This application relates generally to wall anchors and related systems, methods and components.
Numerous products exist for installing a hook or hanging device onto a wall, such as for hanging a picture frame, a mirror, or the like. Conventional nails and screws are not always convenient solutions and may not provide sufficient support strength in the wall, particularly in the case of drywall, or other friable wallboards, which are relatively weak.
Anchors incorporating curved saber tooth shaped retainers are known from U.S. Pat. Nos. 8,974,166 and 8,414,239. However, such anchors are still difficult for the typical homeowner to install and use properly because a hammer is generally needed to complete the anchor installation. These anchors also generally have a large wall penetration that tends to crumble and weaken the surrounding wall media adjacent the penetration and leave a large hole that is not easily repaired. It is also impractical to reposition these types of anchors after initial insertion in locations proximate the original hole for the purpose of making minor position adjustments. Moreover traditional anchors with simple hooks are not suited to mount a wide variety of objects in a secure manner.
It would be desirable to provide an anchor device and related installation method that facilitates ease of installation, but at the same time results in an anchor with a high support strength and less damage to the wallboard, leaving relatively small holes upon anchor removal and therefore also permitting minor position adjustments if needed. To provide these advantages in connection with an anchor that installs without reference to stud or other supporting structure location and/or without concern for wires or pipes behind the wall, would also be beneficial. In addition, providing an anchor assembly that provides a mounting system with enhanced resistance to loading perpendicular to the wall surface in order to secure numerous types of secondary components such as a shelf, towelbar, coat rack or similar devices, all of which generate cantilever loading on the anchor, would be desirable.
In one aspect, an anchor assembly for hanging an object on a wall includes a first anchor component and a second anchor component. The first anchor component includes a first base having front and back sides, at least one wall penetrating retainer extends from the first base and includes a wall penetrating extent that protrudes rearwardly of the first base and has a curved configuration. The second anchor component includes a second base having front and back sides. The second anchor component is pivotably associated with the first anchor component for movement between an anchoring orientation and a non-anchoring orientation to enable staged installation of the anchor assembly into a wall. At least one wall penetrating retainer extends from the second base and includes a wall penetrating extent that protrudes rearwardly of the second base and has a curved configuration. When the second anchor component is in the anchoring orientation the curved configuration of the wall penetrating extent of the second anchor component opposes the curved configuration of the wall penetrating extent of the first anchor component to form a jaw-type arrangement.
In another aspect, an anchor assembly for hanging an object on a wall includes a first anchor component and a second anchor component. The first anchor component includes a first base having front, back, top, bottom, left and right sides, at least one wall penetrating retainer extends from the first base and includes a wall penetrating extent that protrudes rearwardly of the first base and has a curved configuration. The second anchor component includes a second base having front, back, top, bottom, left and right sides, the second anchor component pivotably associated with the first anchor component for movement between an anchoring orientation and a non-anchoring orientation. In the anchoring orientation the second anchor component is positioned at least partly in front of the first anchor component. The second anchor component includes at least one wall penetrating retainer extending from the second base and includes a wall penetrating extent that protrudes rearwardly of the second base and has a curved configuration. When the second anchor component is in the anchoring orientation the curved configuration of the wall penetrating extent of the second anchor component opposes the curved configuration of the wall penetrating extent of the first anchor component to form a jaw-type arrangement.
In another aspect, a member adapted for installation on a wall mounted anchor assembly includes a wall facing side including a mount bracket defining a mount channel with an open bottom side. The mount channel includes (i) a pair of laterally spaced apart surfaces that angle rearwardly when moving vertically downward and/or (ii) a pair of laterally spaced surfaces that angle toward each other when moving vertically upward.
In another aspect, a template system for positioning multiple anchor assemblies on a wall includes an elongated template unit including at least two spaced apart openings, each opening having at least one edge portion configured for engaging a portion of an anchor assembly to define an install position for the anchor assembly.
In another aspect, a method of mounting first and second members on a wall involves: utilizing first and second template units, the first template unit having a profile shape substantially the same as a profile shape of the first member, the first template unit having at least one opening that defines at least a first wall anchor install location, the first template unit includes a wall side with one or more adhesive regions to enable the first template unit to be releasable mounted on the wall, the second template unit having a profile shape substantially the same as a profile shape of the second member, the second template unit having at least one opening that defines at least a first wall anchor install location, the second template unit includes a wall side with one or more adhesive regions to enable the second template unit to be releasable mounted on the wall; adhesively mounting the first template unit on the wall at a first potential location for mount of the first member; adhesively mounting the second template unit on the wall at a second potential location for mount of the second member; viewing a relative location and orientation of each of the first template unit and the second template unit at a distance from the wall to evaluate whether the relative location and orientation is desired.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
In the drawings and description of various anchor embodiments below, the term wallboard is generally used to refer to the most common wallboard such as drywall, but it is recognized that the anchor components could be suitable for any other friable wallboard material, such as dense corks or foams or other materials that can crumble. Accordingly, the term wallboard as used herein is intended to broadly encompass, for example, both typical drywall (aka plasterboard and gypsum board) and such other friable wallboard materials.
Referring to
Anchor component 13 includes a base 114 with front 116, back 118, top 120, bottom 122, left 124 and right 126 sides. As used herein the references front, back, top, bottom, left and right sides in relation to the anchor component 13 refer to portions of the anchor component 13 when in its anchoring orientation. In the illustrated embodiment base 114 is also formed by a base plate, which may be referred to as the outer plate in the context of the overall anchor assembly. Anchor component 13 is pivotably connected to the anchor component 11 (e.g., by way of a hinge connection 70 toward the top of the base plate and the top of the outer plate). The plates may, by way of example, be metal plates such as spring steel, but variations are possible. Likewise, bases that are not of plate construction are contemplated. The hinge connection 70 enables the anchor component 13 to move between the anchoring orientation (e.g.,
The illustrated embodiment of
Referring again to
In this regard, in some embodiments the hinge connection between the two components may include a useful install feature. Specifically, as best seen in
Referring again to anchor assembly 10, although the number of wallboard penetrating retainers can vary, in the illustrated embodiment two wallboard penetrating retainers 28 extend from the base plate 14, and two wallboard penetrating retainers 128 extend from the outer plate 114. Notably, the two wallboard penetrating retainers 28 are laterally spaced apart by a distance D1 and the two wallboard penetrating retainers 128 are laterally spaced apart by a distance D2, where D2 is smaller than D1. Thus, as viewed from the top plan view of
As shown, the back side 118 of the outer plate 114 may at least in part abut and/or seat against the front side 16 or other part of the base plate 14 when the anchor component 13 is in the anchoring orientation. This arrangement provides for stability of the overall anchor assembly and enables a user to readily recognize when the anchor assembly is fully installed. Such contact may be achieved be engaged planar surfaces, or one or more discrete contact points of contact between the back of the outer plate and the base plate, and in some cases very small contact points or area could be provided between the two. In other arrangements some contact points between the outer plate 114 and the wall surface 12A could be provided for stability.
In the illustrated embodiment, the wallboard penetrating retainers 128 of the outer plate 114 pass below the bottom side or edge of the base plate 14 when the anchor component 13 is in the anchoring orientation. However, it is recognized that other variations are possible, such as the inclusion of one or more openings in the base plate 14 through which the retainers 128 extend when the anchor component 13 is moved to the anchoring orientation, or such as the retainers 128 passing around the left and right sides of the base plate 14 (as suggested by the anchor 10E shown in
The basic two anchor component arrangement provides for an advantageous and user friendly method for installation. In particular, referring to
Notably, as mentioned above, the wallboard penetrating extents 29 of the retainers 28 have a primarily downwardly curved configuration and the wall penetrating extents 129 of the retainers 128 have a primarily upwardly curved configuration when anchor component 13 is in the anchoring orientation. In this regard, the wallboard penetrating extents 29 and 129 are both preferably arcuate. In such implementations, the radius of curvature R28 defined of the arcuate extents 29 may have a center point 34 that is proximate the bottom side of the base plate 14. In particular, the center point 34 of the radius of curvature R28 may desirably be positioned at a rear, bottom corner of the base plate where the bottom side of the base plate meets the back side of the base plate as shown. This geometry minimizes the energy and force required to insert the retainers 28, minimizes damage to the wall and results in small wall surface perforations when the anchor is removed. For similar reasons, the wallboard penetrating retainers 128 may have a radius of curvature R128 with a center point 134 substantially aligned with the pivot axis of the hinge connection 70, though this pivot axis may move slightly due to play in the hinge. This pivot axis runs substantially parallel to a wall mount plane 41 of the base 14, where plane 41 is defined by one or more portions of the back side of the base 14 that will seat against the front wall surface 12A upon install of the anchor assembly.
In one implementation, each radius of curvature R28 and R128 may be between about 1.20 inches and about 1.45 inches. However, in the anchor assembly 10 the radius of curvature R128 will be slightly smaller than the radius of curvature R28, resulting in the wall penetrating extents 129 of retainers 128 passing into and within the wall 128 at a slightly more aggressive angle than the extents 29 of retainers 28, as seen in
Where the retainers 128 on the outer plate 114 are the same size as the retainers 28 on base plate 14, when the outer plate is in the anchoring orientation, a spacing between the back side or wall mount plane 41 of the base plate 14 and a distal end of the wallboard penetrating retainers 28 will be slightly greater than a spacing between the back side of the base plate 14 and a distal end of the wallboard penetrating retainers 128. However, other variations are possible, such as where retainers 128 are slightly longer than retainers 28 so that the distal ends of both the retainers 28 and 128 end up at substantially the same depth (measured perpendicular to wall surface 12A) in the wall 12, as will described in more detail below.
Referring now primarily to
Notably, the initial forward progression feature described above also displaces or offsets the retainers 28 from the base 14 and the retainers 128 from the base 114. In fact, in the illustrated embodiment although the wall penetrating extents 29 and 129 are located rearward of the base 14 (when anchor component 13 is in the anchoring orientation), the extents 29 and 129 are not located directly behind the base 14, which aids in pull-out retention.
In order to facilitate anchor installation, the wall penetrating retainers 28 and 128 can also be configured with other advantageous features.
For example, to facilitate manual wallboard penetration and passage without tools, utilizing thumb force only (e.g., applied at the thumb capture zones), the wallboard penetrating retainers 28 and 128 may be formed with a relatively smooth external surface finish (e.g., achieved by polishing, painting or plating). In this regard, the surface of the wallboard penetrating retainers 28 and 128 can be manufactured with or modified to a maximum average surface roughness of about 20 μinch (e.g., in some cases n a maximum average surface roughness of about 15 μinch). In one implementation, just the wallboard penetrating extent of each of the wallboard penetrating retainers is worked, processed or otherwise formed to achieve this desired low surface roughness feature in order to reduce manufacturing cost. The latter implementation would reduce install force but maintain friction on the rougher portions of the penetrating retainer to resist removal forces. The retainers may have a polished surface finish and/or a plated surface finish and/or a painted finish and/or a lubricant (e.g., Teflon) incorporated into the surface finish.
The distal ends of the retainers 28 and 128 may also be configured to facilitate installation. In this regard, and referring to
Proper sizing of the wallboard penetrating retainer(s) can also be used to achieve more user friendly performance of an anchor. In particular, and referring again to
Generally, by properly selecting the cross-sectional size and number of wall penetrating retainers used on each anchor component and/or by incorporating one or more of the above wall penetrating retainer features, each anchor component can be manually inserted into type X gypsum wallboard (with physical characteristics per the ASTM C1396—Standard Specification For Gypsum Board) by positioning the bottom (or distal) side adjacent the wallboard and rotating the anchor upward to move the wallboard penetrating member into the wallboard with a force P (
In one example, such low insertion forces for the retainer(s) of a given anchor may be achieved where the retainers have pointed distal ends as described above and a generally uniform cross-section along the remainder of the wall penetrating extent of the retainer, where an area of the cross-section is no more than about 2.5 mm2. In one example, in the case retainers of rectangular cross-section as suggested in anchor 10, the main segment of the wall penetrating extent of each retainer may be on the order of 0.042 inches by 0.068 inches (e.g., 0.042 inches thick and 0.068 inches wide), resulting in a cross-sectional area of about 0.00286 in2 (about 1.845 mm2). In another example, the main segment of the wall penetrating extent may have a rectangular cross-section on the order of 0.050 inches by 0.075 inches (e.g., 0.050 inches thick and 0.075 inches wide), resulting in a cross-sectional area of about 0.00375 in2 (about 2.419 mm2). Regardless of whether one or multiple retainers are used, it may be advantageous (e.g., for the purpose of ease of install and/or for the purpose of limiting wall damage) to assure that the total retainer cross-sectional area (e.g., the cross-sectional area of one retainer if only one is used or the total cross-sectional area of two retainers if two retainers are used) is no more than about 5 mm2 (about 0.008 square inches, or in some cases no more than about 6 mm2), where the cross-section of each wall penetrating extent of the retainer is taken perpendicularly to a lengthwise axis 292 (
Referring primarily to
Notably, the offset nature of the flanges 160 by way of the aforementioned forward bend may also create a vertical channel 165 (
Referring to
Referring again to
As shown in
Referring to
In the hook unit 400, the hook 402 is formed separately from the mount base 404 and connected thereto by a fastener 420. However, in other embodiments the hook and mount base could be formed as a monolithic structure (e.g., molded as a unit), such as the fashion hook 170 shown in
Of course, members other than hooks could be mounted to the anchor assembly 10. For example, referring to
Referring now to
As mentioned above, other anchor assembly configurations are possible. Although the illustrated base plate and outer plate are contemplated as monolithic structures (e.g., produced by a progressive forming operation), the retainers could be formed separately (e.g., of wire form) and then attached to the respective plates.
Referring now to
It is recognized that other types of structures to achieve the relative vertical shift between the two plates are possible. By way of example, referring to the anchor assembly 10D of
While the embodiments above primarily contemplate anchor assembly install orientations of a vertical type (i.e., where the wall penetrating retainers curve downward from the base plate and upward from the outer plate), it is recognized that anchor assemblies having a horizontal type install are also possible. By way of example, referring to
In this regard, reference is made to
Notably, in the illustrated embodiment the pivot axis 261 of the outer plate is displaced from the wall and major portion 270 of the base plate as indicated above. This arrangement provides for an install orientation in which the outer plate retainers 128E enter the wall 12 at a more aggressive angle (relative to the wall surface or wall contacting portions of the base plate) than the base plate retainers 28E as best seen in
In addition to the horizontal type install, it is also recognized that in some embodiments of the vertical type install it may be desirable to have the base plate retainers extend rearward and upward and to have the outer plate retainers extend rearward and downward. In such cases the anchor assembly may still include side flanges for mating with secondary components, where such side flanges angle rearwardly when moving vertically downward and angle toward each other when moving vertically upward.
Although the illustrated embodiments contemplate that members (e.g., such as hooks and shelves) are secured to an anchor assembly against removal by their angular interaction it is recognized that they could alternately made with non-angular mating features and employ snap or spring features to achieve the secure fit.
In reference to the method of anchor installation, it is also recognized that a template system could be employed in furtherance of anchor installation and would be particularly useful for installations that require more than one anchor assembly (i.e., where the secondary component mounts to more than one anchor assembly). In this regard, and referring to
Generally, the spacing between slots 602 would match the spacing between the mount structure at the back of the member to be installed on the wall. While only two slots 602 are shown, more slots could be provided if the component to be mounted is configured for mounting to a greater number of anchor assemblies. The template may be formed of any suitable die-cut material such as paper, cardboard or plastic sheet.
It is further contemplated that complete systems, which can be sold as a kit, could include multiple templates for multiple corresponding components to be mounted. For example, where a kit with multiple shelf members could include multiple corresponding templates along with the corresponding number of necessary anchor assemblies. Each template could generally be shaped and sized similar to that of its corresponding shelf so that when the template(s) is/are place on the wall they provide the user with a good view of what the shelf orientation on the wall will be.
The template system facilitates an install method that enables the end user to visually perceive and evaluate the desirability of the selected install location on a wall. In particular, a method of mounting first and second members (e.g., two shelves, or a shelf and a mirror) on a wall may involve: utilizing first and second template units, the first template unit having a profile shape substantially the same as a profile shape of the first member, the first template unit having at least one opening that defines at least a first wall anchor install location, the first template unit includes a wall side with one or more adhesive regions to enable the first template unit to be releasable mounted on the wall, the second template unit having a profile shape substantially the same as a profile shape of the second member, the second template unit having at least one opening that defines at least a first wall anchor install location, the second template unit includes a wall side with one or more adhesive regions to enable the second template unit to be releasable mounted on the wall; adhesively mounting the first template unit on the wall at a first potential location for mount of the first member; adhesively mounting the second template unit on the wall at a second potential location for mount of the second member; and viewing a relative location and orientation of each of the first template unit and the second template unit at a distance from the wall to evaluate whether the relative location and orientation is desired.
If the relative location and orientation is desired, the method further involves: mounting a first anchor (or anchors) at the first wall anchor install location defined by the first template unit; mounting a second anchor (or anchors) at the second wall anchor install location defined by the second template unit; engaging the first member to the first anchor such that the first member is mounted on the wall with the profile of the first member located substantially the same as the profile of the first template unit; and engaging the second member to the second anchor such that the second member is mounted on the wall with the profile of the second member located substantially the same as the profile of the second template unit. In one example, when the first member is engaged with the first anchor the first template unit is maintained on the wall and covered by the first member, and when the second member is engaged with the second anchor the second template unit is maintained on the wall and covered by the second member. In another example, the method involves removing the first template unit from the wall prior to engaging the first member to the first anchor, and removing the second template unit from the wall prior to engaging the second member to the second anchor.
If the relative location and orientation is not desired, the method further involves: repositioning at least one of the first template unit and/or the second template unit and repeating the viewing step until an achieved relative location and orientation is achieved and thereafter carrying out the anchor mounting and engaging operations:
It is to be clearly understood that the above description is intended by way of illustration and example only, is not intended to be taken by way of limitation, and that other changes and modifications are possible. For example, the anchor components could be formed with snap in place retainers (e.g., wire form retainers that snap into place on metal or plastic plate) or the anchor components could be produced using an overmold process (e.g., an overmold to connect retainers to a plastic plate or an overmold of the metal plate and retainer combination).
A variety of items can be supported on a wall by such anchor assemblies, including a hook, a clothing rack, a shadow box, a picture, a mirror, a shelf or an electronics device.
Moreover, while the embodiments shown above each a wall abutting anchor component with a single outer anchor component connected thereto, it is recognized that an elongated variation could have more anchor components, as suggested by the anchor assembly 10G shown in
Number | Name | Date | Kind |
---|---|---|---|
113862 | Duffett | Apr 1871 | A |
165206 | Brown | Jul 1875 | A |
251616 | McGill | Dec 1881 | A |
297173 | Seliger | Apr 1884 | A |
371205 | McConnoughay | Oct 1887 | A |
423730 | Charlton | Mar 1890 | A |
444933 | Barnes | Jan 1891 | A |
489593 | Ramer | Jan 1893 | A |
763448 | Winter | Jun 1904 | A |
769794 | Fowler | Sep 1904 | A |
777879 | Blum | Dec 1904 | A |
795704 | Jones | Jul 1905 | A |
874412 | Lewis | Dec 1907 | A |
938998 | Evans | Nov 1909 | A |
965151 | Benjamin | Jul 1910 | A |
992203 | Johnson | May 1911 | A |
998015 | Kopsa | Jul 1911 | A |
1002910 | Foote | Sep 1911 | A |
1270718 | Ford | Jun 1918 | A |
1306114 | Koval | Jun 1919 | A |
1343855 | Tyler | Jun 1920 | A |
1425873 | Lineaweaver | Aug 1922 | A |
1651392 | Honigbaum | Dec 1927 | A |
1802934 | Balch | Apr 1931 | A |
1883834 | Turner | Oct 1932 | A |
1958497 | Rivers | May 1934 | A |
2062887 | Karst | Dec 1936 | A |
2119931 | Smith | Jun 1938 | A |
2295370 | Tritt | Sep 1942 | A |
2317368 | Frey | Apr 1943 | A |
2334700 | Frey | Nov 1943 | A |
2505324 | Cornelius | Apr 1950 | A |
2539825 | Genua | Jan 1951 | A |
2577011 | Hallenscheid | Dec 1951 | A |
2751807 | Harre | Jun 1956 | A |
2980309 | Papas Louis | Apr 1961 | A |
3001752 | Loy | Sep 1961 | A |
3004815 | O'Kain | Oct 1961 | A |
3020602 | Siering | Feb 1962 | A |
3029056 | Breglia | Apr 1962 | A |
3174592 | Berman | Mar 1965 | A |
3226065 | Smith | Dec 1965 | A |
3298651 | Passer | Jan 1967 | A |
3319917 | Bilodeau | May 1967 | A |
3425568 | Albright | Feb 1969 | A |
3482706 | Stewart | Dec 1969 | A |
3503147 | Herrin | Mar 1970 | A |
3524584 | Ihlenfeld | Aug 1970 | A |
3589758 | King | Jun 1971 | A |
3601428 | Gilb | Aug 1971 | A |
3620404 | Grasso | Nov 1971 | A |
3640497 | Waki | Feb 1972 | A |
3666936 | Webster | May 1972 | A |
3685778 | Berns | Aug 1972 | A |
3754805 | Pangburn | Aug 1973 | A |
3775884 | Smith | Dec 1973 | A |
3799072 | Slaboden | Mar 1974 | A |
3813800 | Turner | Jun 1974 | A |
3859002 | Sauey | Jan 1975 | A |
3861631 | Shorin | Jan 1975 | A |
3891172 | Einhorn | Jun 1975 | A |
3912211 | Topf | Oct 1975 | A |
3926394 | Mauceri et al. | Dec 1975 | A |
3929194 | Warfel | Dec 1975 | A |
3966157 | Corral et al. | Jun 1976 | A |
3995822 | Einhorn et al. | Dec 1976 | A |
4017048 | Einhorn | Apr 1977 | A |
4039138 | Einhorn | Aug 1977 | A |
4040149 | Einhorn | Aug 1977 | A |
4082243 | Watt | Apr 1978 | A |
4083314 | Garvin | Apr 1978 | A |
4124189 | Einhorn | Nov 1978 | A |
4134625 | Palka | Jan 1979 | A |
D255301 | Windisch | Jun 1980 | S |
4208012 | Dutcher | Jun 1980 | A |
4221442 | Harangozo | Sep 1980 | A |
D257219 | Cook | Oct 1980 | S |
4228982 | Sellera | Oct 1980 | A |
4237630 | Franzone | Dec 1980 | A |
4262605 | Sokol | Apr 1981 | A |
4270821 | Verdesca | Jun 1981 | A |
4293173 | Tricca | Oct 1981 | A |
4294778 | DeLuca | Oct 1981 | A |
4300745 | Peterson | Nov 1981 | A |
4304447 | Ellwood | Dec 1981 | A |
4317603 | Pepicelli | Mar 1982 | A |
4333625 | Haug | Jun 1982 | A |
4340144 | Cousins | Jul 1982 | A |
4372450 | Licari | Feb 1983 | A |
4422608 | Hogg | Dec 1983 | A |
4452500 | Zlotnik | Jun 1984 | A |
4458387 | Pearson | Jul 1984 | A |
4485995 | Hogg | Dec 1984 | A |
4505226 | Carlson | Mar 1985 | A |
4506856 | Rich | Mar 1985 | A |
4572380 | Langwell | Feb 1986 | A |
4583647 | Schinzing | Apr 1986 | A |
D285743 | Richwine | Sep 1986 | S |
4613108 | Sundstrom et al. | Sep 1986 | A |
D286118 | Gecchelin | Oct 1986 | S |
4619430 | Hogg | Oct 1986 | A |
4621473 | Wendt | Nov 1986 | A |
4655423 | Schavilje et al. | Apr 1987 | A |
4681380 | Carlin | Jul 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4775129 | Gleisten | Oct 1988 | A |
4831754 | Tallent | May 1989 | A |
4910934 | Hennings | Mar 1990 | A |
4932519 | Trauschke | Jun 1990 | A |
4976057 | Bianchi | Dec 1990 | A |
4998361 | Gordon | Mar 1991 | A |
5103573 | Ehling | Apr 1992 | A |
5107601 | Semchuck | Apr 1992 | A |
5110080 | Rieman | May 1992 | A |
5135194 | Laughon | Aug 1992 | A |
5138134 | Ellison | Aug 1992 | A |
5149037 | Smith | Sep 1992 | A |
5241715 | Duvall | Sep 1993 | A |
5265357 | Yu | Nov 1993 | A |
5267719 | Keller | Dec 1993 | A |
5325815 | Gumpesberger | Jul 1994 | A |
5332108 | Blass | Jul 1994 | A |
5372346 | Upchurch | Dec 1994 | A |
5401094 | Walsten | Mar 1995 | A |
5407160 | Hollingsworth | Apr 1995 | A |
5433416 | Johnson | Jul 1995 | A |
5454542 | Hart | Oct 1995 | A |
5477010 | Buckshaw | Dec 1995 | A |
5484126 | Kitchin | Jan 1996 | A |
5495954 | Schmidt | Mar 1996 | A |
5507248 | Gabbed | Apr 1996 | A |
5517947 | Christman | May 1996 | A |
5570938 | Butler | Nov 1996 | A |
5586934 | Dombrowski | Dec 1996 | A |
5605313 | Erickson | Feb 1997 | A |
5613660 | Wyatt | Mar 1997 | A |
5638644 | Bastian | Jun 1997 | A |
5641079 | Schmidt | Jun 1997 | A |
5727698 | Lai | Mar 1998 | A |
5743038 | Soto | Apr 1998 | A |
5806223 | Visagie | Sep 1998 | A |
D399692 | Wilcox | Oct 1998 | S |
5819958 | Dement | Oct 1998 | A |
5839649 | Clark | Nov 1998 | A |
5878988 | Rakower | Mar 1999 | A |
5906032 | Fredriksson | May 1999 | A |
6009681 | Kozloff | Jan 2000 | A |
6042243 | Grill | Mar 2000 | A |
6045374 | Candeloro | Apr 2000 | A |
6051788 | Nichols | Apr 2000 | A |
6109461 | Kluge | May 2000 | A |
6082560 | Timm | Jul 2000 | A |
6101780 | Kreidt | Aug 2000 | A |
6126126 | McKiernan, Jr. | Oct 2000 | A |
6135409 | O'Keeffe | Oct 2000 | A |
D434303 | DeCosta | Nov 2000 | S |
6158828 | Vacovsky | Dec 2000 | A |
D436841 | Carpenter | Jan 2001 | S |
6173848 | Bravo | Jan 2001 | B1 |
6179136 | Kluge | Jan 2001 | B1 |
6196141 | Herron, III et al. | Mar 2001 | B1 |
6202838 | Tran | Mar 2001 | B1 |
6260489 | Weaver et al. | Jul 2001 | B1 |
6279862 | Gershowitz | Aug 2001 | B1 |
6286802 | Munson | Sep 2001 | B1 |
6299001 | Frolov | Oct 2001 | B1 |
6325345 | Carpenter | Dec 2001 | B1 |
6351905 | Dean | Mar 2002 | B1 |
6357608 | Timm | Mar 2002 | B1 |
6371427 | Johnson | Apr 2002 | B1 |
6431510 | Lydecker | Aug 2002 | B1 |
6439520 | Johnson | Aug 2002 | B1 |
D465348 | Lucatello | Nov 2002 | S |
6478273 | McKiernan, Jr. et al. | Nov 2002 | B1 |
6520355 | Pritchard et al. | Feb 2003 | B1 |
6572063 | Gitelman | Jun 2003 | B1 |
6585205 | Beaty | Jul 2003 | B2 |
6641107 | Janssen | Nov 2003 | B1 |
6641344 | Weiss | Nov 2003 | B2 |
6644609 | Scott | Nov 2003 | B1 |
6659295 | De Land et al. | Dec 2003 | B1 |
6663201 | Herron, III et al. | Dec 2003 | B2 |
D486057 | Chen | Feb 2004 | S |
6726034 | Holbrook et al. | Apr 2004 | B2 |
6758454 | Smed | Jul 2004 | B2 |
D494452 | Sheldon et al. | Aug 2004 | S |
6775935 | Cohen et al. | Aug 2004 | B1 |
6830228 | Ernst | Dec 2004 | B2 |
6932225 | Rowe | Aug 2005 | B2 |
D511088 | Chiu | Nov 2005 | S |
D513562 | Boffo | Jan 2006 | S |
D515911 | McDuff | Feb 2006 | S |
6994448 | Gorrell | Feb 2006 | B1 |
D516412 | McDuff | Mar 2006 | S |
D517344 | Zens | Mar 2006 | S |
7086543 | Remmers | Aug 2006 | B2 |
7146760 | Yiu | Dec 2006 | B2 |
7178305 | Petrova | Feb 2007 | B2 |
7210243 | Schmidt | May 2007 | B2 |
7216841 | Dodig | May 2007 | B2 |
7225590 | diGirolamo | Jun 2007 | B1 |
7225935 | Breymaier | Jun 2007 | B2 |
D554483 | Hager et al. | Nov 2007 | S |
7395998 | Peterson | Jul 2008 | B2 |
7398013 | He | Jul 2008 | B2 |
7431258 | Lamotta | Oct 2008 | B2 |
7478785 | Herron, III et al. | Jan 2009 | B2 |
7497028 | Nevers et al. | Mar 2009 | B2 |
7506772 | Chen | Mar 2009 | B2 |
D596930 | Gaudron | Jul 2009 | S |
7591097 | Alman | Sep 2009 | B2 |
D606185 | Wefler | Dec 2009 | S |
7669723 | Kao | Mar 2010 | B2 |
7694401 | Peterson | Apr 2010 | B2 |
7708252 | Vander Berg et al. | May 2010 | B2 |
7900783 | Fernandez | Mar 2011 | B2 |
D635843 | McDuff et al. | Apr 2011 | S |
D636256 | McDuff et al. | Apr 2011 | S |
7931159 | Kao | Apr 2011 | B2 |
7967268 | Herron, III et al. | Jun 2011 | B2 |
RE42649 | Schultz | Aug 2011 | E |
D649022 | McDuff et al. | Nov 2011 | S |
D649023 | McDuff et al. | Nov 2011 | S |
D649436 | McDuff et al. | Nov 2011 | S |
D649437 | McDuff et al. | Nov 2011 | S |
D649438 | McDuff et al. | Nov 2011 | S |
D649439 | McDuff et al. | Nov 2011 | S |
D650261 | McDuff et al. | Dec 2011 | S |
8074603 | Ohlman | Dec 2011 | B2 |
8087521 | Schwartzkopf et al. | Jan 2012 | B2 |
8096026 | Bevirt | Jan 2012 | B2 |
8114226 | Ernst et al. | Feb 2012 | B2 |
8146755 | Schwartzkopf et al. | Apr 2012 | B2 |
8177079 | Schwartzkopf et al. | May 2012 | B2 |
8210368 | Schwartzkopf | Jul 2012 | B2 |
8256628 | Stafford et al. | Sep 2012 | B2 |
8272610 | Ernst et al. | Sep 2012 | B2 |
8308116 | Daniels | Nov 2012 | B2 |
8317148 | Ernst et al. | Nov 2012 | B2 |
D672224 | Brinson et al. | Dec 2012 | S |
8333356 | Ernst et al. | Dec 2012 | B2 |
8398048 | Popkin et al. | Mar 2013 | B2 |
8414239 | McDuff | Apr 2013 | B2 |
8434629 | Fernanadez | May 2013 | B2 |
8448910 | Ernst et al. | May 2013 | B2 |
8517189 | Donohoe | Aug 2013 | B2 |
RE44504 | Schultz | Sep 2013 | E |
8544805 | Virgin | Oct 2013 | B2 |
8667701 | Geesaman | Mar 2014 | B1 |
8667765 | McCarthy | Mar 2014 | B1 |
8740171 | Crescenzo | Jun 2014 | B2 |
8757570 | Ernst et al. | Jun 2014 | B2 |
8813404 | Goppion | Aug 2014 | B2 |
8833876 | Lee | Sep 2014 | B2 |
8839964 | Hawkins | Sep 2014 | B2 |
8857780 | Goss | Oct 2014 | B1 |
D717114 | Katterheinrich | Nov 2014 | S |
8974166 | McDuff | Mar 2015 | B2 |
D731716 | Kuiper | Jun 2015 | S |
9044110 | McDuff et al. | Jun 2015 | B2 |
9151585 | Sanchez | Oct 2015 | B2 |
D744773 | Yoon | Dec 2015 | S |
9261229 | Callif et al. | Feb 2016 | B2 |
9296552 | Schleuning | Mar 2016 | B2 |
9307837 | Wood | Apr 2016 | B2 |
9380885 | Nguyen | Jul 2016 | B1 |
9429178 | Hampel | Aug 2016 | B2 |
9496695 | Battaglia | Nov 2016 | B2 |
9563078 | Ryu | Feb 2017 | B2 |
9593523 | Trimble | Mar 2017 | B1 |
D783907 | Ohlman | Apr 2017 | S |
9668596 | Crescenzo | Jun 2017 | B2 |
D794424 | Thompson | Aug 2017 | S |
D797464 | Vitale | Sep 2017 | S |
9826828 | Vaughan | Nov 2017 | B1 |
D804287 | Baldwin | Dec 2017 | S |
20020026736 | Spencer | Mar 2002 | A1 |
20020078583 | Richardson | Jun 2002 | A1 |
20020088912 | Yu | Jul 2002 | A1 |
20020182910 | Kiughadush | Dec 2002 | A1 |
20030052073 | Dix | Mar 2003 | A1 |
20030071182 | Beaty et al. | Apr 2003 | A1 |
20030161680 | Suckow | Aug 2003 | A1 |
20030178545 | Ernst | Sep 2003 | A1 |
20040231218 | Dominioni | Nov 2004 | A1 |
20040261307 | Siegel | Dec 2004 | A1 |
20050000854 | Madigan | Jan 2005 | A1 |
20050017147 | Fuelling | Jan 2005 | A1 |
20050279041 | Staples | Dec 2005 | A1 |
20060180557 | Weinstein | Aug 2006 | A1 |
20060182517 | McDuff | Aug 2006 | A1 |
20070006504 | Kao | Jan 2007 | A1 |
20070063119 | Hunag | Mar 2007 | A1 |
20070084743 | Chu | Apr 2007 | A1 |
20070124910 | Peterson et al. | Jun 2007 | A1 |
20070194202 | Lamotta | Aug 2007 | A1 |
20070205344 | Liermann et al. | Sep 2007 | A1 |
20070235622 | Baran et al. | Oct 2007 | A1 |
20070256850 | Hanse | Nov 2007 | A1 |
20080053934 | Newbould et al. | Mar 2008 | A1 |
20080142660 | Goldberg | Jun 2008 | A1 |
20080187688 | Gunther | Aug 2008 | A1 |
20080251682 | Repac | Oct 2008 | A1 |
20080283205 | Zimmer | Nov 2008 | A1 |
20080296456 | Lien | Dec 2008 | A1 |
20080302936 | Forbes et al. | Dec 2008 | A1 |
20090015121 | Sampson | Jan 2009 | A1 |
20090145804 | Kabel | Jun 2009 | A1 |
20090307953 | Ahlstrom | Dec 2009 | A1 |
20100005756 | McDuff | Jan 2010 | A1 |
20100084530 | Lai | Apr 2010 | A1 |
20100178448 | Nakajima | Jul 2010 | A1 |
20100193455 | Russell et al. | Aug 2010 | A1 |
20100213333 | Mejia et al. | Aug 2010 | A1 |
20100219312 | Johnson et al. | Sep 2010 | A1 |
20100300999 | Schwartzkopf | Dec 2010 | A1 |
20100326019 | Lofgren | Dec 2010 | A1 |
20110024585 | Brinkdopke | Feb 2011 | A1 |
20110147236 | Johnson | Jun 2011 | A1 |
20110188250 | Waldhuetter | Aug 2011 | A1 |
20110294320 | Bennett | Dec 2011 | A1 |
20120001039 | McDuff et al. | Jan 2012 | A1 |
20120001040 | McDuff et al. | Jan 2012 | A1 |
20120056051 | Gold | Mar 2012 | A1 |
20120080343 | Gretz | Apr 2012 | A1 |
20120146470 | Katz | Jun 2012 | A1 |
20130105426 | Dyck | May 2013 | A1 |
20130105653 | Borys | May 2013 | A1 |
20140144055 | Byfield | May 2014 | A1 |
20140212602 | Thornton | Jul 2014 | A1 |
20140231604 | Long | Aug 2014 | A1 |
20140248105 | Namekawa | Sep 2014 | A1 |
20140259840 | Placko | Sep 2014 | A1 |
20140263122 | Roberts | Sep 2014 | A1 |
20140263924 | Crescenzo | Sep 2014 | A1 |
20140346310 | Yang | Nov 2014 | A1 |
20150016970 | Smith et al. | Jan 2015 | A1 |
20150060627 | Stauber | Mar 2015 | A1 |
20150308613 | Callif et al. | Oct 2015 | A1 |
20160029814 | Brown | Feb 2016 | A1 |
20170000270 | Will | Jan 2017 | A1 |
20170246546 | Brown | Aug 2017 | A1 |
20170347812 | Will | Dec 2017 | A1 |
20180100617 | Forrest | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
1050759 | Apr 1991 | CN |
1096558 | Dec 1994 | CN |
2209493 | Oct 1995 | CN |
1154159 | Jul 1997 | CN |
2449598 | Sep 2001 | CN |
201012022 | Jan 2008 | CN |
201351654 | Nov 2009 | CN |
201542372 | Aug 2010 | CN |
103702592 | Apr 2014 | CN |
676903 | Aug 1952 | GB |
WO 1999052741 | Oct 1999 | WO |
WO2007095351 | Aug 2007 | WO |
WO 2015150222 | Oct 2015 | WO |
Entry |
---|
List of Patents or Patent Applications Treated As Related, submitted herewith. |
PCT, International Search Report and Written Opinion, International Application No. PCT/US2016/039719; dated Nov. 10, 2016, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20190142188 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62186908 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15686472 | Aug 2017 | US |
Child | 16186681 | US | |
Parent | 15195168 | Jun 2016 | US |
Child | 15686472 | US |