Not applicable.
Not applicable.
The present inventions relate to apparatuses for transporting a load, and more particularly relates to methods and systems for controlling ambulation of heavy loads with the ability to steer the apparatus.
For heavy loads that need periodic movement or adjustment of position, transportation systems commonly referred to as “walking machines” or “walkers” were developed. Walking machines are particularly useful for moving large, heavy structures, such as oil rigs, silos, and the like.
Walking machines typically use hydraulic lift cylinders as motors to lift the load above a supporting surface, such as the ground, and then displace or translate the load in a desired direction by sliding or rolling movement related to the stroke of the hydraulic cylinder.
For example, U.S. Pat. No. 8,925,658, discloses “a drill rig relocation system. Lift frames are provided at opposite ends of a base box of a drill rig substructure. A lift cylinder and bearing mat assembly are rotatably connected beneath the lift frame. The bearing mat assemblies may be rotated to the desired direction for moving the drill rig. The lift cylinders are then expanded, placing the bearing mat assemblies onto the ground and lifting the base boxes and drill rig off the ground. The drill rig is supported on linear sleeve bearings slideably mounted in the bearing mat assemblies. Translation cylinders on the bearing mats expanded to move the rig by translating the linear sleeve bearings along the shafts. After the lift cylinder expands to place the bearing mat on the ground, the translation cylinders are retracted, providing the linear bearing with the hill length of the shah for the next movement.
U.S. Pat. No. 9,751,578, discloses “A load transporting apparatus includes a base structure that supports a load and a plurality of transport devices that move the base structure over a base surface. A first group of transport devices concurrently contact the base surface during a first movement step. Following the first movement step the first group of transport devices are disengaged from the base structure during a second movement step of the base structure. A second group of transport devices are disengaged from the base surface during the first movement step. Following the first movement step the second group of transport devices contact the base surface during the second movement step, and the weight of the load supported by the first group of transport devices is transferred from the first group of transport devices to the second group of transport devices.”
U.S. Pat. No. 10,308,299, owned by Applicant, discloses “A load transporting apparatus may be steered while transporting a load across a base surface, and the load transporting apparatus may be operated hydraulically, electrically, or by use of an encoder. In particular, the load transporting apparatus may include a track configured to a saddle housing (a support movement for a movement assembly), and a foot that may be connected to the track. During load transport, the pad saver may be maintained in a substantially similar position relative to a frame structure supporting the load, even when the transport movement is not in a parallel direction to the orientation of the pad saver.”
The present inventions are directed to improvements in walking machines and the control systems therefor.
A brief non-limiting summary of one of the many possible embodiments of the present invention is a system supporting a load, comprising first and second substructures integrated into the load adjacent a lowermost portion thereof; each substructure comprising at least first and second frame portions spaced apart from one another a predetermined distance, each substructure and defining a longitudinal axis; at least one walking system associated with each first and second substructure disposed between the first and second frame portions and configured to lift the load; each walking system having a step length along the longitudinal axis greater than the predetermined distance; and a transverse step window formed in each of the first and second frame portions of each substructure adjacent the walking system and configured to allow the walking system to step transversely to the longitudinal axis a distance greater than the predetermined distance. Additionally, each substructure comprises at least two walking systems, and each walking system has associated transverse step windows. The transverse step windows may be configured to allow the walking systems to step transversely to the longitudinal axis a distance equal to the longitudinal step distance. A load bearing outrigger may be disposed adjacent each transverse step window and configured to provided load bearing support when the load is in a non-walking condition. Each outrigger has a load bearing state and a retracted state, and wherein at least one hydraulic cylinder actuates the outrigger between the two states.
Another non-limiting summary of some of the inventions disclosed herein is a method of moving a load with a plurality of walking systems, comprising lifting the load above a load bearing surface; retracting load bearing outriggers associated with each walking system to uncover a transverse step window for each walking system; lowering the load to the load bearing surface; orienting the walking systems for a non-longitudinal step; lifting the load above the load bearing surface; and stepping the load in a non-longitudinal direction such that at least a portion of the walking system passes into the transverse window.
Another non-limiting summary of some of the inventions disclosed herein is a control system for a load transporting system, comprising at least one junction box associated with each walking system coupled to the load; a portable master control unit comprising an electrical connection for each junction box; an electrical cable configured to operatively connect each walking system to the portable control unit through the associated junction box; and the control unit and cables configured to be unconnected from the junction boxes when the load has been moved to the desired position to eliminate the possibility of damage to the control unit and cables.
Another non-limiting summary of some of the inventions disclosed herein is a method of initializing a portable master control unit for a load transporting system having a plurality of walking systems, comprising: retracting each lift and translation cylinder; rotating all walking systems to 0 degrees; setting a forward direction for each walking system; zeroing a rotation encoder for each walking system; setting a lift cylinder offset for each walking system; and testing control of the walking systems.
None of these brief summaries of the inventions is intended to limit or otherwise affect the scope of the appended claims, and nothing stated in this Brief Summary of the Invention is intended as a definition of a claim term or phrase or as a disavowal or disclaimer of claim scope.
The following figures form part of the present specification and are included to demonstrate further certain aspects of the present invention. The invention may be better understood by reference to one or more of these figures in combination with the detailed description of specific embodiments presented herein.
While the inventions disclosed herein are susceptible to various modifications and alternative forms, only a few specific embodiments have been shown by way of example in the drawings and are described in detail below. The figures and detailed descriptions of these specific embodiments are not intended to limit the breadth or scope of the inventive concepts or the appended claims in any manner. Rather, the figures and detailed written descriptions are provided to illustrate the inventive concepts to a person of ordinary skill in the art and to enable such person to make and use the inventive concepts.
The Figures described above, and the written description of specific structures and functions below are not presented to limit the scope of what I have invented or the scope of the appended claims. Rather, the Figures and written description are provided to teach any person skilled in the art to make and use the inventions for which patent protection is sought. Those skilled in the art will appreciate that not all features of a commercial embodiment of the inventions are described or shown for the sake of clarity and understanding. Persons of skill in this art will also appreciate that the development of an actual commercial embodiment incorporating aspects of the present inventions will require numerous implementation-specific decisions to achieve the developer's ultimate goal for the commercial embodiment. Such implementation-specific decisions may include, and likely are not limited to, compliance with system-related, business-related, government-related, and other constraints, which may vary by specific implementation, location and from time to time. While a developer's efforts might be complex and time-consuming in an absolute sense, such efforts would be, nevertheless, a routine undertaking for those of skill in this art having benefit of this disclosure. It must be understood that the inventions disclosed and taught herein are susceptible to numerous and various modifications and alternative forms. Lastly, the use of a singular term, such as, but not limited to, “a,” is not intended as limiting of the number of items. Also, the use of relational terms, such as, but not limited to, “top,” “bottom,” “left,” “right,” “upper,” “lower,” “down,” “up,” “side,” and the like are used in the written description for clarity in specific reference to the Figures and are not intended to limit the scope of the invention or the appended claims.
Aspects of the inventions disclosed herein may be embodied as an apparatus, system, method, or computer program product. Accordingly, specific embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects, such as a “circuit,” “module” or “system.” Furthermore, embodiments of the present inventions may take the form of a computer program product embodied in one or more computer readable storage media having computer readable program code.
Items, components, functions, or structures in this disclosure may be described or labeled as a “module” or “modules.” For example, but not limitation, a module may be configured as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module also may be implemented as programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, or the like. Modules also may be configured as software for execution by various types of processors. A module of executable code may comprise one or more physical or logical blocks of computer instructions that may be organized as an object, procedure, or function. The executables of a module need not be physically located together but may comprise disparate instructions stored in different locations that when joined logically together, comprise the module and achieve the stated purpose or function. A module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The data may be collected as a single dataset or may be distributed over different locations including over different storage devices, and may exist, at least partially, merely as electronic signals on a system or network. Where a module or portions of a module are implemented in software, the software portions may be stored on one or more computer readable storage media.
When implementing one or more of the inventions disclosed herein, any combination of one or more computer readable storage media may be used. A computer readable storage medium may be, for example, but not limitation, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific, but non-limiting, examples of the computer readable storage medium may include the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a portable compact disc read-only memory (CD-ROM), a digital versatile disc (DVD), a Blu-ray disc, an optical storage device, a magnetic tape, a Bernoulli drive, a magnetic disk, a magnetic storage device, a punch card, integrated circuits, other digital processing apparatus memory devices, or any suitable combination of the foregoing, but would not include propagating signals. In the context of this disclosure, a computer readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Computer program code for carrying out operations of one or more of the present inventions may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Python, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. The remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an exterior computer for example, through the Internet using an Internet Service Provider.
Reference throughout this disclosure to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one of the many possible embodiments of the present inventions. The terms “including,” “comprising,” “having,” and variations thereof mean “including but not limited to” unless expressly specified otherwise. An enumerated listing of items does not imply that any or all of the items are mutually exclusive and/or mutually inclusive, unless expressly specified otherwise. The terms “a,” “an,” and “the” also refer to “one or more” unless expressly specified otherwise.
Furthermore, the described features, structures, or characteristics of one embodiment may be combined in any suitable manner in one or more other embodiments. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments of the disclosure. Those of skill in the art having the benefit of this disclosure will understand that the inventions may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the disclosure.
Aspects of the present disclosure are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and computer program products according to embodiments of the disclosure. It will be understood by those of skill in the art that each block of the schematic flowchart diagrams and/or schematic block diagrams, and combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, may be implemented by computer program instructions. Such computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to create a machine or device, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, structurally configured to implement the functions/acts specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks. These computer program instructions also may be stored in a computer readable storage medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable storage medium produce an article of manufacture including instructions which implement the function/act specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks. The computer program instructions also may be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and/or operation of possible apparatuses, systems, methods, and computer program products according to various embodiments of the present inventions. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s).
It also should be noted that, in some possible embodiments, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more blocks, or portions thereof, of the illustrated figures.
Although various arrow types and line types may be employed in the flowchart and/or block diagrams, they do not limit the scope of the corresponding embodiments. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the depicted embodiment. For example, but not limitation, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted embodiment. It will also be noted that each block of the block diagrams and/or flowchart diagrams, and combinations of blocks in the block diagrams and/or flowchart diagrams, may be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
The description of elements in each Figure may refer to elements of proceeding Figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements. In some possible embodiments, the functions/actions/structures noted in the figures may occur out of the order noted in the block diagrams and/or operational illustrations. For example, two operations shown as occurring in succession, in fact, may be executed substantially concurrently or the operations may be executed in the reverse order, depending upon the functionality/acts/structure involved.
For purposes of this disclosure, the term “load” will refer to the structure or assembly that is desired to be moved from one location to another. A load may comprise, for example, an oil well drilling rig. The terms, “walker,” “walking machine,” “walking device,” and “walking system” are used interchangeably below and refer to an individual lifting and translation device and to a collection of individual lifting and translation devices. Walking systems may incorporate one or more components or subassemblies, depending on the specific configuration of the walking system. A “Load transporting apparatus” or system comprises at least one walking systems and typically comprises four walking systems but may comprise more or less.
Non-limiting feedback mechanisms to and from a walking system can be in the form of encoders, proximity sensors, magnetic pick-ups, switches, potentiometers, transducers, accelerometers, inclinometers, GPS, ultrasonic, infrared, optical, and other such devices. Non-limiting signals used in communication with the walking machine may be in milliampers, voltage, can-bus protocols, profibus protocols profinet protocols, SSI, industrial Ethernet, other similar methods, and combinations thereof. Remote controls and remotely activated, monitored, or controlled devices can use any combination of the above items if needed, and the signals may be transmitted via broad spectrum, fixed frequency, WIFI, Bluetooth, other conventional wireless radio transmission protocols, and combinations thereof. A remote control may be wired or wireless, as long as it may communicate with the load transporting apparatus. Such walking assemblies may allow for better safety of workers around drilling rigs because such workers are no longer having to manually rotate the rotational devices to move the load with the walking assembly.
Now turning to the Figures,
In a non-limiting embodiment, the rotation motor 112 may have an encoder (feedback) configured to be included in the motor or otherwise connectable to the motor 112 for auto-walking the load transport system. In other embodiments, the rotation motor 112 may have no feedback or position encoder. In yet another non-limiting embodiment, the walking system 100 does not have a rotation motor 112 or encoder/feedback. In the latter instance, the walking system 100 may operate with only with only a lift motor 102. The directional orientation of the walking system 100 may be manually supplied by applying a manual force to the pinion gear 116 against the geared ring 118.
The walking system 100 may support a load of as much as 400,000 pounds to about 600,000 pounds or more. The diameter of the foot 122 may be considered the diameter of the walking system 100. The foot 122 may be divided into a multi-pieced foot for easier transport and/or for reducing costs. As a non-limiting example, the foot 122 depicted in
To move the load in a predetermined direction, while the lift motor 102 is retracted, the rotation motor 122 turns the ring gear 118 to the correct orientation, and the translation motor extends the foot in the direction of travel. The load can now be lifted by extending the lift motor 102.
In a non-limiting embodiment, the one or more steps illustrated in
As illustrated in
It will be appreciated that the ring gear 118 may be secured to the upper surface 608 of the housing 606. The housing 6060 may be connected to a portion of the rotary interface 402, such as coupler 506 to allow the ring gear 118 to be mounted thereon in a location around the rotary interlock. This arrangement provides for an axial datum of rotation.
The stabilizer frame assembly may have a first stabilizer bar 810 configured to connect to the load transporting apparatus 100. The first stabilizer bar 810 may have a first end 810 a and a second end 810 b. The first end 810 a may be configured to connect to a first sidewall 830. The second end 810 b may be configured to connect to a second sidewall 840.
The stabilizer frame apparatus may have a second stabilizer bar 820 configured to connect to the load transporting apparatus 100. The second stabilizer bar 820 may have a first end 820a and a second end 820b. The first end 820a may be configured to connect to the first sidewall 830. The second end 820b may be configured to connect to the second sidewall 820.
The first and/or second sidewalls may be separate from a rig structure and configured to integrate into the rig structure in a non-limiting embodiment. Alternatively, the first 820 and/or second sidewalls 840 may be part of the rig structure, and the first stabilizer bar 810 and the second stabilizer bar 820 may be configured to connect thereto. In a non-limiting embodiment, the stabilizer frame apparatus may include the first sidewall 830 and/or the second sidewall 840.
In a non-limiting embodiment, the stabilizer frame apparatus may include at least one, and preferably two, origin stabilizers 818 configured to connect to at least one of the first sidewall 830 and/or the second sidewall 840. In a non-limiting embodiment, the origin stabilizer(s) 818 may pivot from a fixed location when connected to the first sidewall 830 and/or the second sidewall 840.
In another non-limiting embodiment, the first stabilizer bar 810 and/or the second stabilizer bar 820 may have an optional stabilizer frame apparatus coupler 850 for easier coupling of the stabilizer frame apparatus to the load transporting apparatus 100. When the stabilizer frame apparatus coupler 1550 is not used, the first stabilizer bar 81 and/or the second stabilizer bar 820 may engage or connect or attach to the load transporting apparatus 100 such as by welding, riveting bolting, or another form of coupling the stabilizer frame apparatus to the load transporting apparatus 100.
In yet another non-limiting embodiment, at least one additional crossbar (not shown) may be configured to connect to the first sidewall 1530 and/or the second sidewall 840 for additional stability of the load and/or load transporting apparatus.
The portable control system 1002 comprises cabling 1014 that connects the portable control system 1002 to the junction boxes 1008, 1012, and which can be removed when the load has been moved to the desired location. It will be appreciated that most loads are moved infrequently and are operated at most locations for longer periods of time than are involved in the walking the load to a new location. Thus, while the walking systems 1006 may, but are not required to, remain with the load when not in use, there is usually no need for the walking system control system 1000 to remain with the load. In this embodiment, the control system 1000 is operatively coupled to the load (i.e., to the hydraulic valves and walking systems) when the load needs to be moved and is uncoupled and removed from the load when the move is finished. Among the other advantages, the portable control unit 1002 minimizes the risk of damage to the control system when it is not being used. Additionally, as discussed below, the portable control system 1002 may be used with a plurality of loads. In other words, a dedicated control system is no longer required for each walking load. In use the portable master control unit 1000 may be temporarily hung from the substructure 1000.
In a preferred embodiment of a portable master control system for a walking system or load transporting apparatus, it is contemplated that the signal cables and junction boxes be configured for bi-directional analog signals. In other words, in this embodiment, it is preferred that all digital processing of signals be performed in the portable master control unit and the control signals be converted to analog for transmission to the walking system(s). It will be appreciated that analog transmission simplifies the junction boxes and connections and cables and minimizes the damage that may be done to this equipment while on the load. While analog transmission to and from the portable master control unit is presently preferred, transmission of digital signals to and from the portable master control unit is also contemplated.
Because a portable master control unit may be used with more than one load transporting apparatus (e.g., multiple rigs owned by single operator), it may be beneficial to identify the specific load being controlled by the portable master control unit. Because different loads may use different types of transducer, such as LVDTs or string pots, and control elements, each load may have its own calibration factors and control responses. For purely analog systems, a load ID may be inputted into the portable master control unit, which my then access stored load specific control information or download load specific control information from an Internet location. Alternately, a bar code, QR code or RFID may be physical associated with the load and read by a suitable scanner operatively coupled, such as wirelessly, to the portable master control unit. Still further, one or more of the junction boxes described above, such as the modular junction boxes of
Also illustrated in
Turning now to the portable master control unit 1400,
It will be appreciated that just like with non-portable walking system control units, the portable master control units described herein may wirelessly interface 1512 with a personal control unit 1514 or belly pack providing a single human operator control over the walking systems through the master control unit 1506 during a walking operation. Tablets 1516 and other smart device also may interface with the master control unit 1506, such as to monitor walking download or upload files and reports and the like. The master control unit 1506 also may connect to the Internet through conventional means such as cellular or satellite technologies.
The position sensors identified in
The control link layout shown in
Because each load transporting apparatus may be unique in number of walking in systems deployed and in the control and transducing components utilized, a start up or initialization routine is useful each time the portable master control unit operatively engages the load.
It will know be appreciated having the benefit of this disclosure that multiple synergies may be achieved by utilizing a portable master control unit with a load transporting apparatus comprising a plurality of walking systems. For example, and not limitation, a portable master control unit according to the present disclosure may be used to control or walk several different loads, so that a load does not need a dedicated control unit. Additionally, by removing the various and numerous permanent control links, damage to and repair of the control links can be achieved thereby reducing downtime and expense and increasing safety. Additionally, by optimizing the size and location of the junction boxes on the load, physical damage to the junction boxes, such as from impacts and pressure washing are reduced. Still further, by providing each load with a unique ID, the portable master control unit can be programmed with the data specific to the control and transducing components actually used on the load. Other and further benefits are readily discernible from the above disclosure.
Turning now to
To overcome this problem, the substructures illustrated in
Other and further embodiments utilizing one or more aspects of the inventions described above can be devised without departing from the spirit of Applicant's invention. Further, the various methods and embodiments of the methods of manufacture and assembly of the system, as well as location specifications, can be included in combination with each other to produce variations of the disclosed methods and embodiments. Discussion of singular elements can include plural elements and vice-versa.
The order of steps can occur in a variety of sequences unless otherwise specifically limited. The various steps described herein can be combined with other steps, interlineated with the stated steps, and/or split into multiple steps. Similarly, elements have been described functionally and can be embodied as separate components or can be combined into components having multiple functions.
The inventions have been described in the context of preferred and other embodiments and not every embodiment of the invention has been described. Obvious modifications and alterations to the described embodiments are available to those of ordinary skill in the art. The disclosed and undisclosed embodiments are not intended to limit or restrict the scope or applicability of the invention conceived of by the Applicants, but rather, in conformity with the patent laws, Applicants intend to protect fully all such modifications and improvements that come within the scope or range of equivalent of the following claims.
This application claims benefit of and priority to U.S. Provisional Patent Application No. 62/740,307, entitled Modular Walking Systems and Methods of Use filed on Oct. 2, 2018, and U.S. Provisional Patent Application No. 62/742,743, entitled Lifting Control Systems and Methods of Use filed on Oct. 8, 2018, the entire contents of both of which are incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
62740307 | Oct 2018 | US | |
62742743 | Oct 2018 | US |