The present disclosure relates to a wall brace system and method for use in straightening and supporting a leaning or bowed wall and, in particular, a wall brace system and method using a hydraulic jack to move a foundation wall.
A foundation wall, such as a basement wall, is typically constructed of concrete. The concrete can be poured as a solid wall, or individual concrete blocks can be stacked with mortar placed between the blocks to form the wall. Since a basement wall is at least partially underground, lateral pressure associated with the surrounding soil and hydrostatic pressure from water in the soil results in horizontally-directed inward force which may cause the wall to deflect inwardly. Sufficient inward deflection will cause a solid concrete wall to fracture or cause cracks to appear along mortar joints on the inner surface of a block wall forced inwardly. Additionally, such inwardly directed forces can move rows of blocks or the entire wall. If such deflection continues unabated, the entire wall may buckle and collapse with likely damage to the supported structure.
A number of methods are available for straightening and reinforcing a foundation wall experiencing deflection. Conventionally, a structural member, such as a steel I-beam, is placed vertically against an interior surface of the leaning or bowed foundation wall. The structural member is braced against other structural members of the building, such as the concrete floor at the base of the wall and a floor joist at the top of the wall. A threaded rod extends horizontally from a secure mounting position for engaging the structural member. The threaded rod is manually turned such that the end of the rod engaging the structural member pushes the structural member and the wall back toward a vertical position. The structural member is then typically left in place to resist the lateral forces.
For the forgoing reasons, there is a need for a new wall brace system and method that applies a force to a foundational wall and retains a structural member against inwardly-directed force against the wall. Ideally, the wall system and method may be used for forcing a foundation wall back out to its original position after pressure from the outside of the wall has moved the wall inwardly.
Embodiments of the invention relate to wall brace systems. The wall brace system provides an apparatus for supporting a wall in a building structure, which has been moved inward by pressure from the earth outside in order to return the wall to a desired position. The wall brace system comprises a structural member, a retainer, a mounting assembly, a load member, a jack, and/or a locking member. The structural member can be any type of beam of any shape. The structural member is configured to be seated vertically against the inner surface of the wall where pressure can be directed through the structural member toward the wall. The retainer may be operatively coupled adjacent the wall, and a portion of the structural member may be operatively coupled to the retainer. The mounting assembly is configured to be operatively coupled to a building member. A jack and/or locking member are operatively coupled between the structural member (e.g., directly or through the use of a load member) and the mounting assembly. The jack functions to exert a force against the structural member, directly or through the load member, in order to force the structural member toward the wall for shifting the wall (e.g., outwardly). The locking member, which may be a fastener, functions to lock the structural member in place with respect to the mounting assembly after the jack positions the structural member. Thereafter, the jack is removed from the mounting assembly and may be used on other wall brace systems.
Embodiments of the invention comprise a wall bracing system. The system comprises a structural member having a first end and a second end, and the first end of the structural member is operatively coupled adjacent a first portion of a wall. The system further comprises a mounting assembly that is operatively coupled to a building member. The system also comprises a jack and/or locking member operatively coupled to the mounting assembly, and the jack is configured to adjust the structural member and the locking member is configured to resist movement of the structural member.
In further accord with embodiments of the invention, at least a portion of the jack is removable while the locking member remains operatively coupled to the mounting assembly and the structural member.
In other embodiments, the system further comprises a retainer, and the retainer is operatively coupled to the structural member adjacent the first end of the structural member.
In yet other embodiments, the system further comprises a load member operatively coupled between the structural member and the jack and the locking member.
In still other embodiments, the load member comprises a jack interface that is configured to support a jack end of the jack. In some embodiments the jack interface is a jack socket.
In other embodiments, the load member comprises a locking interface that is configured to support a locking member. In some embodiments the locking interface comprises a locking socket.
In further accord with embodiments of the invention, the mounting assembly comprises a base plate that is operatively coupled to the building member, and one or more support brackets operatively coupled to the base plate. The one or more support brackets are configured for operative coupling with the jack or the locking member.
In some embodiments, the jack is a hydraulic jack, pneumatic jack, or electric jack. In some embodiments, the locking member comprises a rod, a bolt and nut, or a pin.
In some embodiments, the first end of structural member is operatively coupled adjacent the first portion of the wall at a basement floor, a foundation, or basement floor member. In some embodiments, the mounting assembly is operatively coupled to a building floor, a floor member, or a vertical support member.
In further accord with some embodiments, the structural member comprises an I-beam, a round beam, a square beam, or a beam with channels.
In other embodiments, the jack is operatively coupled to the mounting assembly separate from the locking member that is operatively coupled to the mounting assembly, wherein the jack and the locking member engage the structural member at separate locations.
In yet other embodiments, the jack is operatively coupled to the locking member, and the jack adjusts the structural member through the locking member, and wherein the jack may be removed from the locking member.
In still other embodiments, the system further comprises a second structural member having a first end and a second end, and the first end of the second structural member is operatively coupled adjacent the first portion of a wall. The system also comprises a second mounting assembly that is operatively coupled to the building member or a second building member. The system further comprises a second jack and a second locking member operatively coupled to the second mounting assembly. The second jack is configured to adjust the second structural member and the second locking member is configured to resist movement of the second structural member. In this way, the jack and the second jack may be operatively coupled and are configured to apply loads to the structural member and the second structural member at the same time when activated.
Embodiments of the invention comprise a method for bracing a wall. The method comprises installing a structural member adjacent a wall and installing a mounting assembly to a building member. The method further comprises activating a jack operatively coupled to the mounting assembly to adjust a position of the structural member. The method also comprises engaging a locking member operatively coupled to the mounting assembly to resist movement of the structural member, and removing the jack from the mounting assembly.
In further accord with embodiments of the present disclosure, the method further comprises installing a retainer adjacent a lower portion of the wall, and installing the structural member comprises installing the structural member to the retainer.
In some embodiments of the invention, the method further comprises installing a load member to the structural member. The load member comprises one or more interfaces for receiving an end of the jack or an end of the locking member, and the load member engages with the end of the jack or the end of the locking member during installation.
To the accomplishment of the foregoing and the related ends, the one or more embodiments of the invention comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth certain illustrative features of the one or more embodiments. These features are indicative, however, of but a few of the various ways in which the principles of various embodiments may be employed, and this description is intended to include all such embodiments and their equivalents.
For a more complete understanding of the present invention, reference should now be had to the embodiments shown in the accompanying drawings and described below. In the drawings:
Embodiments of the present disclosure now may be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all, embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure may satisfy applicable legal requirements. Like numbers refer to like elements throughout.
Referring now to the drawings, a wall brace system is shown in
In some embodiments, the wall brace system 50 provides an apparatus for supporting a wall 52 in a building, which has been moved inward by pressure from the earth outside in order to return the wall 52 to a desired position (e.g., its original position, or another position). The wall brace system 50 comprises a structural member 60, a retainer 62 (e.g., a bottom retainer, such as a bottom retainer plate, or the like), a mounting assembly 64 (e.g., mounting plate assembly, such as a joist mounting plate assembly, or the like), and/or a load member 66 (e.g., load plate, or the like). The structural member 60 can be any type of beam, such as an I-beam as shown in the figures, an H-beam, a C-channel beam, a beam of any shape (e.g., circular, oval, rectangular, square, triangular, or the like) that is solid or hollow, a flat rigid plate or any other such member. The structural member 60 may be made out of any type of material, such as steel, a composite, or another material. The beam 60 is configured to be seated vertically against the inner surface of the wall 52 where pressure can be directed through the beam 60 toward the wall 52, as illustrated in
As shown in
As shown in the drawings, in some embodiments of the present disclosure, the beam 60 is formed in an “I”-shape (I-beam) having an outer flange 74 and an inner flange 76 connected by a web 78 (e.g., at the midsections of the flanges). It is understood, as discussed herein, that the beam 60 could be another structural member of suitably sturdy construction, which is defined herein as a structural member 60 that can resist a bending force applied to it. Suitable substitutes may include, but are not limited to, structural members 60 that include channels, round or square tubes, or other shapes of any material, dimensional lumber (4×4, 4×6, etc.), composite beams, or any other structural member 60.
Referring to
It should be understood that the retainer 62 may be made of any size and shape. For example, the retainer 62 may be sized to allow the holes 63 of the retainer to be positioned directly next to the first end of the structural member 60 (e.g., as illustrated in
The retainer 62 may comprise one or more flanges 81, which may be operatively coupled to the retainer 62. For example, one or more flanges 81 may be formed by bending edges of the retainer 62. In other examples, the one or more flanges 81 may be in the form of one or more clips that are operatively coupled to the retainer 62. The one or more clips (e.g., two angled beam clips 80) may be operatively coupled (e.g., welded, or the like) to a surface (e.g., an upper surface, or the like) of the retainer 62. Each beam clip 80 may have two legs angled perpendicularly to one another. When welded to the retainer 62, upright portions of the beam clips 80 are parallel and slightly spaced apart. As seen in
In some embodiments of the present disclosure, the retainer 62 may also have one or more channels (not illustrated), such that water may be able to pass under the retainer 62 and/or structural member 60. Since the wall brace 50 system is often installed in areas that are prone to accumulate water, the one or more channels in the retainer may be utilized in order to allow water to pass under or through at least a portion of the retainer 62, thus reducing or preventing the pooling of water around the retainer 62, which may reduce or prevent damage to the retainer 62 and/or the structural member 60 over time. It should be understood that the one or more channels may be formed of any shape (e.g., rectangular, circular, square, or any other uniform or non-uniform shape).
Referring now to
As shown in
Referring now to
The structure of the mounting assembly 64, and the manner in which the mounting assembly 64 is operatively coupled (e.g., mounted, or the like) adjacent the wall 52, may vary according to the circumstances encountered in any given situation. For example, the joists 58 may run parallel to the wall, and/or the mounting assembly 64 may be required to be installed in a different orientation. As such, it should be understood that the mounting assembly 64 may be configured differently from the mounting assembly 64 illustrated in the FIGs. Consequently, it should be understood that the structure of the mounting assembly 64 may include one or more plates 82, brackets 84, and/or cross-braces 86 in different orientations as needed to operatively couple the mounting assembly 64 to one or more building members.
It is understood that the distance between beam 60 and at least a portion of the mounting assembly 64, such as the bracket 84, is to be spaced large enough to accommodate the later installation and/or removal of the jack 70 therebetween, yet small enough so that the jack 70 has substantial travel available after installation in order to move the beam 60 to the desired location. In this way, the mounting assembly 64 may be operatively coupled to a building member in a location to provide the desired space. Alternatively, in some embodiments of the invention, a portion of the mounting assembly 64 (e.g., base plate 82, or the like) may remain stationary with respect to the building member, while another portion of the mounting assembly 64 (e.g., bracket 84, or the like) may be adjustable and/or replaceable in order to adjust the travel space to account for different spaces of travel of the jack 70.
In some embodiments of the invention, one end of the jack 70 is supported by the bracket 84 with an extendable shaft 71 oriented along a horizontal axis. In the case of a hydraulic jack, the jack 70 may receive hydraulic fluid through a controllable valve 92. Pressure fluid is admitted to or exhausted from the jack 70 by means of a hydraulic hose 94 connecting with the valve 92. As is understood, hydraulic jack cylinders provide for an enclosed chamber that may be pressurized with a hydraulic fluid to apply force to an axially extendable and retractable shaft 71 communicating with the enclosed chamber through a piston sealably slidable in the cylinder. Thus, the jack 70 can be actuated to extend the shaft 71 toward the beam 60 and force the wall 52 toward the vertical position under hydraulic pressure. The locking member 72, extends in a direction parallel to the shaft 71 of the jack 70, such as a threaded locking rod that is adjustable. The locking member 72 is used to engage the beam 60 at the position to which the jack 70 has moved the beam 60. The locking member 72 functions to hold the position of the beam 60 and the wall 52 as achieved by the pressure of the jack 70. It is understood that while the jack 70 is described as a hydraulic jack, as discussed herein, it can be replaced with, a pneumatic jack, electric jacks (e.g., screw jack, or the like), or other like jacks, and as such any type of jack 70 having characteristics similar the hydraulic jack may be used.
Referring to
In some embodiments, spaced interfaces, such as vertically spaced sockets 98, 100 (e.g., circular sockets as illustrated in
As illustrated by block 204 in
Block 206 of
Block 210 illustrates that the jack 70 is extended, for example, the shaft 71 of the jack 70 is extended and exerts outwardly directed forces against the structural member 60, directly or through the load member 66, toward the wall 52 for moving and supporting the wall 52. For example, the load member 66 transmits the force of the jack 70 to the inner flange 76 of the structural member 60, and thus, to the outer flange 74 through the web 78 of the structural member 60 so that the outer flange 74 of the structural member 60 is urged against the wall 52 exerting force on the wall 52 until the wall 52 has been pushed back into position. The jack 70 may allow the installer to measure the amount of force applied to the structural member 60, and thus, the wall. The measurement of the force may also be used to allow an installer to recheck the wall brace system 50 in the future, and to readjust the force being applied (e.g., add more force or reduce the force).
Block 212 of
Block 214 of
It should be understood that the steps described with respect to
The present disclosure generally describes installing a single wall brace system 50, using a single jack 70 to position the structural member 60 of the wall brace system 50, and thereafter, installing another wall brace system 50 and/or using the jack 70 on a separate structural member 60 that is partially installed (e.g., installed but not yet loaded to position the structural member 60, or the like). However, it should be understood that multiple jacks 70 may be utilized at one time to install multiple structural members 60 within one or more wall brace systems 50 (e.g., the wall brace system 50 may be used to describe the installation of a single structural member 60 and associated components or multiple structural members 60 and associated components). For example, in some embodiments two or more wall brace systems 50 (as part of a larger wall support system) may be partially installed (e.g., without using a jack 70 for applying pressure to the individual structural member 60). Two or more jacks 70 may be installed to the two or more wall brace systems 50 (e.g., as each system is being installed or after the systems are installed). The two or more jacks 70 may be operatively coupled to each other (e.g., through a manifold, mechanical control members, software control features, or the like), which allows an installer to operate the two or more jacks 70 at the same time. Consequently, in these embodiments, the multiple jacks 70 may be connected in series and loaded together in order to allow for loading of multiple structural members 60 within the two or more wall brace systems 50 at the same time. It should be further understood that while multiple jacks 70 may be used at the same time, the jacks 70 may apply the same force or different forces to the two or more structural members 60 (e.g., depending on how severely a wall is bowed at the position of each of the structural members 60). In this way, the multiple jacks 70 may be utilized to quickly install the system by applying forces to the structural members 60, and thus, the entire wall (or multiple walls) at the same time. It should be understood that in other embodiments, one or more installers may operate the multiple jacks 70 (e.g., coupled jacks 70 or uncoupled jacks 70) individually to apply the forces to the wall in different locations, as needed.
It should be further understood that the jack 70 and/or locking member 72 may be operatively coupled to the mounting assembly 64 in different orientations, however typically they will be installed in a vertical orientation with respect to each other (e.g., with the jack 70 vertically above the locking member 72, or the locking member 72 above the jack 70). As such, it should be understood that should the structural member 60 be located in a different orientation from vertical (e.g., at an angle), the mounting assembly 64 may be installed in the same plane to allow the jack 70 and locking member 72 to be installed in the same plane as the structural member 60.
It should be further understood that in some embodiments of the invention, the locking member 72 may be located in-line with the jack 70. That is, the locking member 72 and the jack 70 may be operatively coupled to the mounting assembly 64 in-line longitudinally with each other, or otherwise, in a configuration in which the jack 70 is activated to move the locking member 72, which interacts with the structural member 60 (e.g., directly or through the use of the load member 66) to position the structural member 60. That is, the jack 70 engages to the structural member 60 through the use of the locking member 72 itself, and when the structural member 60 is in the desired location, the locking member 72 is locked into place, and the jack 70 is removed from the mounting assembly 64.
In other embodiments of the invention, there may be two or more mounting assemblies, such as a jack mounting assembly and a locking member mounting assembly. In this way, both mounting assemblies 64 may be operatively coupled to a building member. The jack 70 may be further operatively coupled to the jack mounting assembly, and the locking member 72 may be operatively coupled to the locking member mounting assembly. In this way, the jack 70 and the locking member 72 may be located at different locations, should it be required based on the configurations of the building members (e.g., joists, or other support members), installation preferences, and/or as necessary to apply the load to the structural member 60.
In some embodiments of the present disclosure the wall brace system 50 may include a gauge that is operatively coupled to a locking member 72 (or the jack 70 if the jack remains in place), in order to allow an installer to determine how much force is being applied to the wall (or otherwise stated how much force the system—the locking member 72 or the like—is under).
It should be understood that the wall brace system 50 disclosed herein functions as a “force-applying device” to apply an outward force to the foundation wall 52. The jack 70 of the present disclosure exerts a significant outwardly directed force against the beam 60, thereby tending to straighten the wall 52. The jack 70 forces the beam 60, and in turn wall 52, outward to the proper position since the beam 60 ends are secured against movement.
The present invention provides improvements to wall braces, due at least in part to providing the ability to utilize a jack 70 along with the locking member 72 in order to more easily provide the desired load and/or to install the wall brace system 50 (e.g., a single system with a single structural member, or system(s) with multiple structural members). In this way, the one or more jacks 70 can be used to measure the force that is applied to the wall, which provides the ability to revisit the system(s) at a later date to recheck the system(s) and add or reduce the pressure, if needed. Moreover, the mounting assembly 64 provides a location to which the jack 70 can be removably installed in order to allow an installer to quickly install the jack 70 apply the desired loading to the structural member 60, and thus the wall 52, and thereafter, position the locking member 72 to lock the structural member 60 in place, before removing the jack 70. Should only a locking member 72 be utilized, such as a bolt, it may be more difficult for an installer to apply the desired load and/or turn the bolt quickly and effectively. Furthermore, having a location within the mounting assembly 64 for the jack 70 allows an installer to make quick adjustments to individual structural member 60 when installing multiple structural members 60 within a structure. For example, an installer can gradually apply loads to different structural members 60 in order to gradually adjust the position of a wall 52. Alternatively, as described herein, multiple jacks 70 may be utilized to adjust the position of a wall 52 at different locations at the same time.
It should be understood that “operatively coupled,” when used herein, means that the components may be formed integrally with each other, or may be formed separately and coupled together. Furthermore, “operatively coupled” means that the components may be formed directly to each other, or to each other with one or more components located between the components that are operatively coupled together. Furthermore, “operatively coupled” may mean that the components are detachable from each other, or that they are permanently coupled together.
Also, it will be understood that, where possible, any of the advantages, features, functions, devices, and/or operational aspects of any of the embodiments of the present invention described and/or contemplated herein may be included in any of the other embodiments of the present invention described and/or contemplated herein, and/or vice versa. In addition, where possible, any terms expressed in the singular form herein are meant to also include the plural form and/or vice versa, unless explicitly stated otherwise. Accordingly, the terms “a” and/or “an” shall mean “one or more.”
Certain terminology is used herein for convenience only and is not to be taken as a limiting. For example, words such as “upper,” “lower,” “horizontal,” “vertical,” “upward,” “downward,” “top” and “bottom”, or the like merely describes the configurations shown in the FIGS. Indeed, the components may be oriented in any direction and the terminology, therefore, should be understood as encompassing such variations unless specified otherwise. The words “interior” and “exterior” refer to directions toward and away from, respectively, the geometric center of the core and designated parts thereof. The terminology includes the words specifically mentioned above, derivatives thereof and words of similar import.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other changes, combinations, omissions, modifications and substitutions, in addition to those set forth in the above paragraphs, are possible. Those skilled in the art will appreciate that various adaptations, modifications, and combinations of the just described embodiments can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.
The present application is a continuation of, and claims priority to U.S. patent application Ser. No. 16/420,035 entitled “Wall Brace System and Method” filed on May 22, 2019, which claims priority to U.S. Provisional Patent Application Ser. No. 62/674,962 entitled “Wall Brace System and Method” filed on May 22, 2018, both of which are assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
587274 | Rue | Jul 1897 | A |
2850254 | Houseworth | Sep 1958 | A |
3030061 | Jennings | Apr 1962 | A |
3796055 | Mahony | Mar 1974 | A |
3817006 | Williams | Jun 1974 | A |
3971179 | Bodocsi et al. | Jul 1976 | A |
4068427 | Camardo | Jan 1978 | A |
4189891 | Johnson et al. | Feb 1980 | A |
4353194 | Norton | Oct 1982 | A |
4452028 | Norton et al. | Jun 1984 | A |
4453863 | Sutton et al. | Jun 1984 | A |
4757651 | Crites | Jul 1988 | A |
4763878 | Abraham et al. | Aug 1988 | A |
4893784 | Abraham et al. | Jan 1990 | A |
5011336 | Hamilton et al. | Apr 1991 | A |
5013190 | Green | May 1991 | A |
5575591 | Vanderklaauw | Nov 1996 | A |
5800094 | Jones | Sep 1998 | A |
5829220 | Zumeta | Nov 1998 | A |
5845450 | Larsen | Dec 1998 | A |
6142710 | Holland, Jr. et al. | Nov 2000 | A |
6352390 | Jones | Mar 2002 | B1 |
6357190 | Florentine | Mar 2002 | B1 |
6659692 | May | Dec 2003 | B1 |
6662505 | Heady et al. | Dec 2003 | B2 |
6769222 | Billante | Aug 2004 | B2 |
7419335 | Cohen | Sep 2008 | B1 |
7681361 | Jendusa et al. | Mar 2010 | B1 |
7681367 | Morton et al. | Mar 2010 | B2 |
7735268 | Zidar et al. | Jun 2010 | B1 |
7774995 | Zidar, Jr. | Aug 2010 | B1 |
7788859 | Trotter | Sep 2010 | B2 |
7861469 | Heady et al. | Jan 2011 | B2 |
7913463 | Russell | Mar 2011 | B2 |
8136317 | Mccown | Mar 2012 | B1 |
8590259 | Trinko et al. | Nov 2013 | B2 |
8925267 | Kirby | Jan 2015 | B1 |
9028176 | Malloy | May 2015 | B1 |
9422734 | Heady et al. | Aug 2016 | B1 |
10669730 | Taylor | Jun 2020 | B1 |
20020062612 | Heady et al. | May 2002 | A1 |
20020121066 | Callahan | Sep 2002 | A1 |
20020176749 | Provost | Nov 2002 | A1 |
20030126820 | Callahan | Jul 2003 | A1 |
20040071511 | May | Apr 2004 | A1 |
20040091322 | May | May 2004 | A1 |
20050144885 | Nau | Jul 2005 | A1 |
20050172427 | Sykes | Aug 2005 | A1 |
20050204673 | Reed | Sep 2005 | A1 |
20050238442 | Queen | Oct 2005 | A1 |
20060080926 | Resch et al. | Apr 2006 | A1 |
20060260220 | Ennis et al. | Nov 2006 | A1 |
20070227082 | Morton et al. | Oct 2007 | A1 |
20090078843 | Trotter | Mar 2009 | A1 |
20090245942 | Hawkins et al. | Oct 2009 | A1 |
20120204512 | Trinko et al. | Aug 2012 | A1 |
20190360221 | Gantt | Nov 2019 | A1 |
20210404199 | Gantt | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
2749989 | Jan 2006 | CN |
103291117 | Sep 2013 | CN |
543741 | Mar 1942 | GB |
Entry |
---|
Deep Excavation LLC, Support Systems for Deep Excavations: Cross-lot/Internal Bracing—Braced Excavations, http://www.deepexcavation.com/en/braced-excavations-struts-crosslot, accessed Aug. 9, 2017, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20210404199 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62674962 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16420035 | May 2019 | US |
Child | 17467780 | US |