular, triangular, or the like.
The straps 16 and hinges 17 function by allowing the optic to move anteriorly and posteriorly. The approximately 1.0-2.0 mm wide straps are a point of relative weakness in the plane of the lens body 12 encircling the optic 14, thereby allowing the entire optic 14 to herniate forward (anteriorly) from its far posterior position in a translational forward movement. This feature is enhanced by keeping the mass of the optic 14 to a minimum as described below. This new mechanism may boost the effect of the other features of the lens. Rather than a fluid-filled sac pushing through an aperture as in some prior lenses, the present lens involves a deformable solid optic moving anteriorly and posteriorly through a hinged area 16 in the plate or body 12. Hinges 18 on the anterior side of the body 12 hinging the haptics 15 further facilitate movement of the optic with ciliary muscle contraction.
Of significance is the manner in which the optic 14 and haptic plates 15 move in accommodating from distance to near vision and this is particularly illustrated in
The width of the hinges is 1.0-3.0 mm and the thickness of 0.1-0.3 mm.
Another feature allowing the present lens to accommodate is that the optic 14 can be deformable and constructed with a lower durometer than previously built into any lens. The surrounding plate 12 preferably is made of a higher, standard durometer material, similar to the eyeonics Inc. AT45 lens (which is durometer 48). The optic 14 itself is not required to contribute to the structural stability of the lens and, therefore, the optic 14 can be extremely soft. In addition to forward axial translation, the bending or deformation of the optic 14 with accommodation will induce power change. This may result in the bending of the optic to be accentuated. This feature is further enhanced by maintaining the optic very thin since a thinner optic will bend more than a thick optic for any given level of force applied. An example range of optic 14 center thicknesses is about 0.4 mm to 1.3 mm for a diopter range of 10 to 33. A typical common diopter of the optic of the present lens is 22 diopters and which has a thickness of 0.73 mm. As a comparison, the AT 45 noted earlier in a 22 diopter has a thickness of 0.88 mm, and a newer AT-45SE is 0.98 mm.
A 4.5 mm diameter optic 14 and with a reduced edge thickness of 0.1 to 0.2 mm for example can be provided. The index of refraction can be increased and this will accentuate this feature even further. Optic flexure is a new and poorly understood phenomenon, and unwanted optical distortion may be encountered resulting in poor vision either at near or far distances, in which case the durometer of the material will need to be raised.
The present lens can be easily foldable with forceps or an injector. A pre-loaded system is preferable.
An additional feature is the incorporation of a ridge or ridges 40 on the back surface (posterior side) of the plate 12 and/or haptic arm as the case may be as seen in
While an embodiment of the present invention as been shown and described, various modifications may be made without departing from the scope of the present invention, and all such modifications and equivalents are intended to be covered.