1. Field of the Invention
The present invention relates to a wafer level LED package structure and a method for making the same, and particularly relates to a wafer level LED package structure for increasing light-emitting efficiency and a method for making the same.
2. Description of Related Art
Referring to
Moreover, the LED package structure is electrically disposed on a PCB (Printed Circuit Board). The positive conductive layer P and the negative conductive N are electrically connected to the PCB via two wires w. One part of light beam generated from the light-emitting body 1 is directed upward, and another part of the light beams L generated from the light-generating body 1 is projected downwards and is reflected by the reflecting layer 2 in order to generate upward projecting light.
In normal state, the currents of the positive GaN conductive layer GaN-P flow downwards as the downward arrows shown in
One particular aspect of the present invention is to provide a wafer level LED package structure for increasing light-emitting efficiency and a method for making the same. The present invention uses an insulating unit in order to increase the thickness of a reflecting insulating layer, so that the short circuit does not occur easily between the lateral side of the positive GaN conductive layer and the negative GaN conductive layer.
In order to achieve the above-mentioned aspects, the present invention provides a wafer level LED package structure for increasing light-emitting efficiency, including: a light-emitting unit, an insulating unit, at least two first conductive units and at least two second conductive units. The light-emitting unit has a light-emitting body, a positive conductive layer and a negative conductive layer formed on the light-emitting body, a reflecting insulating layer formed between the positive conductive layer and the negative conductive layer, and a light-emitting area formed in the light-emitting body. The light-emitting body has a bottom material layer and a top material layer formed on the bottom material layer. The insulating unit is formed around an outer area of a top surface of the bottom material layer and formed on a top surface of the reflecting insulating layer. One first conductive unit is formed on one part of the positive conductive layer and on one part of the insulating unit, and another first conductive unit is formed on one part of the negative conductive layer and on one part of the insulating unit. The two second conductive units are respectively formed on the two first conductive units.
In order to achieve the above-mentioned aspects, the present invention provides a method for making a wafer level LED package structure for increasing light-emitting efficiency, including: providing a wafer having a plurality of light-emitting units, each light-emitting unit having a light-emitting body, a positive conductive layer and a negative conductive layer formed on the light-emitting body, a reflecting insulating layer formed between the positive conductive layer and the negative conductive layer, and a light-emitting area formed in the light-emitting body, and the light-emitting body having a bottom material layer and a top material layer formed on the bottom material layer; removing a peripheral part of the top material layer in order to expose an outer area of a top surface of the bottom material layer; and then forming an insulating layer on the light-emitting units.
The method further includes: removing one part of the insulating layer to form an insulating unit, the insulating unit having at least two first openings for exposing one part of the positive conductive layer and one part of the negative conductive layer, and the insulating unit being formed around the outer area of the top surface of the bottom material layer and formed on a top surface of the reflecting insulating layer; forming a first conductive layer in order to fill the two first openings and cover the insulating unit; forming a photoresistant layer on the first conductive layer; removing one part of the photoresistant layer to form at least two second openings that are respectively formed above the positive conductive layer and the negative conductive layer; respectively filling at least two second conductive layers into the two second openings in order to form at least two second conductive units; and then removing other photoresistant layer and one part of the first conductive layer that is under the other photoresistant layer, in order to form two first conductive units.
Hence, the present invention has the following advantages: the short circuit does not occur easily between the lateral side of the positive GaN conductive layer and the negative GaN conductive layer due to the thickness insulating unit, so that the wafer level LED package structure of the present invention can generate light beams normally.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed. Other advantages and features of the invention will be apparent from the following description, drawings and claims.
The various objectives and advantages of the present invention will be more readily understood from the following detailed description when read in conjunction with the appended drawings, in which:
Referring to
The step S100 is: referring to
Moreover, the light-emitting body 10a has an Al2O3 substrate 100a, a negative GaN conductive layer 101a formed on the Al2O3 substrate 100a, and a positive GaN conductive layer 102a formed on the negative GaN conductive layer 101a. The positive conductive layer Pa is formed on the positive GaN conductive layer 102a, the negative conductive layer Na is formed on the negative GaN conductive layer 101a, and the reflecting insulating layer 11a is formed on the negative GaN conductive layer 101a and disposed between the positive conductive layer Pa, the negative conductive layer Na and the positive GaN conductive layer 102a. In addition, the bottom material layer Da is the Al2O3 substrate 100a, and the top material layer Ua is composed of the negative GaN conductive layer 101a and the positive GaN conductive layer 102a.
Furthermore, the positive conductive layer Pa has a positive conductive area P1a formed on its top surface, the negative conductive layer Na has a negative conductive area N1a formed on its top surface, and one part of the positive conductive area P1a and one part of the negative conductive area N1a are covered by the reflecting insulating layer 11a. In addition, the reflecting insulating layer 11a is composed of a dielectric layer 110a and a reflecting layer 111a formed on the dielectric layer 110a.
Moreover, the dielectric layer 110a is formed on the negative GaN conductive layer 101a and between the positive electrode layer Pa, the negative electrode layer Na and the positive GaN conductive layer 102a. One part of the positive electrode conductive area P1a of the positive conductive layer Pa and one part of a negative electrode conductive area N1a of the negative conductive layer Na are covered by the dielectric layer 110a. In addition, in the first embodiment, the reflecting layer 111a is only formed on one part of a top surface of the dielectric layer 110a that is over the positive GaN conductive layer 102a.
The step S102 is: referring to
The step S104 is: referring to
The step S106 is: referring to
The step S108 is: referring to
The step S110 is: referring to
The step S112 is: referring to
The step S114 is: referring to
According to different requirements, each second conductive unit is composed of at least three conductive layers applied upon each other by electroplating, and the conductive layers are a Copper layer, a Nickel layer and a Gold/Tin layer, whereby the Nickel layer is formed on the copper layer, and the Gold/Tin layer is formed on the Nickel layer. In other words, the second conductive unit composed of more than two conductive layers applied upon each other is protected in the present invention.
The step S116 is: referring to
The step S118 is: referring to
The step S120 is: referring to
The step S122 is: referring to
Therefore, referring to
The light-emitting unit 1a′ has a light-emitting body 10a′, a positive conductive layer Pa′ and a negative conductive layer Na′ formed on the light-emitting body 10a′, a reflecting insulating layer 11a′ formed between the positive conductive layer Pa′ and the negative conductive layer Na′, and a light-emitting area Aa′ formed in the light-emitting body 10a′. The light-emitting body 10a′ has a bottom material layer Da and a top material layer Ua′ formed on the bottom material layer Da.
In addition, the light-emitting body 10a′ has an Al2O3 substrate 100a′, a negative GaN conductive layer 101a′ formed on the Al2O3 substrate 100a′, and a positive GaN conductive layer 102a′ formed on the negative GaN conductive layer 101a′. The positive conductive layer Pa′ is formed on the positive GaN conductive layer 102a′, the negative conductive layer Na′ is formed on the negative GaN conductive layer 101a′, and the reflecting insulating layer 11a′ is formed on the negative GaN conductive layer 101a′ and disposed between the positive conductive layer Pa′, the negative conductive layer Na′ and the positive GaN conductive layer 102a′.
Moreover, the positive conductive layer Pa′ has a positive conductive area P1a′ formed on its top surface, the negative conductive layer Na′ has a negative conductive area N1a′ formed on its top surface, and one part of the positive conductive area P1a′ and one part of the negative conductive area N1a′ are covered by the reflecting insulating layer 11a. In addition, the reflecting insulating layer 11a is composed of a dielectric layer 110a and a reflecting layer 111a formed on the dielectric layer 110a. The top material layer Ua′ is composed of the negative GaN conductive layer 101a′ and the positive GaN conductive layer 102a′.
Furthermore, the dielectric layer 110a is formed on the negative GaN conductive layer 101a′ and between the positive electrode layer Pa′, the negative electrode layer Na′ and the positive GaN conductive layer 102a′. One part of the positive electrode conductive area P1a′ of the positive conductive layer Pa′ and one part of a negative electrode conductive area N1a′ of the negative conductive layer Na′ are covered by the dielectric layer 110a. In addition, in the first embodiment, the reflecting layer 111a is only formed on one part of a top surface of the dielectric layer 110a that is over the positive GaN conductive layer 102a′.
In addition, the insulating unit 2a′ is formed around an outer area D1a of a top surface of the bottom material layer Da and formed on a top surface of the reflecting insulating layer 11a. One first conductive unit 3a′ is formed on one part of the positive conductive layer Pa′ and on one part of the insulating unit 2a′, and another first conductive unit 3a′ is formed on one part of the negative conductive layer Na′ and on one part of the insulating unit 2a′. The two second conductive units (the two second conductive layers 4a) are respectively formed on the two first conductive units 3a′. Furthermore, the phosphor layer 5a′ formed on the bottom side of the Al2O3 substrate 100a of the light-emitting unit 1a′ mates with the light beams La generated from light-emitting area Aa′ in order to provide white light.
Referring to
Referring to
The step S200 is: referring to
The step S202 is: referring to
The step S204 is: referring to
The step S206 is: referring to
Therefore, referring to
Referring to
In conclusion, the present invention has the following advantages:
1. With regards to the first embodiment, the phosphor layer 5a′ formed on the bottom side of the Al2O3 substrate 100a mates with the light beams La generated from light-emitting area Aa′ in order to provide white light. With regards to the second embodiment, the phosphor layer 5b′ is formed on the bottom side and the peripheral side of the light-emitting unit 1b in order to mate with the light beams Lb generated from light-emitting area Ab for providing white light.
2. The present invention does not need to use reflecting layer, the transparent package body and the wires as shown in prior art. Hence, the manufacturing cost and manufacturing time of the present invention are decreased.
3. The present invention uses the insulating unit in order to increase the thickness of the reflecting insulating layer, so that the short circuit does not occur easily between the lateral side of the positive GaN conductive layer and the negative GaN conductive layer.
Although the present invention has been described with reference to the preferred best molds thereof, it will be understood that the present invention is not limited to the details thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the present invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
97145305 | Nov 2008 | TW | national |
This application is a Divisional patent application of co-pending application Ser. No. 12/461,742, filed on 24 Aug. 2009, now pending. The entire disclosure of the prior application Ser. No. 12/461,742, from which an oath or declaration is supplied, is considered a part of the disclosure of the accompanying Divisional application and is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12461742 | Aug 2009 | US |
Child | 13238101 | US |