Measurement while drilling (“MWD”) systems and methods generally include sensors disposed in or on components that are configured to be coupled into a “drill string.” A drill string is a pipe or conduit that is used to rotate a drill bit for drilling through subsurface rock formations to create a wellbore therethrough. A typical drill string is assembled by threadedly coupling end to end a plurality of individual segments (“joints”) of drill pipe. The drill string is suspended at the Earth's surface by a hoisting unit known as a “drilling rig.” The rig typically includes equipment that can rotate the drill string, or the drill string may include therein a motor that is operated by the flow of drilling fluid (“drilling mud”) through an interior passage in the drill string. During drilling a wellbore, some of the axial load of the drill string to the drill bit located at the bottom of the drill string. The equipment to rotate the drill string is operated and the combined action of axial force and rotation causes the drill bit to drill through the subsurface rock formations.
The drilling mud is pumped through the interior of the drill string by various types of pumps disposed on or proximate the drilling rig. The mud exits the drill string through nozzles or courses on the bit, and performs several functions in the process. One is to cool and lubricate the drill bit. Another is to provide hydrostatic pressure to prevent fluid disposed in the pore spaces of porous rock formations from entering the wellbore, and to maintain the mechanical integrity of the wellbore. The mud also lifts the drill cuttings created by the bit to the surface for treatment and disposal.
In addition to the above mentioned sensors, the typical MWD system includes a data processor for converting signals from the sensors into a telemetry format for transmission of selected ones of the signals to the surface. In the present context, it is known in the art to distinguish the types of sensors used in a drill string between those used to make measurements related to the geodetic trajectory of the wellbore and certain drilling mechanical parameters as “measurement while drilling” sensors, while other sensors, used to make measurements of one or more petrophysical parameters of the rock formations surrounding the wellbore are frequently referred to as “logging while drilling” (“LWD”) sensors. For purposes of the description of the present invention, the term MWD or “measurement while drilling” is intended to include both of the foregoing general classifications of sensors and systems including the foregoing, and it is expressly within the scope of the present invention to communicate any measurement whatsoever from a component in drill string to the surface using the method to be described and claimed herein below.
Communicating measurements made by one or more sensors in the MWD system is typically performed by the above mentioned data processor converting selected signals into a telemetry format that is applied to a valve or valve assembly disposed within a drill string component such that operation of the valve modulates the flow of drilling mud through the drill string. Modulation of the flow of drilling mud creates pressure variations in the drilling mud that are detectable at the Earth's surface using a pressure sensor (transducer) arranged to measure pressure of the drilling mud as it is pumped into the drill string. Forms of mud flow modulation known in the art include “negative pulse” in which operation of the valve momentarily bypasses mud flow from the interior of the drill string to the annular space between the wellbore and the drill string; “positive pulse” in which operation of the valve momentarily reduces the cross-sectional area of the valve so as to increase the mud pressure, and “mud siren”, in which a rotary valve creates standing pressure waves in the drilling mud that may be converted to digital bits by appropriate phasing of the standing waves. It is also known in the art to communicate signals between the surface and instrumentation in a wellbore using “wired” drill pipe,”, that is, segmented pipe having an electromagnetic communication channel associated therewith. See, e.g., U.S. Pat. No. 6,641,434 issued to Boyle et al. and assigned to the assignee of the present invention. It is also known in the art to use extremely low frequency (ELF) electromagnetic signal telemetry for such wellbore to surface signal communication.
It is frequently desirable to have information concerning the shape of the wellbore wall, for example, for calculating cement volume necessary to cement a pipe of casing in the wellbore. It is also desirable to know the distance between certain types of sensors and the wall of the wellbore, for example, acoustic, neutron and density sensors. Caliper devices known in the art for use in drill strings include acoustic travel time based devices. An acoustic transducer emits an ultrasonic pulse into the drilling fluid in the wellbore, and a travel time to the wellbore wall back to the transducer of the acoustic pulse is used to infer the distance from the transducer to the wellbore wall. There are circumstances in which such calipers are undesirable or fail to function properly, e.g., drilling fluid having entrained gas. It is also necessary to accurately determine the acoustic velocity of the drilling fluid proximate the caliper. Therefore, there exists a need for other types of wellbore calipers that can be used with drill strings.
A drill string caliper according to one aspect of the invention includes a mandrel configured to be coupled within a drill string. At least one laterally extensible arm is coupled to an exterior of the mandrel. A biasing device is configured to urge the at least one arm into contact with a wall of a wellbore. A sensor is configured to generate an output signal corresponding to a lateral extent of the at least one arm.
A method for measuring an internal size of a wellbore according to another aspect of the invention includes moving a drill string through a wellbore drilled through subsurface formations. At least one contact arm extending laterally from the drill string is urged into contact with a wall of the wellbore. An amount of lateral extension of the arm is translated into corresponding movement of a sensor to generate a signal corresponding to the amount of lateral extension. The method includes at least one of communicating the signal to the Earth's surface and recording the signal in a storage device associated with the drill string.
A method of instrumenting one or more of the arms with a sensor to measure a property of the formation in contact with the arm.
A method of using the sensor to measure a property of the fluid in the annulus (drilling mud) while the arm is retracted or extended.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
A typical wellbore drilling system, including a measurement while drilling (“MWD”) caliper device that can be used in according with various examples of the invention is shown schematically in
As explained in the Background section herein, drilling fluid (“drilling mud”) is pumped through the drill string 12 to perform various functions as explained above. In the present example, a tank or pit 30 may store a volume of drilling mud 32. The intake 34 of a mud pump system 36 is disposed in the tank 30 so as to withdraw mud 32 therefrom for discharge by the pump system 36 into a standpipe, coupled to a hose 26, and to certain internal components in the top drive 26 for eventual movement through the interior of the drill string 12.
The example pump system 36 shown in
As the drilling mud reaches the bottom of the drill string, it passes through various MWD instruments shown therein such as at 20, 22 and 21. One of the MWD instruments, e.g., the one at 22, may include a caliper 23 which will be further explained below in more detail with reference to
In particular examples wherein a wired pipe string is used for signal telemetry, it is possible to use a plurality of such caliper devices as shown at 23 at spaced apart positions along the entire drill string 12 in order to determine a longitudinal diameter profile of the wellbore. For example, the caliper devices 23 may be spaced a distance from a bottom hole assembly, tool string or drill bit of the drill string 12. In an embodiment, the caliper devices 23 may be positioned at least two pipe joints from the bottom hole assembly or tool string, or at least three pipe joints and/or other distances. Accordingly, use of only one caliper in the examples explained below is not intended to limit the scope of the present invention. In one example, a wired pipe string may include one or more signal repeaters. See, for example, U.S. Pat. No. 7,139,218 issued to Hall et al. Each signal repeater may include its own source of electric power to enable signal detection and retransmission as described in the Hall et al. '218 patent. In the present example, a caliper made according to the various aspects of the invention and described further below may be disposed proximate each of the one or more repeaters in such a wired pipe string. By locating the caliper proximate the repeater, it may be unnecessary to provide a separate source of electric power to operate the caliper as such may be provided by the power supply associated with the repeater. In an embodiment, the caliper 23 may be incorporated into a repeater or repeater sub.
On example of a caliper instrument is shown in side view in
An outer sliding sleeve 103 is slidably mounted externally to inner sliding sleeve 102 and may be mounted thereon to enable relative rotation between the inner sleeve 102 and the outer sleeve 103. The outer sliding sleeve 103 may be coupled to one end of one or more bowsprings 109 of types well known in the art and formed, for example, from spring steel, copper-beryllium alloy or similar resilient material. The inner sliding sleeve 103, being rotatably mounted on the inner sliding sleeve 102 enables the bowspring(s) 109 to rotate relative to the mandrel 14A to prevent torque-induced damage while transmitting longitudinal motion of the end(s) of the bowspring(s) 109 to the inner sliding sleeve 102. As the bowspring(s) 109 is compressed laterally, the bowspring 109 will extend in length. Such extension causes corresponding longitudinal movement of the outer sliding sleeve 103, which is transmitted to cause corresponding longitudinal motion along the mandrel 14A of the inner sliding sleeve 102. The other longitudinal end of the bowspring 109 may be coupled to the mandrel 14A in a longitudinally fixed position, such as by a longitudinally fixed, rotatably mounted end sleeve 95. The end sleeve 95 preferably includes provision to enable it to rotate with respect to the mandrel 14A, just as does the outer sliding sleeve 103, but unlike the outer sliding sleeve remains longitudinally fixed with respect to the mandrel 14A. Thus, the bowspring(s) 109 are longitudinally fixed at one end, are free to move longitudinally at the other end. The bowspring(s) are also free to rotate about the mandrel 14A.
The mandrel 14A may include a slot 104 or similar opening therein to enable the aforementioned cross-pin 107 or the like to couple longitudinal motion of the inner sliding sleeve 102 to a push rod 108. The cross-pin 107 will fix the rotational position of the inner sliding sleeve 102 with respect to the mandrel 14A, but enables free longitudinal movement of the inner sliding sleeve 102 with respect to the mandrel 14A. The push rod 108 can be coupled to the sensor (e.g., the potentiometer or LVDT) 105 so that motion thereof is transformed into a signal corresponding to the longitudinal position of the inner sliding sleeve 102. Such position will be related to the lateral extension of the bowspring(s) 109. The sensor 105 may be disposed in a suitable, pressure sealed chamber (not shown separately) within a selected part of the mandrel 14A. A seal 106 can engage the outer surface of the push rod 108 and thereby exclude fluid from the wellbore from entering the chamber (not shown) where the sensor 105 is disposed.
The example shown in
The example shown in
In some examples, using bowsprings as the caliper wall contacting elements may be considered unsuitable for expected wellbore and/or drilling conditions. It may be desirable, therefore, to supplement the structural integrity of the caliper by using external arms or similar devices made from relatively thick (and thus strong), substantially rigid metal components. Such arm structures may be the devices placed in contact with the wellbore wall (by lateral biasing or urging) during operation, rather than the bowsprings as in the previous examples. When using such contact arms, the stresses encountered during certain wellbore operations are not transmitted directly to the springs or other biasing devices, however changes in wellbore diameter may be freely transmitted to the corresponding components that measure position in relation to the lateral extension of the springs (e.g., the sensor 105 in
One example of a caliper device using rigid arms is shown in
An alternative to the arrangement shown in
One or more of the links 121, 122, bowsprings 109, link couplings 112A, 122A, pivot 122B may be instrumented with a sensor or sensing device to measure a property of the formation, a property of the formation fluid, a property of the drilling fluid, and/or a relative position of the respective component. For example, the link coupling 122A in
A plurality of the sensors 1012 may be positioned on the links 121, 122, bowsprings 109, link couplings 112A, 122A, pivot 122B. One of the sensors 1012 may measure a formation property, and another one of the sensors 1012 may measure a position of the one or more of the links 121, 122, bowsprings 109, link couplings 112A, 122A, pivot 122B. For example, the sensor 1012 may measure a contact force of the bowsprings 109 and/or a distance in which the bowsprings 109 have extended and/or retracted. The sensor 1012 may measure a position of the actuator 111, link couplings 112A, 122A, and/or pivot 122B. In an embodiment the sensor 1012 may measure a property of the formation and/or wellbore and a position and/or contact force of the bowsprings 109, actuator 111, link couplings 112A, 122A, and/or pivot 122B.
In all the foregoing examples, the bowsprings or links are coupled to the same longitudinal end components (e.g., the sleeves). A result of such configuration is that the longitudinal position of the outer and/or inner sliding sleeves (and thus the sensor) is related to an average lateral extension of the bowsprings or linkages. Such arrangement may be unsuitable if it is anticipated that the wellbore will be non-circularly shaped and knowledge of such shape is desirable. Examples shown in
As explained above, in some examples it may be desirable to cause the arms or springs of the caliper to contact the wellbore wall only at certain times or under certain conditions. One example includes having the actuator (see
In some examples, the controller 142 may be configured to respond to certain command signals transmitted from the surface (e.g., the recording system 38 in
The foregoing examples have shown one, two and four caliper arms, typically circumferentially spaced evenly from each other when more than one caliper arm is used. It is to be clearly understood that the number of caliper arms is a matter of choice for the system designer and that any number of caliper arms structured as claimed below is within the scope of the present invention. The caliper has also been described as being arranged to place the arm(s) in contact with a wall of the wellbore. As will be readily appreciated by those skilled in the art, the wall of the wellbore in certain portions thereof may include a pipe of casing disposed therein. The present invention is equally well suited to measure the internal diameter of cased portions of the wellbore wall as it is in those portions not having casing therein (“open hole”).
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
The present application is a continuation-in-part application and claims priority from U.S. Pat. No. 8,024,868, entitled “Wall Contact Caliper Instruments for Use In a Drill String,” issued on Sep. 27, 2011, and claims priority from U.S. Patent Application Ser. No. 61/311,022 entitled “Wall Contact Caliper Instruments For Use in a Drill String,” which are both hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2719361 | Richard et al. | Oct 1955 | A |
2719362 | Richard et al. | Oct 1955 | A |
2719363 | Richard et al. | Oct 1955 | A |
3092182 | Blagg | Jun 1963 | A |
3474541 | Cubberly, Jr. | Oct 1969 | A |
3915229 | Nicolas | Oct 1975 | A |
3977468 | Brewer et al. | Aug 1976 | A |
4006530 | Nicolas | Feb 1977 | A |
4443948 | Reeves | Apr 1984 | A |
4588951 | Ohmer | May 1986 | A |
4642800 | Umeda et al. | Feb 1987 | A |
4673890 | Copland et al. | Jun 1987 | A |
5092056 | Deaton | Mar 1992 | A |
5168942 | Wydrinski | Dec 1992 | A |
5242020 | Cobern | Sep 1993 | A |
5396232 | Decorps et al. | Mar 1995 | A |
5642051 | Babour et al. | Jun 1997 | A |
5917774 | Walkow et al. | Jun 1999 | A |
6641434 | Boyle et al. | Nov 2003 | B2 |
6647637 | Lechen | Nov 2003 | B2 |
6741185 | Shi et al. | May 2004 | B2 |
6848189 | Moake et al. | Feb 2005 | B2 |
7139218 | Hall et al. | Nov 2006 | B2 |
7421914 | Stanley et al. | Sep 2008 | B2 |
8024868 | Brannigan et al. | Sep 2011 | B2 |
20060064889 | Fredette et al. | Mar 2006 | A1 |
20060214814 | Pringnitz et al. | Sep 2006 | A1 |
20060249307 | Ritter et al. | Nov 2006 | A1 |
20070192031 | Li et al. | Aug 2007 | A1 |
20080068211 | Aiello et al. | Mar 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20120055711 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61311022 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12486187 | Jun 2009 | US |
Child | 13041912 | US |