The present invention relates generally to fluid treatment systems and specifically to UV fluid treatment systems.
The present invention replaces standard UV system designs which have heretofore consisted of a chamber body with flanges at either end for connection to cooperating flanges of existing piping systems.
The present invention can be generally analogized to a butterfly valve that is mounted in between flanges of a piping system, that has no flange of its own. Thus, the flanges are eliminated. Additionally, multiple reactors can be cascaded with their lamp axis rotated about a longitudinal reactor axis, with respect to each other. Reactor mounting holes are aligned with the flange mounting holes of the existing piping system.
Such a configuration also has the advantage of allowing post-installation changes to be made without any additional hardware. Mounting bolts are removed, the reactors re-aligned, and then the mounting bolts are re-inserted.
Additional advantages of the present invention include: reduced installation space required. E.g. a 30 inch reactor is approximately 30mm wide compared to 130mm; lower fabrication (Casting possible) costs; the ability to utilize the installation piping as part of an “effective reactor”—so to speak; improved UV water treatment due to the ability to vary lamp configurations. e.g. multiple reactors can be used with lamps being rotated with respect to each other to achieve greater flexibility. Other objects and advantages will be apparent to those of skill in the art.
The table below lists the reference numerals employed in the figures, and identifies the element designated by each numeral.
In one embodiment of the present invention, reactor 1 has, reactor mounting holes 10 adapted to be align-able (i.e. coaxial) with mounting holes 7 of a piping flange, substantially tubular irradiation cavity 16 having a longitudinal axis that is parallel to reactor mounting holes 10 and radiation source 2 (a.k.a “light source”, “radiation source”. e.g. a mercury vapor UV lamp) that is removably disposed within irradiation cavity 16; whereby the reactor can be removably secured between the flanges 6 of existing piping system 9 (e.g.
In one embodiment of the present invention, first and second reactors 1, 17 each have a plurality of mounting holes 10 adapted to be align-able with pipe flange mounting holes 7, substantially tubular irradiation cavity 16 having a longitudinal axis that is parallel to the plurality of mounting holes 10, and radiation source 2 that is removably disposed within irradiation cavity 16; whereby first and second reactors 1, 17 can be removably secured to each other, between flanges 6 of existing piping system 9, so that the irradiation cavities of the first and second reactors have a substantially common longitudinal axis; whereby the first and second reactors can be selectively arranged, relative to each other, in a plurality of positions around the substantially common longitudinal axis. In other words, the reactors can be rotated with respect to each other. This achieves at least one advantage of allowing greater flexibility to arrange lamps in various positions to alter the fluid irradiation profile.
In one embodiment, radiation source 2 is elongated (e.g. a mercury vapor UV lamp) and has a longitudinal axis that is perpendicular to the longitudinal axis of irradiation cavity 16.
Reactors 1, 17 can be made of the same types of materials commonly used in conventional UV water treatment reactors, or alternatively can be made of other materials having similar strength and structural characteristics, and can be manufactured by casting or machining. The various possible manufacturing options allow for greater cost advantages to be achieved.
Fluid flows in a direction parallel to the longitudinal axis of irradiation cavity 16. In one embodiment, irradiation cavity 16 is substantially tubular. It is to be understood that such a structure facilitates efficient fluid flow characteristics in accordance with known fluid dynamics, and that other shaped cavities (e.g. ovoid) may be used in keeping with the spirit of the invention.
Radiation source 2 is removably disposed within irradiation cavity 16. In one embodiment (
It is to be understood that the present invention can be adapted to fit different sized piping systems. In one embodiment (e.g.
Reactor mounting holes 10 preferably extend entirely through reactor 1 to allow pipe flange mounting bolts 8 to engage pipe flange mounting holes 7 on both sides of reactor 1, or alternatively, a plurality of cascaded reactors.
In one embodiment (e.g.
In one embodiment, first and second reactors 1, 17 are of the type depicted in
It is to be understood that ports 3 can be utilized for various purposes. E.g. in conjunction with an ancillary device 4 such as a UV sensor or wiper.
It is to be understood that various sizes of reactor 1 are possible. For example, in one embodiment (
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/002988 | 12/13/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61916155 | Dec 2013 | US |