This invention relates to a wake up alarm providing device comprising a sound producing unit for providing an audible wake up signal during an alert period and a control unit, coupled to the sound producing unit for controlling the wake up signal.
This invention further relates to a method of providing an audible wake up signal and a computer program product for performing said method.
Many people use an alarm clock to be sure to wake up in time. Most alarm clocks use a loud and annoying sound to inform the user that it is time to get up. Such an alarm usually causes an abrupt wake up, which is not appreciated by many users. It is well known to use sounds from a radio, CD player or other source of music instead of a standard wake up alarm. Cell phone alarms often provide the option to select an alarm sound from a number of available options. The sound produced by such alarm clocks may be less unpleasant, but the abruptness of the alarm may still lead to discomfort.
Most people feel more energetic and fit after a gentle/pleasant wake up ritual. To fulfill this need, Philips has, e.g., introduced a wake up light, enhancing the wake up experience with sunrise simulation and natural sounds. The sunrise simulation is realized by gradually increasing illumination. Furthermore, progressive alarm clocks are known, using loudness control to increase the sound level during a wake up ritual.
Although such solutions are already improving the pleasantness of the wake up ritual, there still is a need for even more gentle and pleasant wake up experiences.
It is an object of the invention to provide a wake up alarm providing device which gives an even more pleasant and gentle wake up experience.
According to a first aspect of the invention, this object is achieved by providing a wake up alarm providing device comprising a sound producing unit for providing an audible wake up signal during an alert period and a control unit, coupled to the sound producing unit for controlling the wake up signal, the control unit being arranged to control the wake up signal to comprise a predominantly diffuse sound during a first part of the alert period and a more localized sound during a subsequent part of the alert period. The control unit is arranged such that the localized sound provides, at a predetermined target position, a localized spatial sound spectrum having a maximum sound intensity from a single predetermined direction and the diffuse sound provides, at the predetermined target position, a diffuse spatial sound spectrum having peak sound intensities from multiple directions. The wake up signal is controlled such that a sum of the peak sound intensities of the diffuse sound exceeds the maximum sound intensity of the localized sound during the first part of the alert period, and that a ratio of the sum of the peak sound intensities of the diffuse sound to the maximum sound intensity of the localized sound is decreased during the subsequent part of the alert period.
Studies have shown that spatial attributes of sounds have a major influence on auditory experiences. However, up to now spatial attributes have not yet been exploited in relation to wake up alarms. The inventors have found out that it is possible to improve wake up rituals by controlling spatial attributes of the wake up alarm sound. According to the invention, the wake up signal changes from diffuse or ambient to localized or focused. Diffuse sounds provide an immersive audio experience with sounds appearing to be originating from a multitude of origins. Localized sounds are better intelligible and appear to come from a single sound source. The immersive dream-like sounds cause a user to wake up slowly in such a way that the alertness level has already increased substantially when the subsequent localized sound causes the user to wake up completely.
Localized sound is perceived as coming directly from a single source of sound to the user. Diffuse sound comes from multiple directions, e.g. because the source is delocalized (e.g. street noise, a plurality of birds) or because the sound only reaches the user after various reflections. A purely diffuse sound shows a similar sound intensity from a large range of directions or multiple peak sound intensities from different directions. A purely localized sound shows a clear maximum sound intensity from a single predetermined direction. During the alert period, a ratio of diffuse sound to localized sound decreases. This decrease may be realized gradually or in one or more discrete steps.
Technically, the producing of diffuse and localized sounds can be realized in a number of different ways. Signal processing and digital reverberation may be used to change a perceived directionality of the wake up signal from diffuse to localize. Multiple loudspeakers provided at different angles with respect to the user may be used. A rotatable loudspeaker may be used, which rotates towards the user during the alert period. Also other solutions for providing diffuse and localized sounds are apparent for the person skilled in the art.
The gentle and more pleasant wake up process is further improved when the control unit in the wake up sound producing device is arranged to provide a gradual transition from the diffuse sound to the localized sound. During this gradual transition, when the user wakes up, the alarm may be turned off The gradual transition does not only provide a smooth and gentle change of the auditory environment. It also enables the user to turn off the alarm before he considers the wake up signal to take an annoying form. Preferably, the control unit is further arranged to control the wake up signal such that said first part of the alert period and said subsequent part of the alert occur only once during the alert period.
In a special embodiment, the wake up sound producing device comprises a detection unit for detecting a position of a user relative to the wake up sound producing device and the control unit is arranged to direct the localized sound towards the user. The position of the user may, e.g., be detected using a camera and image recognition software, pressures sensors integrated in the user's bed, sound recording means for detecting sounds made by the sleeping user (e.g. breathing or snoring).
According to a second aspect of the invention, a method of providing an audible wake up signal during an alert period is provided, the method comprising initiating an alert period, during a first part of the alert period, generating and providing a diffuse sound as a first part of the wake up signal, and controlling the diffuse sound such that, at a predetermined target position, a diffuse spatial sound spectrum is provided having peak sound intensities from multiple directions, and during a subsequent part of the alert period, generating and providing a localized sound as a subsequent part of the wake up signal, and controlling the localized sound such that, at the predetermined target position, a localized spatial sound spectrum is provided having a maximum sound intensity from a single predetermined direction.
These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.
In the drawings:
If the user wants to wake up at 6 AM, the alert period may start at 6 AM. However, with the wake up device 10 according to the invention the user will not wake up immediately at the start of the alert period when only a diffuse sound is provided. It is preferred to start the alert period some time earlier in order to be sure that the user is awake at 6 AM. The exact moment that the alert period should start may be fixed at, e.g., 15 minutes before the selected wake up time (6 AM) or may be user dependent. Information about the actual wake up time may be derived from, e.g. the moment at which the user turns off the alarm (e.g. pressing a button) or gets out of bed (e.g. detected by a pressure sensor or camera system). The information about the actual wake up time may be used to personalize the moment at which the alert period starts.
In this exemplary embodiment, the sound producing unit 11 comprises a sound processing unit 18, a front speaker 13 and a set of ambient speakers 14. The sound processing unit 18 controls the content and the loudness of the sound signals that are sent to the loudspeakers 13, 14. If the wake up device 10 is properly positioned, the front speaker 13 is facing the user, such that the sound coming from the front speaker 13 can directly travel towards the sleeping user, lying in his bed 17. The ambient speakers 14 are preferably provided at the side and/or back surfaces of the wake up device 10, such that the sound from those speakers 14 can only reach the user via reflections at nearby walls, ceilings or objects.
In this example, three ambient speakers 14 are provided, but the wake up device 10 may comprise any number of ambient speakers 14. As will be elucidated below, the wake up device 10 may even function properly with the front speaker 13 only.
When the alert period starts, the sound producing unit 11 generates a diffuse sound as a first part of the wake up signal. Diffuse sound comes or appears to come from multiple direction, e.g. because the source is delocalized (e.g. street noise, a plurality of birds) or because the sound only reaches the user after various reflections. Diffuse sounds can be produced in different ways. E.g., the ambient speakers 14 may be provided at the back of the wake up device 11. When used, the wake up device 11 should be positioned such that its front surface faces the user. The sound form the ambient speakers 14 at the back of the device cannot reach the user directly, but only after reflections at, e.g., the wall or other objects in the room. Alternatively, digital reverberation may be used for generating or processing a sound that, although coming from a speaker 13 directly facing the user, sounds as a diffuse sound. Also the content selection for the wake up sound may add to the diffuseness of the sound. For example, bird sounds and street noise give a more diffuse perception than a ringing phone. Another way of creating diffuse sound will be discussed below with reference to
During a subsequent part of the alert period, a more localized sound is provided as a subsequent part of the wake up signal. This more localized sound may come from a different speaker 13. Preferably, the localized sound comes from the front speaker 13 and reaches the user directly, without any reflections and without hitting upon any obstacles. Also the content of the localized sound may add to the localized character. For example, a ringing phone, a classis wake up alarm sound or a voice clearly directed at the user may be used as localized sound.
In a preferred embodiment, the sound processing unit 18 provides a gradual transition from a diffuse sound to a more localized sound. For example, the relative loudness of speakers 13, 14 with different orientations may be changed gradually. Also the orientation of the speakers 13, 14 or a position or orientation of acoustic obstacles or reflectors may be changed during the alert period. A gradual change of the content of the wake up signal may, e.g., be provided by mixing a diffuse sound with a localized sound and gradually changing the relative loudness of both sounds.
The device 10 shown in
Instead of the camera 16, the device 10 may use different types of user detection means. For example, pressure sensors or heat sensors in the bed 17 and/or pillow may be used for determining a presence, location and/or orientation of the user. Alternatively, a microphone or microphone array or other sound detecting means may be provided for using breathing or snoring sounds to determine the location of the user.
The front speaker 13 thus is very useful for providing the localized sounds.
In
It will be appreciated that the invention also extends to computer programs, particularly computer programs on or in a carrier, adapted for putting the invention into practice. The program may be in the form of source code, object code, a code intermediate source and object code such as partially compiled form, or in any other form suitable for use in the implementation of the method according to the invention. It will also be appreciated that such a program may have many different architectural designs. For example, a program code implementing the functionality of the method or system according to the invention may be subdivided into one or more subroutines. Many different ways to distribute the functionality among these subroutines will be apparent to the skilled person. The subroutines may be stored together in one executable file to form a self-contained program. Such an executable file may comprise computer executable instructions, for example processor instructions and/or interpreter instructions (e.g. Java interpreter instructions). Alternatively, one or more or all of the subroutines may be stored in at least one external library file and linked with a main program either statically or dynamically, e.g. at run-time. The main program contains at least one call to at least one of the subroutines. Also, the subroutines may comprise function calls to each other. An embodiment relating to a computer program product comprises computer executable instructions corresponding to each of the processing steps of at least one of the methods set forth. These instructions may be subdivided into subroutines and/or be stored in one or more files that may be linked statically or dynamically. Another embodiment relating to a computer program product comprises computer executable instructions corresponding to each of the means of at least one of the systems and/or products set forth. These instructions may be subdivided into subroutines and/or be stored in one or more files that may be linked statically or dynamically.
The carrier of a computer program may be any entity or device capable of carrying the program. For example, the carrier may include a storage medium, such as a ROM, for example a CD ROM or a semiconductor ROM, or a magnetic recording medium, for example a floppy disc or hard disk. Further the carrier may be a transmissible carrier such as an electrical or optical signal, which may be conveyed via electrical or optical cable or by radio or other means. When the program is embodied in such a signal, the carrier may be constituted by such cable or other device or means. Alternatively, the carrier may be an integrated circuit in which the program is embedded, the integrated circuit being adapted for performing, or for use in the performance of, the relevant method.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. Use of the verb “comprise” and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. The article “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. The invention may be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Number | Date | Country | Kind |
---|---|---|---|
11165862.1 | May 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB12/52215 | 5/3/2012 | WO | 00 | 10/21/2013 |