1. Field of the Invention
The invention relates generally to the field of constructing buildings. More specifically, the invention relates to the field of insulating metal buildings.
2. Description of the Related Art
Conventionally, metal buildings are constructed according to a series of steps. First, a metal frame is constructed. The metal frame includes numerous structural support members. The roof portions include sloped roof structural members referred to as purlins. The walls include vertically spaced horizontally extending members, which are referred to as girts. Once the frame is installed, it is common to insulate both the roof and wall portions of the building.
With respect to roof arrangements, blanket insulation is draped over the tops of the purlins, and then roof panels are fastened over the insulation. In some cases, it has been known to install a longitudinal thermal block above the top flange of the purlin such that it runs the entire length of the purlin over the draped blanket insulation.
With respect to the conventional wall, blanket insulation is secured from above such that it is draped over horizontally extending girts. Then metal wall panels are fastened to the outer flanges of the girts, mashing the blanket insulation between the wall panel and the outer flange of each girt where they interface. These lines of packed-down insulation create heat losses.
The disclosed embodiments include a wall system that is adapted to be installed onto vertically displaced horizontal support members (e.g., girts) on a building. In one embodiment, the system comprises a wall panel having at least one inwardly-extending feature (e.g., a ridge or channel). In embodiments, a number of foam insulation blocks are adapted (on one side) to conform to the shape of the inwardly-extending feature. Further, the blocks can be spaced apart (vertically) along each of the horizontal support members, and then fastened between the wall panel and the support members. The blocks are also spaced apart horizontally which creates an array. The thickness of the blocks creates a gap. The gap allows a blanket of insulation to be expanded into space created between the blocks.
In one embodiment, each of the blocks in the plurality has forwardly angled opposing sides which conform to a reciprocal shape of the feature (e.g., a ridge) and a backside that is adapted to be fixed to an outer flange on each girt.
A method is also disclosed which involves (i) providing a building structure having a plurality of vertically displaced horizontal support members; (ii) obtaining a wall panel having at least one inwardly-extending feature on an inside surface of the wall; (iii) conforming the shape of one side of each of a plurality of insulating blocks to the inwardly extending feature; (iv) placing the plurality of foam insulation blocks between an outside of the horizontal support members and the inwardly-extending feature; and (v)fastening the wall to the horizontal support members, thus sandwiching the blocks.
Illustrative embodiments of the present invention are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein and wherein:
Embodiments of the present invention provide an insulated metal panel system for a building, and a method for constructing a metal panel for the wall of a building.
In order to provide a context for the disclosed embodiments, prior art drawings
When insulation is desired, a blanket of insulation 18 having a facing 19 on the inside is typically unrolled, draped down the wall, and then secured between the wall panel 12 and the Z-girts 14 using fasteners 16. The fasteners 16 are screwed into the outer flange 24 of the girt, as shown in
Looking at the exploded view in
The compacting of insulation 18 in area 26 causes significant heat losses. As those skilled in the art will recognize, the mashing down of blanket creates an area where the thermal resistance is weakened. Because of this, if one were to look at heat flow diagrams in the areas near the outer flange of the girt, they would see significant flow of heat energy through the area surrounding the fastener 16, with the heat losses being reduced at the locations spaced above or below the girt outer flanges. This is because the insulation 18 (e.g., half way between the girts in
The arrangement of the present invention 110 which can be seen in
But the new system 110 is different in that the outer flanges of the girt 124, upon fastening of the wall panel 112, are not directly pressed against the blanket insulation 118. Instead, a plurality of foam spacer blocks 126, each having forwardly angled opposing sides, are intermittently fastened between the wall 112 and girt outer flange 124 along the length of the girt 14.
As can be seen in
Details of the spacer block 126 can best be seen in
As can best be seen in FIGS. 2 and 4C-D, these blocks 126 are specially configured to fit inside between the inside ridge surfaces of the channel/ridge portions 122 of the wall and the girt outer flange 124. More specifically, face 302 will butt against the ridge of the channel 122, and the angled sides 304 will correspond to the sloped surfaces of the channel 122 so that the block fit inside the wall is true. On the other side of the block 126, the back 310 will butt against the girt outer flange 124 when the wall is fastened.
Each of the blocks 126 has a thickness dimension (between faces 302 and 310). Because of this, the placement of the blocks (in the array shown in
In terms of assembly in the erection of the building, the girts 114 will already be in place as shown in the figures, and the remaining wall components will be installed outside them. In some embodiments, the blanket insulation 118 will be draped over the outsides of the girts 114. It is not necessary to independently fasten the insulation 118 at this point, but in may instances it will make sense to secure the blanket 118 from above and allow it to drape down before fastening the wall onto the girts 114. The next step, in embodiments, involves the securement of the blocks in some way. In some embodiments, this would mean that the blocks would be adhered or in some other way fastened to the inside surfaces (ridges) of the wall in the positions shown before the wall is fastened in place. The precise position for adhering each block 126 will be determined by spacing the horizontal rows of blocks 126 at the vertical positions of each horizontally extending girt (see
Fluffed blanket insulation is considerably more effective as a heat barrier than insulation that is matted down. Thus, a much higher percentage of the wall panel 112 is backed by insulation which is billowed rather than matted down. Therefore, as opposed to the conventional system shown in
Many different arrangements of the various components depicted, as well as components not shown, are possible without departing from the spirit and scope of the present invention. Embodiments of the present invention have been described with the intent to be illustrative rather than restrictive. Alternative embodiments will become apparent to those skilled in the art that do not depart from its scope. A skilled artisan may develop alternative means of implementing the aforementioned improvements without departing from the scope of the present invention.
It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations and are contemplated within the scope of the claims. Not all steps listed in the various figures need be carried out in the specific order described.
This application is a continuation of U.S. patent application Ser. No. 13/416,959, filed Mar. 9, 2012, which claims priority to U.S. Provisional Application No. 61/451,056 filed Mar. 9, 2011, the disclosures of which are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61451056 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13416959 | Mar 2012 | US |
Child | 13418309 | US |