The present disclosure concerns embodiments of an apparatus and method for making a wall block, such as for constructing retaining walls or fences.
Masonry products, such as blocks or bricks for constructing walls, have been made for many years by various molding processes. It is common to split off a portion of a cured block, such as with a splitting machine or a hammer and chisel, so as to create a decorative face on a surface of the block that resembles the surface texture of natural stone. The face created by the splitting process is often referred to in the industry as “split face” or “rock face.” Blocks formed with a split face are highly appealing for constructing retaining walls and fences. The splitting of cured blocks, however, involves additional equipment and manufacturing steps and results in material wastage.
In order to avoid the shortcomings of conventional splitting processes, a number of techniques have been developed to achieve the same “split face” texture without additional splitting steps. For example, U.S. Pat. No. 7,100,866 to Hammer et al. discloses a mold having a series of inwardly extending projections that contact an adjacent surface of an uncured block in the mold. As the uncured block is stripped from the mold, the projections create a roughened or irregular surface texture on the adjacent block surface resembling a “split face.”
It is also desirable to create an “ashlar” or random pattern in the exposed face of a retaining wall or fence to provide the appearance of a wall made from natural stone blocks. Various block systems have been proposed to create an ashlar pattern in a wall. These block systems typically comprise multiple blocks of different sizes that can be randomly stacked together in a wall. Another technique used to form an ashlar pattern involves stamping or molding into the surface of an uncured block a pattern that resembles the faces of multiple, differently sized blocks. This allows construction of a wall having an ashlar pattern using multiple blocks of the same size and shape.
According to one aspect, the present disclosure concerns embodiments of a wall block, and apparatus and method for making a wall block, such as for constructing retaining walls or fences, that has at least one face or surface formed with a pattern resembling the faces of multiple blocks. In particular embodiments, the surface of the wall block has a plurality of discrete surface portions that are separated by one or more elongated recessed surface portions or scores such that each surface portion resembles the face of a separate block. The surface portions can be provided with roughened surface textures resembling the surface of a split block, which can be formed by roughening or texturing the uncured block as it is removed from a mold. Instead of recessed surface portions separating the surface portions on a block face, the block face can be formed with a flat, non-roughened elongated surface portion that extends between and separates two surface portions on the block face.
The surface portions desirably are different sizes so that a wall constructed from multiple blocks of the same size has the appearance of being constructed from multiple blocks of different sizes. The surface portions include at least first and second surface portions that are offset relative to each other in a direction perpendicular to the block surface. In other words, one surface portion extends outwardly a greater distance than the other surface portion. The offset surface portions enhance the visual appearance of a wall constructed from multiple blocks by creating a shadowing effect on the surface of the wall and by creating the appearance of a random block pattern in the wall, mimicking a wall constructed from natural stone. The surface portions can be positioned side-by-side or one above the other on the block face. Where the block face is formed with more than two surface portions, the surface portions can be positioned side-by-side and/or one above the other on the block face.
The roughened surface texture on the surface portions can be produced by forming the block in a mold having a mold wall including a plurality of projections extending into the mold cavity and contacting an adjacent surface of the block. The projections are arranged in sets of projections for forming the discrete surface portions on the surface of the block. The projections are configured such that as an uncured block is removed from the mold, the projections move across the adjacent surface of the block and create a roughened surface texture on each surface portion on the block. To create an offset between the surface portions, one set of projections is offset inwardly in a direction perpendicular to the inside surface of the mold wall relative to another set of projections to form two offset surface portions in the face of the block. The mold wall can include an elongated bar that extends between the sets of projections and is effective to create a notch or score on the block face between the surface portions. Alternatively, the inside surface of the mold wall can have a flat surface portion that extends between two sets of projections on the mold wall so as to form a corresponding flat, non-roughened surface portion extending between and separating two roughened surface portions on the block face.
According to one representative embodiment, an apparatus for molding and forming a roughened surface texture on at least one face of an uncured masonry block comprises a mold defining at least one mold cavity. The mold comprises a first opening through which block-forming material is introduced into the mold cavity, and a second opening through which a formed, uncured block may be removed from the mold cavity. The mold further comprises at least one wall having a plurality of projections extending into the mold cavity and contacting an adjacent face of the uncured block, such that when the uncured block is removed from the mold cavity, the projections create a roughened surface texture on at least a first surface portion and a second surface portion of the adjacent face. The at least one wall is also configured to form the first and second surface portions such that the first surface portion is offset relative to the second surface portion in a direction perpendicular to the adjacent face.
According to another representative embodiment, a method for forming a masonry block comprises introducing block-forming material into a mold cavity of a mold and forming an uncured block in the mold. The mold has a plurality of projections that extend into the mold cavity and are located between the top and bottom of the mold cavity. The uncured block has an adjacent surface which is adjacent to the plurality of projections and comprises at least a first surface portion and a second surface portion that are offset relative to each other in a direction perpendicular to the adjacent surface. The method further includes removing the uncured block from the mold cavity to move the projections across the first surface portion and the second surface portion so as to give a roughened appearance to the first surface portion and the second surface portion.
According to yet another representative embodiment, a masonry block is formed by a method comprising introducing block forming material into a mold defining at least one mold cavity and forming an uncured block in the mold cavity. The mold cavity has a first opening through which the block-forming material is introduced into the mold cavity, and a second opening through which the uncured block may be removed from the mold cavity. The mold also has a plurality of projections extending into the mold cavity. The uncured block has a surface adjacent to the plurality of projections and comprises at least a first surface portion and a second surface portion that are non-coplanar with respect to each other. The method further comprises removing the uncured block from the mold cavity to move the projections across the first surface portion and the second surface portions to create a roughened surface texture on each of the first and second surface portions.
The foregoing and other features and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
As used herein, the singular forms “a,” “an,” and “the” refer to one or more than one, unless the context clearly dictates otherwise.
As used herein, the term “includes” means “comprises.” For example, a device that includes or comprises A and B contains A and B but may optionally contain C or other components other than A and B. A device that includes or comprises A or B may contain A or B or A and B, and optionally one or more other components such as C.
As used herein, the term “ashlar pattern” refers to a pattern of differently sized block faces in the exposed surface of a wall or other structure constructed from multiple masonry blocks. The embodiments disclosed herein can be adapted to produce an ashlar pattern in at least one surface of a single block, so as to give the appearance of multiple block faces of different sizes.
As used herein, the term “masonry block” refers generally to any block that can be laid or stacked with other blocks to form a structure, such as a wall (e.g., a retaining wall or a fence), steps, or a structure providing a horizontal upper surface (e.g., a walkway or patio). A masonry block can have any geometric shape, including but not limited to a square, rectangle, trapezoid, diamond, or combinations thereof. The structures formed by masonry blocks need not utilize mortar to join adjacent blocks.
According to one aspect, the present disclosure concerns embodiments of an apparatus and method for making a masonry block having two or more roughened surface portions on the same surface of the block that are offset relative to each other to provide the appearance of two or more split faces of multiple blocks. In particular embodiments, the roughened surface portions are different sizes to create a random, or ashlar, pattern on one surface of the block. The embodiments described herein can be adapted to produce various types of masonry blocks, such as decorative architectural blocks, paving stones, landscaping blocks, retaining wall blocks, blocks for constructing fences or free-standing walls, steps, or walkways, and the like.
The first face 4 has first, second, and third surface portions 22, 24, and 26, respectively, separated by vertical scores, or notches 28. The second surface portion 24 is offset, or non-coplanar with respect to the first surface portion 22 and the third surface portion 26. The second surface portion 24 is offset outwardly relative to surface portions 22 and 26 so that the second surface portion 24 projects outwardly a greater distance in the surface of a wall than surface portions 22 and 26. The second face 6 illustrates an alternative face configuration comprising a first surface portion 32 and a second surface portion 34 separated by a notch 28. The first surface portion 32 is offset (outwardly), or non-coplanar with respect to the second surface portion 34. The outer edges 30 of each of the faces 4, 6 can be slightly beveled or angled such that when multiple blocks are stacked end-to-end in respective courses of a wall, the edges 30 of two adjacent blocks abut each other form a notch that is similar to notches 28. The surface portions of each face 4, 6 desirably have a roughened surface texture resembling a split block. The offset surface portions 22, 24, 26 create a shadowing effect and contribute to providing a unique, random block pattern in the wall.
It will be understood that the description of three surface portions 22, 24, 26 in the first face 4 and two surface portions 32, 34 in the second face 6 are merely exemplary and either face could have any number of surface portions separated by a notch 28 or a flat, non-roughened surface portion. Additionally, in a face having more than two surface portions, at least two of the surface portions could be co-planar and offset from a third surface portion or combined in any alternative arrangement, and any one of the surface portions could be the same size as or a different size than any other of the surface portions.
As shown in
The projections 110, 112 can have flat, smooth surfaces to form notches 28 and edges 30 that have flat, relatively smooth (non-roughened) surfaces, as depicted in
As shown in
Desirably, the projections 108 are distributed uniformly throughout the surface area of the first, second, and third roughening surfaces 102, 104, 106. As best shown in
As shown in
In the illustrated embodiment, the side surfaces 118, 120 of the projections 108 have slopes that are less than the slopes of the side surfaces 122, 124. This minimizes the likelihood of block-forming material being retained in the spaces between adjacent projections as the block 2 is being removed from the mold cavity. In an alternative embodiment, the side surfaces 118, 120, 122, 124 of each projection 108 can be oriented at the same angle with respect to the interior surface of the wall.
In particular embodiments, the diagonal rows of projections 106 extend at angles less than or greater than 45 degrees with respect to the upper and lower edges of the mold wall. As shown in
In an exemplary embodiment, the rows extending upwardly left to right, such as row 126, are oriented at an angle θ of about 60 degrees with respect to the wall upper edge, and the rows extending upwardly right to left, such as row 128, form an angle ω of about 30 degrees with respect the wall upper edge. In an alternative embodiment, the angles ω and θ are 45 degrees, in which case crests 110 of the projections are vertically aligned from the upper edge to the lower edge of the wall, as disclosed in U.S. Pat. No. 7,100,886, which is incorporated herein by reference.
As shown in
In the embodiment of
In one specific implementation, the projections 108 are machined in a piece of material (e.g., steel) to a depth of about ¼ inch. The width of each projection is about 0.87 inch at their respective bases 114 and about 0.19 inch at their respective end surfaces 116. Of course, these specific dimensions (as well as other dimensions provided in the present specification) are given to illustrate the invention and not to limit it. The dimensions provided herein can be modified as needed in different applications or situations.
In other embodiments, the projections 108 and/or the vertical bars 110, 112 may be separately formed and then coupled or otherwise mounted to the mold wall, such as by welding or with conventional releasable fasteners (e.g., bolts). If releasable fasteners are used, the bar and/or the projections can be removed and replaced with new components when the existing components become worn or otherwise deviate from desired tolerances.
For forming the second face 6 of the block 2, the mold can have a wall similar to wall 100, except having two offset roughening surfaces with projections 108 separated by a bar 110.
As best shown in
The mold 200 may be adapted for use with any conventional block-forming machine, such as those available from Columbia Machine (Vancouver, Wash.), Masa-USA, LLC (Green Bay, Wis.), Knauer Engineering (Germany), Besser, Inc. (Alpena, Mich.), Tiger Machine (Japan), or Hess Machinery (Ontario, Canada), to name a few.
A substantially horizontally disposed shoe, or plate, 240 (commonly referred to as a “mold head”) may be provided above each mold cavity to facilitate compression of the block-forming material during the block forming process and removal of the formed, uncured blocks 2a-2e from the mold cavities. The shoes 240, each of which is shaped so as to be able to fit slidably within a respective mold cavity, is operable for movement between a raised position above the mold 200 (
Forms or core bars (not shown) for forming the cores 16, 18 and the channel 20 in each block can be inserted into the mold cavities. The forms can be supported by bars (not shown) that extend transversely across the open top of the mold 200 and are supported by the side walls 206, 208 of the mold, as known in the art.
The shape of the mold cavities define the plan shape and size of the blocks (i.e., the shape and size of the block when viewed from above or below), with the vertical walls of the mold forming the vertical surfaces (the first and second faces 4, 6 and side surfaces 12, 14) of the blocks. The bottom and top surfaces 10, 8 of the blocks can be formed by the upper surface of the pallet 242 and the lower surfaces of the shoes 240, respectively.
The end walls 202, 204, and the internal walls 210-224, each have interior roughening surfaces configured to texture adjacent surfaces of the uncured blocks 2a-2e as they are removed from their respective mold cavities. As can be seen in
Each mold cavity in the configuration shown has a generally rectangular plan shape to provide a block having the same general geometric shape. However, the shape of each mold cavity can be varied to provide blocks having other geometrical plan shapes. For example, one or more of the walls defining a mold cavity can be configured to intersect an adjacent wall at an angle that is greater than or less than 90 degrees. In addition, one or more of the walls of a mold cavity may be curved or rounded. Alternatively, a wall may comprise plural segments interconnected to each other at angles. Moreover, a mold cavity may have greater than or less than four vertical walls.
Although each mold cavity of the illustrated mold 200 is shown as having two walls for texturing opposed surfaces of each block, in other embodiments, only one such wall may be used for each mold cavity, or alternatively, two adjacent such walls may be used, or more than two walls for texturing the surfaces of a block may be used. For example, selected portions of the side walls 206, 208 can have projections for texturing one or both side surfaces 12, 14 of one or more of the blocks.
In the illustrated embodiment, as shown in
In still other embodiments, any of the walls 202, 204, 210, 212, 214, 216, 218, 220, 222, 224 can be used as “inserts” for an existing mold wall. For example, an insert having the same configuration as end wall 202 can be placed in the mold cavity 226 against the inner surface of an existing end wall of the mold. When used in this manner, the inserts can be secured to the interior surfaces of existing walls of a mold using suitable techniques or mechanisms, such as using bolts or by welding the inserts in place.
Explaining the operation of the mold, according to one specific approach, and referring initially to
The mold 200, or the pallet 242, or a combination of both may be vibrated for suitable period of time to assist in the loading of the mold 200 with fill material. The shoes 242 are then lowered into the mold cavities 226, 228, 230, 232, 234, against the top of the mass of fill material in each cavity. The shoes 242 desirably are sized so as to provide a slight clearance with the projections 108 when lowered into the mold cavities. Additional vibration, together with the pressure exerted by the shoes acts to density the fill material and form the final shape of the blocks 2a-2e.
After the blocks are formed, the formed, uncured blocks are removed from the mold such as by raising the mold 200 (as indicated by arrow A in
For example, the projections 108 of the first, second, and third roughening surfaces 102, 104, 106 of the mold wall 204 contact surface portions 26, 24, and 22 (
Advantageously, unlike some prior art devices, the mold does not require concrete fill material to be retained on the inner surfaces of the mold walls for the purpose of creating roughened surfaces on the block. As such, the mold does not require frequent stoppages in production to clear material from the walls of the mold. Other techniques also can be used to minimize the retention of concrete on the inner surfaces of the mold, for example, a concrete release agent can be applied to the inner surfaces of the mold, wire brushes can be mounted to shoes 240 and positioned to sweep or brush the inner surfaces of the mold walls as the blocks are stripped from the mold, and/or compressed gas nozzles can be positioned to directed compressed gas (e.g., compressed air) against the inner surfaces of the mold after the blocks are removed from the mold to blow away excess concrete from the inner surfaces of the mold.
Because the amount of fill material, if any, retained on projections 108 is minimal, the blocks produced by the mold can maintain their dimensional tolerances through multiple cycles. Thus, in the illustrated example, the roughened surfaces 22, 24, 26 of the block 2e are substantially perpendicular to the top and bottom of the block.
The mold filling time, the vibration times and the amount of pressure exerted by the shoes 240 are determined by the particular block-forming machine being used, and the particular application. After the blocks are removed from the mold 200, they may be transported to a suitable curing station, where they can be cured using any suitable curing technique, such as, air curing, autoclaving, steam curing, or mist curing.
Each surface portion of faces 302, 304 can be formed with a roughened surface texture as described above. Further, unlike the block 2 shown
Turning to
Each face 502, 504 also can be formed with recessed portions, or notches, 516 extending between the top and bottom surfaces on each side of the respective face, and a recessed portion, or notch, 518 extending between the side surfaces adjacent the top surface. When constructing a wall with multiple blocks 500, the abutting notches 516 at the juncture of two adjacent blocks in the same course separate surface portions of one block from the surface portions of the adjacent block. Similarly, the notch 518 of a first block in wall separates and extends between the surface portions 506, 508 of the first block from the surface portion 510 of a second block stacked directly on top of the first block.
Turning to
The third roughening surface 612 is connected to the first and second roughening surfaces 604, 608, respectively, by a horizontally extending angled surface 614 that forms the angled surface 512 in the face of the block. As best shown in
The mold wall 600 can also have a horizontally extending lip, or screed, 620 at its bottom edge to flatten or smooth any high points on the third surface portion 510 on the block face. In addition, as best shown in
The block 500 can be formed in the manner described above by filling the mold cavity with block-forming material and removing the uncured block from the mold. Because the projections 108 of the first and second roughening surfaces 604, 608 extend into the mold cavity a greater distance than the projections 108 of the third roughening surface 612, the block 500 can be stripped from the mold without the projections of the third roughening surface contacting the angled surface 512 formed in the face of the block, thus preserving the angled surface 512 as the block is removed from the mold.
In an alternative embodiment, the first and second surface portions 506, 508 can be separated from each other by a non-recessed, non-roughened surface portion that is co-planar or substantially co-planar with the surface portions 506, 508. The non-roughened surface portion extends vertically between the surface portions 506, 508 similar to notch 514 to provide the appearance of a joint between the surface portions 506, 508. The non-roughened surface portion can be formed by a vertically extending, flat surface portion of the mold wall separating two sets of projections that form roughened surface portions 506, 508. Moreover, the elongated surface portion separating any two roughened surface portions on a block face can have a substantially flat, smooth texture or can be formed to have any other surface texture that contrasts with the texture of the two roughened surface portions of the block to provide the appearance of a joint between those surface portions.
In another embodiment, a block can have two offset, textured surface portions that are positioned side-by-side on a face of the block (such as block 2 of
In another embodiment, the first and second surface portions 506, 508 can be separated from the third surface portion 510 by a horizontally extending notch in the face of the block. The notch can be formed by a horizontal core bar that is removed from the mold before the uncured block is removed from the mold, as described in detail in U.S. patent application Ser. No. 11/285,485.
Finally, the embodiments of blocks disclosed herein have two surfaces that are provided with textured surface portions. However, this is not a requirement. The apparatuses and methods disclosed herein can be used to form a block having only one face that is provided with textured surface portions, as may be the case for making blocks for retaining walls.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. I therefore claim as my invention all that comes within the scope and spirit of these claims.
The present application claims the benefit of U.S. Provisional Application No. 60/967,802, filed Sep. 7, 2007, which is incorporated herein by reference. The present application is also a continuation-in-part of U.S. application Ser. No. 11/825,485, filed Jul. 6, 2007, which claims the benefit of U.S. Provisional Application No. 60/897,027, filed Jan. 22, 2007. U.S. application Ser. Nos. 11/825,485 and 60/897,027 are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60967802 | Sep 2007 | US | |
60897027 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11825485 | Jul 2007 | US |
Child | 12205784 | US |