1. Field of the Invention
The invention relates to the field of semiconductor processing of films and in particular to processing nonsilicon films.
2. Description of the Prior Art
The optoelectronics, photovoltaics, telecommunications, and LED industries have a need for a substrate technology that allows them to use a low-cost readily available substrate like Si as a mechanical support for a thin film of optoelectronic material on which to fabricate a device. Some obvious advantages are improved mechanical strength and superior thermal conductivity relative to a bulk optoelectronic material.
Group III-V semiconductor layered structures grown on bulk germanium substrates have been used in the prior art to create high efficiency triple-junction solar cells with efficiencies greater than 30%. However, these are prohibitively expensive for all but space applications, because the Ge substrate constitutes a large portion of this cost.
The optoelectronics, photovoltaics, telecommunications, and LED industries would benefit from adopting a substrate technology that allows them to use a low-cost readily available substrate like Si as a mechanical support for a thin film of optoelectronic nonsilicon material on which to fabricate a device. Some obvious advantages are improved mechanical strength and superior thermal conductivity relative to a bulk optoelectronic material.
The invention is a method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprising the steps of: initiating bonding of the device substrate to the handle substrate; improving or increasing the mechanical strength of the bond between the device and handle substrates; and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate.
The method further comprises the step of providing pre-bonding treatment to allow for the removal of a thin film.
The method still further comprises the step of cleaning and/or passivating the device and/or handle substrates to facilitate bonding.
The step of providing a pre-bonding treatment to allow the removal of a thin film comprises the step of ion implanting the device substrate to inject an amount of gas species into the device substrate to form internally passivated surfaces and to create an internal pressure necessary to exfoliate a layer from the device substrate upon annealing. In the illustrated embodiment ion implanting the device substrate comprises implanting H+ or a combination of H+ and He+.
The step of cleaning and/or passivating the device and handle substrates to facilitate bonding comprises passivating the surface of both the device and handle substrates to allow hydrophobic wafer bonding. The step of passivating the surface of both the device and handle substrates comprises the step of enabling the formation of an intimate covalent bond between a device film, exfoliated from the device substrate, and the handle substrate in the virtual substrate to allow for the low-resistance interface electrical properties. The step of cleaning and/or passivating the device and handle substrates to facilitate bonding comprises the step of eliminating adsorbed water on the surface of the device and handle substrates by means of a low temperature bake in an inert atmosphere or in vacuum. The step of eliminating adsorbed water on the surface of the device and handle substrates by means of a low temperature bake comprising baking at a temperature such that the vapor pressure of water is above the partial pressure of water in the surrounding ambient.
The method further comprises the step of disposing a selected material X on the device substrate to enable an X-to-handle-substrate material bond with the handle substrate when an exfoliated film from the device substrate is bonded with the handle substrate. Material X is any material which is compatible with the claimed methodology and can be determined empirically. The method also further comprises the step disposing a selected material X on the handle substrate to enable an X-to-device-substrate material bond when an exfoliated film from the device substrate is bonded with the handle substrate. The method still further comprises the step of disposing a selected material X on both the device and handle substrates to enable an X-to-X material bond when an exfoliated film from the device substrate is bonded with the handle substrate.
The step of cleaning and/or passivating the device and handle substrates to facilitate bonding comprises the step of removing residual particle contamination on the bonding surfaces of the device and handle substrates. The step of removing residual particle contamination comprises the step of impinging an inert gas on the substrate at an elevated temperature to remove the particles by combined physical impact and thermophoretic lifting effect. Or, alternatively the particles can be removed by exposing the substrates to ultra-sonic or mega-sonic vibrations in a liquid bath.
The step of initiating bonding of the device substrate to the handle substrate comprises the step of controlling the temperature at which the device and handle substrates are brought into contact with each other to select the strain state, whereby substrate performance in high-temperature processes is improved, or a device operation temperature strain selected to adjust a device property such as bandgap or carrier mobility. The step of initiating bonding of the device substrate to the handle substrate comprises the step of holding the temperature of the device and the temperature of handle substrate when brought into contact with each other at different magnitudes to select the strain state.
In one embodiment, after initiating bonding of the device substrate to the handle substrate, the mechanical strength of the bond between the device and handle substrates is improved and the ion implantation layer transfer process is thermally activated during which uni-axial pressure is applied to the virtual substrate.
The mechanical strength of the bond between the device and handle substrates is improved by using multiple pressure-temperature increments, or continuously varying pressure-temperature combinations. In another embodiment the mechanical strength of the bond of the device to the handle substrate is improved by applying higher pressures to ensure better substrate-substrate contact at lower temperatures prior to exfoliation where the higher pressures would at higher temperatures subdue exfoliation, and then reducing the pressure to a lower level prior to annealing at higher temperatures so that exfoliation is uninhibited.
The method further comprises the step of removing an upper portion of the device film exfoliated from the device substrate, whereby a smoother and less defect prone surface is provided for subsequent optoelectronic device fabrication. The step of removing an upper portion of the device film exfoliated from the device substrate comprises chemically polishing the upper portion with a damage selective etch, or mechanically polishing the upper portion or both. In one embodiment the method further comprises the step of performing homoepitaxy to leave a smooth defect-free surface. In still a further embodiment the method further comprises the step of processing the virtual substrate as a template for growth of an optoelectronic device through hetero-epitaxy.
The invention also includes the virtual substrate which is fabricated according to the forgoing methods.
While the apparatus and method has or will be described for the sake of grammatical fluidity with functional explanations, it is to be expressly understood that the claims, unless expressly formulated under 35 USC 112, are not to be construed as necessarily limited in any way by the construction of “means” or “steps” limitations, but are to be accorded the full scope of the meaning and equivalents of the definition provided by the claims under the judicial doctrine of equivalents, and in the case where the claims are expressly formulated under 35 USC 112 are to be accorded full statutory equivalents under 35 USC 112. The invention can be better visualized by turning now to the following drawings wherein like elements are referenced by like numerals.
a and 3b are diagrams illustrating respectively the ion implantation and the resulting structure in the device substrate.
a and 4b are diagrams illustrating respectively the device and handle substrate stack following ion implantation and initial bonding and the wafer bonded virtual substrate following the anneal and layer exfoliation.
a and 5b are diagrams illustrating respectively the post-layer transfer device substrate comprised of the near surface ion implantation damage layer and the undamaged bulk, and the removal of the damage by etching from the bulk device substrate allowing the process to be repeated.
a and 6b are diagrams illustrating respectively the surface modification of the implanted device substrate with either a film of the same chemical identity as the handle substrate, and a wafer bonded substrate stack using this technique showing the device substrate.
a and 11b are diagrams illustrating respectively the wafer bonded virtual substrate following the anneal and layer exfoliation and the wafer bonded virtual substrate following a damage removal etch, polish or epitaxial growth on the device film.
a and 13b are diagrams illustrating respectively the completed wafer bonded virtual substrate and a wafer bonded virtual substrate with an epitaxially grown device fabricated on the device thin film.
The invention and its various embodiments can now be better understood by turning to the following detailed description of the preferred embodiments which are presented as illustrated examples of the invention defined in the claims. It is expressly understood that the invention as defined by the claims may be broader than the illustrated embodiments described below.
The fabrication 104 of virtual wafer bonded substrates could take two possible approaches as diagrammatically illustrated in the block diagram of
This specification summarizes a number of embodiments of the fabrication of optoelectronic virtual substrates. We begin with a summary of the technology generally employed and device structures for which the virtual substrate product can be used. Next, more material process steps are described in the order that they appear in the fabrication process.
Process and Product Overview
For the purpose of the specification the term “device substrate” 10 is the optoelectronic substrate from which a thin film 12 will be removed. The term “handle substrate” 14 is defined in the specification to refer to the substrate that is used as a mechanical support for the device film 12, namely the remainder of device substrate 10 after removal of film 12. The term “virtual substrate” 16 is defined to be the completed structure of a thin device film 12 on a handle substrate 14.
The materials of interest for device substrate 10 for the discussion below can be considered all materials that are relevant to wafer bonded virtual substrate device film materials for opto-electronic, high-gain device fabrication as illustrated diagrammatically in
The handle substrate 14 will generally be Si, which is abundantly available and has desirable electrical, mechanical, and thermal properties. However, low-cost insulating substrates (i.e. glass, sapphire, etc.) might also be employed as handle substrate 14.
A generic process for fabricating such virtual substrates 16 comprises the following steps:
Consider the concepts used for the fabrication of optoelectronic virtual substrates 16. These will be listed in the order in which they would appear in the generic process described above.
Process Steps
1) Ion Implantation
Prior to bonding, ion implantation of the device substrate 10 is performed to inject a necessary amount of gas species into the substrate to form the internally passivated surfaces and internal pressure necessary to exfoliate a layer from the substrate upon annealing as diagrammatically depicted in
This process is generally performed with H+ or a combination of H+ and He+. However, other gas species may be employed to produce an intra-substrate etch process to assist in the exfoliation of the layer. For a given device substrate material there is both a minimum implantation temperature to avoid amorphization and a needed implantation temperature, namely a minimum required dose relationship for this process.
2) Surface Passivation
Following implantation and prior to bonding, it is necessary to passivate the surface of both the device and handle substrates 10, 14 to allow hydrophobic wafer bonding. The specific chemical process necessary is device substrate specific. The purpose of this step is to enable the formation of an intimate covalent bond between the device film 12 and handle substrate 14 in the finished virtual substrate 16 allowing for the possibility of ohmic, low-resistance interface electrical properties. A necessary step in enabling this finished device structure will be the elimination of adsorbed water on the surface by means of a low temperature bake in an inert atmosphere or in vacuum. The bake should reach a temperature such that the vapor pressure of water at that temperature is well above the partial pressure of water in the surrounding ambient.
3) Surface Modification
Another enabling technology for extending this process to a wide range of optoelectronic materials is the use of a deposited surface modification layer 40 of arbitrary thickness to change the nature of the physical interaction between the substrates 10, 14 as depicted in
This technology enables the integration of a wide range of optoelectronic materials by mastering bonding with a material which is compatible or amenable to the disclosed process, which for the moment is referenced simply as material X. The generic process is illustrated in
More specific applications of this technique are:
Particle Removal
Following surface passivation, it may be necessary to remove residual particle contamination on the bonding surfaces of the device and handle substrates 10 and 14. This has been efficiently done by performing a clean with a CO2 particle jet as depicted in
This has been demonstrated for Si, Ge, and InP by maintaining the substrates at a temperature greater than 50° C. during application of the CO2.
5) Elevated Temperature Bond Initiation
When bonding dissimilar materials there is generally a coefficient of thermal expansion mismatch between the two materials resulting in a temperature-dependent strain state of the device thin film 12 in the virtual substrate 16 that is governed by the equation
where Δα(T) is the difference in the thermal expansion coefficients α between the two substrates as a function of temperature, T, and where T0 is the temperature of the zero strain condition, typically assumed to be the bond initiation temperature. Thus, by controlling the temperature at which two substrates are brought into contact, the strain state at temperatures of interest can be engineered. This could be advantageous for improving substrate performance in high-temperature processes, or a device operation temperature strain could be engineered to adjust a key device property such as bandgap or carrier mobility. The following descriptions describe the general types of strain temperature-strain dependences that could be achieved as a function of the sign of Δα(T).
Δα(T)=αhandle(T)−αdevice(T)
Such that positive values of strain indicate a film in tension and negative values of strain indicate a film in compression.
6) Dissimilar Temperature Bond Initiation
For some desired engineered stain states, no single elevated bond temperature will enable the fabrication of that device. Likewise, for materials with very similar coefficients of thermal expansion strain engineering will be difficult. To further enable control of strain at a desired temperature, bonding could be initiated between substrates held at different temperatures. In this way, the thermo-mechanical strain state could be more freely controlled or artificially built into the finished structure. In this case the temperature dependent strain state is given by
where the value γ0 is the strain built into the bonded structure upon bond initiation and is given by
In this expression, Td and Th are the temperatures of the device substrate 10 and the handle substrate 14 respectively at the instant of bond initiation. The temperature T0 is the effective bond initiation temperature. The dissimilar temperatures of the substrates at bond initiation make this term difficult to determine. T0 must have a value between Td and Th and will depend upon the experimental apparatus used in fabrication of the virtual substrate 16 and can be determined experimentally. The built-in strain approaches
for device and handle substrates 10, 14 with very similar coefficients of linear expansion. Bonding at different wafer temperatures can be conducted in the following circumstances.
7) Annealing Under Pressure to Strengthen Bonding and Exfoliate the Device Layer-
After the device and handle substrates 10, 14 have been bonded, it is necessary to use a thermal cycle to improve bond strength and to activate the ion implantation layer transfer process. By performing this cycle under pressure, thermo-mechanical strain can be accommodated in the bonded bulk substrate stack. Additionally, bonding is strengthened by means of improved substrate-substrate contact. A bonding process using multiple pressure-temperature steps or even a continuously varying pressure-temperature curve can be used to optimize the effectiveness of pressure in the process.
Specifically, at lower temperatures prior to exfoliation, higher pressures can be employed to ensure better substrate-substrate contact, but these pressures would at higher temperatures subdue exfoliation. By reducing the pressure to a lower level prior to annealing to high temperatures, exfoliation is uninhibited.
8) Device Layer Modification
Following the transfer of the device film in the ion implantation induced layer transfer process, the near surface region of the device film 12 is both rough and defect rich. This layer must be controllably removed to leave a surface that is useful for subsequent processing to fabricate an optoelectronic device as shown in
9) Epitaxial Heterostructure Growth
The finished virtual substrate 16 is meant to serve as a template for growth of an optoelectronic device through hetero-epitaxy. Through careful device layer modification, epitaxy of a wide range of optoelectronic devices is made possible. A representative image of such a structure is shown in
10) Strain Compensation Layer
One potential challenge in implementing wafer bonded virtual substrates in the fabrication of devices in or on the transferred layer by standard processing such as MOCVD, diffusion, implantation, and lithography is the possibility of wafer bow due to the presence of thermal expansion derived strain in the transferred layer. A practical approach to minimizing this effect would be to deposit a strain compensation layer on the back surface of the handle substrate 14 as shown in
This concept would be implemented by depositing a thin film 18 on the back surface of the handle substrate 14 either prior to or after the transfer of the device layer 10 to the handle substrate 14. The strain compensation layer 18 must have the same sign of Δα relative to the handle substrate as the device film 12. The zero bow condition is not a zero strain condition, but rather a condition in which the strain energy of the device film 12 and the strain compensation layer 18 are exactly matched providing no driving force for substrate deformation. The material and deposition technique can be chosen to minimize the fabrication cost associated with this processing step. The strain energy associated with a thin film 12 is increased with substrate diameter, film strain, and film thickness. The strain compensation layer material 18, deposition temperature, and thickness can be chosen to tailor the zero bow process temperature. The following are examples of how strain compensation could be performed for several materials systems:
Many alterations and modifications may be made by those having ordinary skill in the art without departing from the spirit and scope of the invention. Therefore, it must be understood that the illustrated embodiment has been set forth only for the purposes of example and that it should not be taken as limiting the invention as defined by the following claims. For example, notwithstanding the fact that the elements of a claim are set forth below in a certain combination, it must be expressly understood that the invention includes other combinations of fewer, more or different elements, which are disclosed in above even when not initially claimed in such combinations.
The words used in this specification to describe the invention and its various embodiments are to be understood not only in the sense of their commonly defined meanings, but to include by special definition in this specification structure, material or acts beyond the scope of the commonly defined meanings. Thus if an element can be understood in the context of this specification as including more than one meaning, then its use in a claim must be understood as being generic to all possible meanings supported by the specification and by the word itself.
The definitions of the words or elements of the following claims are, therefore, defined in this specification to include not only the combination of elements which are literally set forth, but all equivalent structure, material or acts for performing substantially the same function in substantially the same way to obtain substantially the same result. In this sense it is therefore contemplated that an equivalent substitution of two or more elements may be made for any one of the elements in the claims below or that a single element may be substituted for two or more elements in a claim. Although elements may be described above as acting in certain combinations and even initially claimed as such, it is to be expressly understood that one or more elements from a claimed combination can in some cases be excised from the combination and that the claimed combination may be directed to a subcombination or variation of a subcombination.
Insubstantial changes from the claimed subject matter as viewed by a person with ordinary skill in the art, now known or later devised, are expressly contemplated as being equivalently within the scope of the claims. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements.
The claims are thus to be understood to include what is specifically illustrated and described above, what is conceptionally equivalent, what can be obviously substituted and also what essentially incorporates the essential idea of the invention.
The present application is a continuation-in-part application related under 35 USC 120 to U.S. patent application Ser. No. 10/125,133 filed on Apr. 17, 2002 now U.S. Pat. No. 7,019,339, which is incorporated herein by reference, and which in turned claimed priority to U.S. Provisional Patent Application Ser. No. 60/284,726, filed on Apr. 17, 2001 which claimed priority pursuant to 35 USC 119, and to copending U.S. Provisional Patent Application Ser. No. 60/526,332, filed on Dec. 2, 2003, which is incorporated herein by reference, to which priority is claimed pursuant to 35 USC 119.
This invention was made with government support under Contract No. DE-AC36-99G010337, Midwest Research Institute Subcontract No. ACQ-1-30619-13 awarded by the Department of Energy and Contract No. NAS3-02201, Subcontract No. 200492; LEW-17946-1 awarded by NASA. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
4474647 | Asselineau et al. | Oct 1984 | A |
4499327 | Kaiser | Feb 1985 | A |
5013681 | Godbey et al. | May 1991 | A |
5090977 | Strack et al. | Feb 1992 | A |
5217564 | Bozler et al. | Jun 1993 | A |
5231047 | Ovshinsky et al. | Jul 1993 | A |
5315793 | Peterson et al. | May 1994 | A |
5336841 | Adams | Aug 1994 | A |
5374564 | Bruel | Dec 1994 | A |
5391257 | Sullivan et al. | Feb 1995 | A |
5395788 | Abe et al. | Mar 1995 | A |
5609734 | Streicher et al. | Mar 1997 | A |
5637187 | Takasu et al. | Jun 1997 | A |
5641381 | Bailey et al. | Jun 1997 | A |
5710057 | Kenney | Jan 1998 | A |
5720929 | Minkkinen et al. | Feb 1998 | A |
6150239 | Goesele et al. | Sep 1998 | A |
5877070 | Goesele et al. | Mar 1999 | A |
5882987 | Srikrishnan | Mar 1999 | A |
5910699 | Namba et al. | Jun 1999 | A |
5914433 | Marker | Jun 1999 | A |
6346458 | Bower | Dec 1999 | B1 |
6020252 | Aspar et al. | Feb 2000 | A |
6103597 | Aspar et al. | Aug 2000 | A |
6121504 | Kuechler et al. | Sep 2000 | A |
6211738 | Sakaguchi et al. | Apr 2001 | B1 |
6221738 | Sakaguchi et al. | Apr 2001 | B1 |
6242324 | Kub et al. | Jun 2001 | B1 |
6251754 | Ohshima et al. | Jun 2001 | B1 |
6323108 | Kub et al. | Nov 2001 | B1 |
6328796 | Kub et al. | Dec 2001 | B1 |
6429104 | Auberton-Herve | Aug 2002 | B1 |
6465327 | Aspar et al. | Oct 2002 | B1 |
6489241 | Thilderkvist et al. | Dec 2002 | B1 |
6497763 | Kub et al. | Dec 2002 | B2 |
6504091 | Hisamatsu et al. | Jan 2003 | B2 |
6794276 | Letertre et al. | Sep 2004 | B2 |
6815309 | Letertre et al. | Nov 2004 | B2 |
6867067 | Ghyselen et al. | Mar 2005 | B2 |
6908828 | Letertre et al. | Jun 2005 | B2 |
7019339 | Atwater et al. | Mar 2006 | B2 |
20030064535 | Kub et al. | Apr 2003 | A1 |
20040235268 | Letertre et al. | Nov 2004 | A1 |
20050026432 | Atwater, Jr. et al. | Feb 2005 | A1 |
20050032330 | Ghyselen et al. | Feb 2005 | A1 |
20050085049 | Atwater et al. | Apr 2005 | A1 |
20050142879 | Atwater et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
0 060 103 | Apr 1985 | EP |
03-270220 | Feb 1991 | JP |
WO 0103172 | Jan 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040214434 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
60526332 | Dec 2003 | US | |
60284726 | Apr 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10125133 | Apr 2002 | US |
Child | 10761918 | US |