The present invention relates generally to wall forming systems. More specifically, the present invention relates to a tie system for forming foundation walls and the like.
Many residential and light commercial structures are built on concrete foundation walls which are formed by pouring concrete into a system of forms that have been erected on a previously poured concrete footing. After the concrete has cured sufficiently, the forms are stripped from the concrete and in most cases soil is back filled on the exterior side of the concrete wall. Typically, the base of each foundation wall is supported on a concrete footing, which is wider than the thickness of the wall itself. Ideally, the centerline of the wall is aligned with the centerline of the footing. The footing spreads the load of the structure over a greater area and prevents uneven loading of the foundation wall.
As set forth, once the footing is in place and hardened, a system of forms are constructed over the footing. Such system of forms have typically been constructed using expensive and reusable forms. These forms are typically made of metal and are, thus, very heavy and extremely labor-intensive to assemble and remove after pouring the concrete. Further, due to the significant investment of reusable metal forms, concrete laborers will typically pass the cost on to others for their services. As a result, various other concrete form systems for cement walls have been proposed as alternatives to the heavy metal forms.
One recent development in this field is the use of expanded polystyrene panels, known as insulated concrete forms. These newer form systems utilize pairs of horizontally extending foam panels which are connected in parallel with a series of rigid plastic ties. Complete wall form systems are typically created by vertically stacking these horizontally extending paired foam panels into larger arrays. Concrete is then poured between the panels of the completed foam wall form system. The thickness of the poured concrete walls can be adjusted by the selection and utilization of form ties of appropriate size. Subsequent to concrete hardening these foam panels are left in place to serve as insulation.
Although such insulated concrete forms are lighter than the conventional metal form systems, the forms are bulky and, therefore, the cost for shipping such forms can be expensive. Further, due to the bulky and cumbersome nature of these forms, they are highly susceptible to the inherent risk of damage during transportation and even during installation. Another problem with the insulated concrete forms is the requirement for numerous different types of parts to fit the variations of the footprint of both residential and commercial construction. Due to these numerous different parts and sizes, the insulated concrete forms are high in cost to manufacture and therefore, such high cost is past on to the consumers and builders. Furthermore, the numerous different types of parts in the insulated concrete forms are complicated to construct and require skilled laborers who understand the complexities for such construction. In addition, another inherent problem with the insulated concrete forms is the difficulty to match such forms to the predetermined required lengths along the footing usually evident at corners and ends, in which shortening the forms by cutting and then adhesively repairing the forms is required, often leaving the forms in a damaged state with reduced structural integrity. Such problem further increases the complexity and time required to build the forms in preparation to pour the concrete.
Another problem with prior art systems, particularly conventional metal forms, involves the installation of rebar, wire mesh, or other reinforcing members between the parallel panels that are to be embedded within the finished foundation wall. The techniques employed typically involve various means and methods for suspending rebar haphazardly between the panels with wire ties. Although such wire ties have been used for years, inaccurate placement of the rebar is common, often resulting in unsatisfactory reinforcement of the foundation walls. Further, such wire tying techniques are labor intensive, time consuming and a tedious process.
Based on the foregoing, it would be advantageous to provide a concrete form system that is low in cost for builders and, thus, the home owner, minimizes the waste of form materials, provides a non-complicated system with less part types and that inherently can be adjusted to any required lengths for ends and corners or overall footprints required for the foundation walls. Further, it would be advantageous to provide a concrete form system that is less labor intensive, light weight and compact and, further, provides for ready and precise assembly of reinforcing rebar materials to be placed in concrete forms.
The present invention is directed to a tie system configured to support forms for a hardenable pourable building material. In one embodiment, the tie system includes a base tie and a wall tie. The base tie includes an elongated portion extending between a first end portion and a second end portion. The first end portion and the second end portion each include an attachment portion, wherein the base tie is configured to be oriented laterally over a length of a footing. The wall tie includes a first elongated wall portion and a second elongated wall portion with a cross-member extending therebetween. With this arrangement, the first elongated wall portion and the second elongated wall portion are configured to extend vertically from and attach to the attachment portion of the first end portion and the second end portion, respectively, of the base tie.
In another embodiment of the present invention, the tie system includes multiple ties configured to be directly interconnected into a vertically extending tie stack such that multiple tie stacks can be positioned over a footing in a spaced and separate arrangement, in which the multiple tie stacks are configured to extend substantially perpendicular between substantially parallel panel structures. Each tie stack includes a base portion and a wall portion. Such a base portion includes a first end portion and a second end portion, wherein the first end portion defines a first channel therein, which first channel is configured to receive a first panel structure. Likewise, the second end portion defines a second channel therein that is configured to receive a second panel structure. The wall portion includes a first elongated wall portion and a second elongated wall portion with a cross-member extending therebetween. The first and second elongated wall portions are configured to extend vertically from and are directly interconnected to the respective first and second end portions of the base portion. With such an arrangement, the first and second elongated wall portions are configured to be fastened to the respective first and second panel structures.
In still another embodiment, the present invention is directed to a wall forming system. Such wall forming system includes a plurality of base ties and a plurality of wall ties. The plurality of base ties each include an elongated portion that is configured to be secured to and oriented laterally along a length of a footing in a spaced arrangement. Each wall tie is configured to be interconnected to another wall tie to assemble multiple wall tie stacks. Each wall tie stack is configured to be stacked vertically to one base tie of the plurality of base ties. Further, each wall tie includes a first elongated wall portion and a second elongated wall portion with a cross-member extending therebetween. The first elongated wall portion and the second elongated wall portion each include an outward facing surface, in which each of the outward facing surfaces are configured to face in substantially opposite directions. Further, each of the outward facing surfaces is configured to be longitudinally oriented in a substantially vertical direction. With this arrangement, each of the outward facing surfaces is configured to be fastened to a panel structure.
To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that theses drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Referring first to
Such a tie system 20 includes multiple base ties 30 and multiple wall ties 90. The base ties 30 are placed and secured, in a spaced apart arrangement, to a concrete footing 10. Each base tie 30 receives a stack of wall ties 90 configured to extend in a vertical arrangement to form a tie stack 160. Each of the wall ties 90, within a stack, are configured to be directly interconnected together and configured to extend vertically, one above another. After running a first course of wall ties 90, horizontal rebar 162 can be run along a cross-member 110 of the wall ties 90, after which, additional courses of wall ties 90 can be built upon each other, running horizontal rebar 162 as needed, until the tie stacks 160 are built to the desired height. Once the tie stacks 160 are complete, panel structures 150 can be placed along each side of the tie stacks 160 in a parallel fashion and secured thereto. In addition, a finish tie 170 is provided to be positioned over the panel structures 150. Concrete can then be poured between the parallel panel structures 150 and into the tie system 20. Once the concrete wall 17 has set, the panel structures 150 can then be removed and utilized for another tie system or for other purposes for the structure being built upon the concrete foundation. As readily understood by one of ordinary skill in the art, the tie system 20 of the present invention provides advantages of being low in material cost and is time efficient for forming concrete walls for both residential and commercial dwellings.
It should be noted that the tie system is described herein as a concrete wall forming system due to concrete typically being used in the art for foundation walls. However, the tie system of the present invention is not limited to concrete, but rather, the tie system can be employed with any hardenable liquid building material, including, but not limited to, typical concrete, various cement and/or concrete composites, (i.e., fiber reinforced cements, polymer composite cements), light-weight type cements or concrete, or any other suitable pourable and curable building material known in the art that will meet the structural integrity requirements for a given structure. Furthermore, as can be appreciated by one of ordinary skill in the art, the tie system of the present invention can be employed to form above ground level walls as well as foundation walls. In addition, it is intended that the term footing can mean any stable structure the base tie of the present invention can be mounted or secured to, such as, a concrete footing or even traditional concrete forms.
Now referring to
First referring to the base tie 30, such a base tie can include an upper side 32, a bottom side 33, a front side 34, a back side 35, a left side 36 and a right side 37, the upper side 32 configured to face upward and the bottom side 33 configured to be positioned, face down, against a top surface of a concrete footing 10 (
The recess 44 defined in the upper side 32 of the intermediate portion 40 can include various openings, including a center hole 46, extending through the upper side 32 to the bottom side 33 of the intermediate portion 40. The center hole 46 can be sized and configured to secure the base tie 30 to the concrete footing 10 (
Referring now to
In addition, each attachment portion 54 can include one or more protrusions 66 sized and configured to lock or attach to the wall tie 90. In one embodiment, the attachment portion 54 on the right side 37 can include a protrusion 66 on the inner surface of the first attachment portion 60 and a protrusion 66 on the outer surface of the second attachment portion 62. Likewise, on the left side 36 of the base tie 30, the first attachment portion 54 can include a protrusion 66 on the inner surface and a protrusion 66 on the second attachment portion 62 on the outer surface of the attachment portion 54. Such protrusions 66 on the attachment portion 54 are sized and configured to interconnect and removably lock with the wall tie 90, of which further explanation will be provided for the interconnection hereafter.
Each of the first end portion 50 and the second end portion 52 can also include a support wall 70. The support wall 70 can include an inner surface 72 and an outer surface 74, extending upward and between the front side 34 and back side 35 of the base tie 30. The support wall 70 can include additional supports 76 extending from the outer surface 74 of the support wall to provide additional structural integrity to the support wall. Such additional supports can extend, for example, from an intermediate height of the outer surface 74 of the support wall 70, angling downward toward a corresponding end of the first end portion 50 and the second end portion 52. Further, the additional supports 76 can define a portion of the front side 34 and back side 35 of each of the respective first and second end portions 50 and 52 of the base tie 30. As previously set forth, the upward extension of the both the support wall 70 and the attachment portion 54 define a channel 80 in each of the first end portion 50 and the second end portion 52. Such a channel 80 extends (laterally to the longitudinal length of the base tie 30) between the front side 34 and back side 35 of the base tie 30 at each of the first end portion 50 and the second end portion 52. Further, the channel 80 is sized and configured to receive and support a panel structure 150 (
Now with reference to the wall tie 90 of the tie system 20, the wall tie 90 includes an upper side 92, bottom side 93, a front side 94, a back side 95, a right side 96 and a left side 97. Further, such a wall tie 90 can include a first elongated wall portion 100 and a second elongated wall portion 102 with a cross-member 110 extending therebetween. The first elongated wall portion 100 includes an outer surface 104 and an inner surface 105, the outer surface 104 defining, at least in part, the right side 96 of the wall tie 90. Likewise, the second elongated wall portion 102 includes an outer surface 106 and an inner surface 107 with the outer surface 106 defining, at least in part, the left side 97 of the wall tie 90. The outer surfaces of the first and second elongated wall portions 100 and 102 can be substantially flat and sized and configured to be positioned against and secured to the panel structure 150, the panel structure also being positioned in the channel 80 of the base tie 30, as previously set forth.
Furthermore, the first and second elongated wall portions 100 and 102 include an intermediate wall portion 108 with an inner surface that can be raised. Such raised surface can be thicker than the remaining portions of both the first and second elongated wall portions 100 and 102. Further, such intermediate wall portion 108 is sized and configured to be secured to the panel structures with fasteners and is, therefore, configured to be thicker to increase the structural integrity for such attachment. In addition, the intermediate wall portion 108 for each of the first and second elongated wall portions 100 and 102 can include and define holes 109 extending between the front side 94 and back side 95 of the wall tie 90. Such holes 109 defined in each intermediate wall portion 108 of the wall tie 90 limits the amount of material necessary for the structural integrity of the wall tie while also adding structural thickness for being secured to the panel structures.
As previously set forth, the first and second elongated wall portions 100 and 102 are interconnected by a cross-member 110. The cross-member 110 can extend from respective inner surfaces of the first and second elongated wall portions 100 and 102 at one or more locations. In particular, the cross-member 110 can include upper beams 112, a mid beam 114 and a lower beam 116 with multiple struts 118 interconnecting such upper, mid and lower beams. The upper beams, mid beam and lower beam can extend from respective upper, mid and lower portions of the inner surface of the intermediate wall portion 108 of both the first and second elongated wall portions 100 and 102. According to this arrangement, the cross-member 110, including the multiple beams and struts, are sized and configured to provide the structural integrity necessary to withstand the concrete loads placed thereon.
Furthermore, the cross-member 110 can include multiple rebar holders. In particular, the cross-member 110 can include a center rebar holder 120 with a right rebar holder 122 and a left rebar holder 124 positioned above the center rebar holder 120. The center rebar holder 120 is defined at a juncture between the upper beams 112 of the cross-member 110 with a u-shaped configuration. The upper beams can include cross-member extensions 126, extending upward, to define each of the center, right and left rebar holders 120, 122 and 124 each having a u-shaped configuration. Of course, such rebar holders can include other configurations with means for maintaining rebar. With such an arrangement, rebar can be readily placed within one or more of the u-shaped configurations for substantially exact rebar placement and positioned in a time efficient manner. Each of the center rebar holder 120 and right and left rebar holders 122 and 124 can be configured with structure to attach and hold the rebar, with an interference type fit, in position or can be configured to allow the rebar to rest within the various u-shaped configurations.
In addition, the center rebar holder 120 can be sized and configured to receive both ½″ diameter and ⅝″ diameter rebar, the ½″ diameter rebar held in a lower portion of the center rebar holder and the ⅝″ diameter rebar held in an upper portion with a ridge 121 defined therebetween. That is, the ridge 121 defines an upper edge of the lower portion sized for the ½″ diameter rebar and the ridge 121 defines a lower edge of the upper portion sized for the ⅝″ diameter rebar. Further, the center rebar holder 122 can include a rebar groove 123 defined at a bottom of the center rebar holder 122. Such rebar groove 123 is sized and configured to receive a raised seam on the periphery of rebar and, in this case, the ½″ diameter rebar. The right and left rebar holders 122 and 124 are sized and configured to receive ½″ diameter rebar therein each including a rebar groove defined therein.
According to an important aspect of the present invention, each of the first and second elongated wall portions 100 and 102 can include a lower attachment portion 130 and an upper attachment portion 140. The lower attachment portion 130 of the wall tie 90, located at a lower portion of each of the first and second elongated wall portions 100 and 102, can be sized and configured to attach and interconnect or interlock (in a removable manner) to the attachment portion 54 of a respective and corresponding first and second end portion 50 and 52 of the base tie 30. The upper attachment portion 140 of each of the first and second elongated wall portions 100 and 102 can be sized and configured to substantially mimic the attachment portion 54 of the base tie 30 so that additional wall ties 30 can be stacked vertically upon each other to, thereby, build the wall ties 30 to the approximate desired height for the concrete wall form.
With respect to
With reference now to
Based on the foregoing, the tie system of the present invention is advantageous in comparison to the prior art concrete form systems due to the tie system comprising primarily two components, the base tie and the wall tie. Such two components in the tie system inherently provides advantages of being compact for shipping purposes, minimizing the risk of damaging the components during shipping and even while building the concrete forms. Further, due to the compact and light nature of the tie system with primarily two different components, installing the tie system to build the concrete forms is less laborious than prior art concrete form systems with minimized complexity. Moreover, the tie system of the present invention includes greater cost and time efficiency in regard to manufacturing, shipping and assembling such tie system.
With respect to
The second length L2 in which the base ties 30 are spaced can vary upon parameters, namely (but not limited to), the thickness of the panel structure and the height of the concrete wall. The thickness of a panel structure that can be employed with the present invention can include, but is not limited to, 7/16″, ½″, 9/16″, ⅝″, 11/16″, ¾″, 1″, or 1⅛″ thickness. When using typical plywood, the preferred parameters are as follows: For a one to two foot concrete wall height utilizing a plywood thickness between 7/16″ to 1⅛″ thick, the spacing for the second length L2 is preferably a maximum of about twenty-four inches. If the wall height is 2½″ feet, the spacing for the second length L2 is a maximum of about nineteen inches utilizing plywood at 7/16″ or ½″ thick and a maximum of about twenty-four inch spacing for plywood 9/16″ through 1⅛″ thick. Further, if the wall height is three feet, the spacing for the second length L2 is a maximum of about sixteen inches with a 7/16″ or ½″ thick plywood and a maximum of about twenty-four inch spacing for 9/16″ through 1 1/18″ thick plywood. If the wall height is 3½″ feet, the spacing for the second length L2 is a maximum of about twelve inches utilizing plywood at 7/16″ or ½″ thick, and a maximum of about a 19 inch spacing for plywood at 9/16″ or ⅝″ thick, and about a maximum of about twenty-four inch spacing using plywood at 11/16″ through 1⅛″ thick. For a wall height of four feet, the spacing for the second length L2 can be a maximum of about sixteen inches with 9/16″ or ⅝″ thick plywood and a maximum of about twenty-four inch spacing using 11/16″ through 1⅛″ thick plywood. Further, it should be noted that it is preferred to utilize typical plywood having a thickness greater than ½″ for a wall height of four feet. Again, as set forth, the above-indicated parameters relate to the panel structure being typical plywood. When using Form ply, it is preferred to utilize ½″ thick panels for any wall height up to ten feet. The preferred panel structures employed that are rated as Form ply are typically high density overlay (“HDO”) plywood or medium density overlay (“HDO”) plywood. Other suitable panel structures, as known to one of ordinary skill in the art, can also be employed with the tie system of the present invention.
For accurate placement and alignment, the base tie 30 can include a notch 82 at the inside edge of each channel (See
With reference to
Once the horizontal rebar 162 is positioned along the first course of wall ties, additional wall ties can be added to each stack to the height necessary for running another length of horizontal rebar 162. In other words, depending on the required vertical spacing of the horizontal rebar, the appropriate number of wall ties 90 can be pre-assembled to achieve the desired vertical spacing of such horizontal rebar 162. For example, each wall tie 90 can represent about six inches of vertical height. If your intended rebar spacing between horizontal rebar is twenty-four inches apart, then pre-assemble four wall ties and attached such pre-assembled wall ties to each tie stack before-running a second length of horizontal rebar 162. Once such rebar is positioned as desired, additional wall ties 90 can be stacked vertically for each tie stack to the desired height. It should be noted that tie stacks are complete within about five inches of the intended height of the concrete wall. For example, for an intended wall height of three feet, a total of five wall ties will make a complete tie stack 160 with the base tie 30 at the bottom (representing about one inch) providing about five inches below the intended wall height of three feet. As will be readily understood by one of ordinary skill in the art, the ability to internally build the tie stacks 160 with the horizontal rebar 162 prior to positioning the panel structures thereto, as set forth above, provides for quick and ready assembly of the tie system 20, and therefore provides advantages over the prior art in reducing complexity to, thereby, be more time and cost efficient.
Referring now to
With reference to
Like the base tie 30, the finish tie 170 can include a first end portion 175 and a second end portion 177 with the intermediate portion 174 extending therebetween. Each of the end portions can define channels 172 therein sized and configured to be positioned over and receive the panel structures 150. Further, channel slots 182 defined in each of the end portions can be employed to fasten the finish tie 170 to the panel structures 150. It should be noted that it is not required to fasten the finish tie 170 to the panel structures 150.
Once the panel structures 150 are positioned within the channels 80 of the base ties 30 and further, the channels 172 of the finish ties 170 are also positioned over the panel structures 150, fasteners 184, such as screws, can be inserted through the panel structures 150 and through the wall ties 90. Placement of such fasteners should correspond with the first and second elongated wall portions 100 and 102 of each wall tie 90 and, more specifically, the intermediate wall portion 108 (See
Referring to
With reference to
Referring now to
Referring now to
As shown, a top portion 19 of the hardened concrete wall 17 can include an exposed portion of the anchor bolts 180 ready to receive the bottom portion of the structure (not shown) to be built thereon. Also, once the panel structures are removed, the outer surface of the wall ties 90 will be exposed on the concrete wall 17 along with a portion of the end portions of the base tie 30. To cover this exposed portion of the wall tie 90, a self-adhesive tape 222 can be applied thereto, such as a mesh tape. The self-adhesive tape 222 can then receive a base coat product 224. The base coat product can be any suitable exterior insulation finishing system (“E.I.F.S.”) type product, such as, DRYVIT, PAREX, SYNERGY or FINESTONE products. This will provide a bridge over the exposed wall ties that provides a surface that can be plastered over or receive a water proofing product as typically employed on foundation walls.
Furthermore, in another aspect of the present invention, once the panel structures are removed from the hardened concrete wall 17, the exposed portion of the wall ties 90 can be used as anchoring points for other building materials. In particular, such exposed portion of the wall ties 90 in the concrete wall can be employed as a substrate to anchor a polymeric insulation building material thereto. The portion best suited to anchor into is the intermediate wall portion 108 being sized and configured thicker than other portions of the elongated wall portions (See
The clip member 250 can include a form attachment portion 252 and a tie attachment portion 254. The form attachment portion 252 is sized and configured to attach to a portion, such as a top surface 242, of the metal forms 240. The form attachment portion 252 can include a first extension portion 262, a wrap portion 264 and a free end 266. The first extension portion 262 can be configured to extend outward from the tie attachment portion 254 to the wrap portion 264. The wrap portion 264 can be sized and configured to wrap around an edge 244 at the top surface 242 of the metal form 240. The free end 266 extends from the wrap portion 264 and can include a tapered lip 268. At an underside of the first extension portion 262, there is defined a recess 269 or groove configured to receive the edge 244 of the metal form 240 in conjunction with the wrap portion 264. With this arrangement, the clip member 250 can be readily attached to the edge 244 of the metal form by pulling and sliding the tapered free end 266 under the edge 244 and into the wrap portion 264 until the recess 269 of the first extension portion 262 engages such edge 244.
Now with reference to the tie attachment portion 254 of the clip member 250, such tie attachment portion 254 can be sized and configured to attach to a clip hole 53 in an end portion 51 of the base tie 30. The tie attachment portion 254 can include a second extension portion 270 with a clipping portion 274 extending upward therefrom and a lower portion 272. The second extension portion 270 is sized and configured to be disposed between a top surface 242 of the metal forms 240 and below the base tie 30. The clipping portion 274 can be sized and configured to extend through the clip hole 53 defined in the end portion 51 of the base tie 30. The lower portion 272 below the second extension portion 270 can be disposed within a hole 246 defined in the top surface 242 of the metal forms 240. The clipping portion 274 can include two upward extending portions 276 each with a tapered free end 278 and a back-stop 279. As such, once the clip member 250 is properly positioned and attached to the metal forms 240, the base tie 30 can be aligned such that the clipping portion 274 is inserted through the clip hole 53 in the base tie 30. As such insertion takes place, the tapered free ends 278 of the upward extending portion 276 squeeze or move together until the clipping portion 274 is fully inserted. The back-stop portion 279 of each upward extending portion 276 maintains the base tie 30 in proper position. Another clip member 250 should also be employed, as previously set forth, for the opposite side of the base tie 30 and each base tie 30 along the length of the metal forms 240. In this manner, the clip member 250 can be utilized with the tie system 20 to achieve greater concrete wall heights than that which is available for a given metal form 240. It should be noted that the base tie, in this aspect of the present invention, is positioned over the concrete footing (not shown) and, more specifically, is positioned over and above the concrete footing while being secured to the metal forms 240.
Furthermore, the tie system of the present invention can also be employed over a top portion of traditional wood forms, similar to that depicted in the previous embodiment. However, according to another embodiment, the base tie 30 can be positioned over (and above) the footing and fastened to the top surface of traditional wood forms via a base securing hole 83 defined in each of the channels 80 of the first end portion 50 and the second end portion 52 of the base tie 30, as depicted in
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.