Wall joint or sound block component and wall assemblies

Information

  • Patent Grant
  • 11891800
  • Patent Number
    11,891,800
  • Date Filed
    Monday, March 21, 2022
    2 years ago
  • Date Issued
    Tuesday, February 6, 2024
    10 months ago
  • Inventors
  • Original Assignees
    • Cemco, LLC (City of Industry, CA, US)
  • Examiners
    • Figueroa; Adriana
    Agents
    • Knobbe, Martens, Olson & Bear LLP
Abstract
An elongate component for placement in a wall gap and a wall incorporating such a component. The component includes a wall-face leg configured to extend along a face of a wallboard and a wall-end leg configured to extend along an end of the wallboard. The wall-end leg is oriented perpendicular to the wall-face leg. The component further includes a flexible gap portion configured to be positioned within and extend along the wall gap. The gap portion is located on an opposite side of the wall-end leg relative to the wall-face leg. A blocking element is located in a space defined by the wall-end leg and the gap portion. The blocking element is configured to block fire and/or sound within the wall gap. At least a portion of the flexible gap portion is located on an exterior side of the blocking element.
Description
BACKGROUND
Field

This disclosure generally relates to head-of-wall assemblies that include features and components that prevent or inhibit the passage of fire, smoke, and/or heat through a wall in accordance with UL-2079 regulations.


Description of Related Art

Fire-rated construction components and assemblies are common in the construction industry. These components and assemblies are aimed at inhibiting or preventing the passage of fire, heat, or smoke from one room to another or between portions of a building. Fire, heat and smoke generally move between vents, joints in the wall, or other openings between adjacent rooms. Accordingly, fire rated components often include fire retardant materials that substantially block the path of the fire, heat, or smoke for at least some period of time through the openings. Intumescent materials work well for this purpose because they swell and char when exposed to heat helping to create a barrier for the fire, heat, and/or smoke.


Walls in modern building structures can at least partially define or include many gaps or joints. Such gaps or joints can be located at the bottom of a wall, along the sides of a wall or within an interior of the wall. One particular wall joint with a high potential for allowing fire, heat, or smoke to pass from one room to another is the joint between a wall and a ceiling. This can be referred to as a head-of-wall joint. In modern construction, especially in multistory buildings, the head-of-wall joint is often a dynamic joint in which relative movement between ceiling and the wall is allowed. This relative movement can accommodate deflection in the building due to loading of the upper structures or ceiling, seismic forces, heat expansion or building movement.


SUMMARY

An aspect of the present disclosure involves an elongate component for placement in a wall gap. The component includes a wall-face leg configured to extend along a face of a wallboard. The component also includes a wall-end leg configured to extend along an end of the wallboard. The wall-end leg is oriented perpendicular to the wall-face leg. The component further includes a flexible gap portion configured to be positioned within and extend along the wall gap. The gap portion is located on an opposite side of the wall-end leg relative to the wall-face leg. A blocking element is located in a space defined by the wall-end leg and the gap portion. The blocking element is configured to block fire and/or sound within the wall gap. At least a portion of the flexible gap portion is located on an exterior side of the blocking element.


In some configurations, the flexible gap portion comprises a single leg.


In some configurations, the flexible gap portion comprises an enclosure.


In some configurations, the enclosure comprises a pair of legs.


In some configurations, each of the pair of legs comprises a bent free end.


In some configurations, the blocking element comprises a mineral wool material.


In some configurations, the blocking element further comprises a foam material.


In some configurations, the blocking element comprises a combination of an intumescent material strip and a foam block.


In some configurations, the intumescent material strip is attached to the wall-end leg.


In some configurations, the foam block has a height that is greater than a height of the flexible gap portion.


In some configurations, the blocking element comprises a mineral wool material.


In some configurations, the blocking element further comprises a foam material.


In some configurations, a wall assembly define a wall gap and the wall incorporates the component positioned in the wall gap.


In some configurations, the wall gap is a head of wall gap.


An aspect of the present disclosure involves a method of making a component for placement in a wall gap, comprising forming an elongate profile comprising a first leg and a second leg that cooperate to form an L-shape in cross-section and a flexible enclosure defining an interior space, and positioning a blocking member within the interior space of the enclosure.


In some configurations, the enclosure comprises a pair of flexible legs, further comprising separating the flexible legs and inserting the blocking member into the interior space between the flexible legs.


In some configurations, the blocking member comprises a mineral wool material.


In some configurations, the blocking member further comprises a foam material.


An aspect of the present disclosure involves a fire-rated assembly is configured to extend along an upper end of the wallboard and at least partially fill the deflection gap. The assembly includes a vinyl profile having a first leg extending upwardly from the upper edge of the wallboard, a second leg extending downwardly from the upper edge of the wallboard, and a third leg extending along the upper edge of the wallboard within the deflection gap. A compressible foam member is attached to one or both of the first leg and the third leg and is configured to contact an upper surface of an overhead structure within the deflection gap. A fire-blocking strip is attached to the third leg and is configured to be located within the deflection gap.


An aspect of the present disclosure involves a fire rated assembly is installed within a head-of-wall assembly. The head-of-wall assembly can include a header track coupled to the upper surface, the header track having a web and first and second flanges extending from the web in the same direction and forming a substantially U-shaped cross section. At least one stud is coupled to the header track. An upper end of the stud is located between the first and second flanges. A wallboard is coupled to the stud. The wallboard overlaps the first flange of the header track. The deflection gap is formed between the upper edge of the wallboard and the upper surface. The deflection gap is variable between a closed position and an open position.


In some configurations, the first and second legs are generally vertical and the third leg is generally horizontal.


In some configurations, the first leg is flexible.


In some configurations, the second leg is rigid.


In some configurations, the second leg includes a plurality of perforations.


In some configurations, the fire-blocking strip is or comprises an intumescent material.


In some configurations, the fire-blocking strip is above or below the third leg.


In some configurations, the fire-blocking strip is between the compressible foam member and third leg.


In some configurations, the compressible foam member has a height greater than a height of the first leg.


In some configurations, the second leg is attached to one of an outward face and an inward face of the wallboard.


An aspect of the present disclosure involves a fire-rated assembly is configured to extend along an upper edge of a wallboard and at least partially fill a deflection gap along the upper edge of the wallboard. The assembly includes a vinyl profile, the vinyl profile has a first leg configured to extend upwardly from the upper edge of the wallboard, a second leg configured to extend downwardly from the upper edge of the wallboard, and a third leg configured to extend along the upper edge of the wallboard within the deflection gap. A compressible foam member is attached to the third leg and is configured to contact an upper surface of an overhead structure within the deflection gap. A fire-blocking strip is attached to one or both of the first leg and the third leg and is configured to be located within the deflection gap.


In some configurations, the first and second legs are generally vertical and the third leg is generally horizontal.


In some configurations, the first leg is flexible.


In some configurations, the second leg is rigid.


In some configurations, the second leg includes a plurality of perforations.


In some configurations, the fire-blocking strip is or comprises an intumescent material.


In some configurations, the fire-blocking strip is above or below the third leg.


In some configurations, the fire-blocking strip is between the compressible foam member and third leg.


In some configurations, the compressible foam member has a height greater than a height of the first leg.


In some configurations, the second leg is configured to attach to one of an outward face and an inward face of the wallboard.


The foregoing summary is illustrative only and is not intended to be limiting. Other aspects, features, and advantages of the systems, devices, and methods and/or other subject matter described in this application will become apparent in the teachings set forth below. The summary is provided to introduce a selection of some of the concepts of this disclosure. The summary is not intended to identify key or essential features of any subject matter described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the embodiments. Various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure.



FIG. 1 shows a perspective view of a fire-rated assembly.



FIG. 2 shows an end view of an opposite end of the fire-rated assembly of FIG. 1.



FIG. 3 shows a cross-sectional view of a head-of-wall assembly including the fire-rated assembly of FIG. 1.



FIG. 4 shows another configuration of a head-of-wall assembly including the fire-rated assembly of FIG. 1.



FIG. 5 shows another configuration of a head-of-wall assembly including the fire-rated assembly of FIG. 1.



FIG. 6 shows another configuration of a head-of-wall assembly including the fire-rated assembly of FIG. 1.



FIG. 7 shows a perspective view of another fire-rated assembly.



FIG. 8 shows an end view of the fire-rated assembly of FIG. 7.



FIG. 9 shows a cross-sectional view of a head-of-wall assembly including the fire-rated assembly of FIG. 7.



FIG. 10 is an end view of a construction accessory with a compressible fire blocking member located between flexible legs.



FIG. 11 is an end view of the compressible fire blocking member of the construction accessory of FIG. 10 shown separate from the remainder of the construction accessory. The illustrated compressible fire blocking member is a composite of mineral wool and compressible open or closed cell polyethylene foam.



FIG. 12 is an end view of an alternative compressible sound blocking member that can be used in an alternative, sound-attenuation version of the construction accessory of FIG. 10. Side view of square open or closed cell polyethylene foam.



FIG. 13 is a cross-sectional view of a head-of-wall portion of a wall assembly with a pair of the construction accessory located within the head of wall gap.



FIG. 14a is an end view of a profile portion of the construction accessory of FIG. 10 without the compressible fire blocking member.



FIG. 14b is an end view of the profile portion of FIG. 14a with flexible legs opened to permit access to a space between the flexible legs.



FIG. 14c is an end view of the profile portion of FIG. 14a with the flexible legs opened and the compressible fire blocking member inserted into the space between the flexible legs.



FIG. 14d is an end view of the profile portion of FIG. 14a with the compressible fire blocking member located in the space between the flexible legs and the flexible legs closed to retain the compressible fire blocking member.





DETAILED DESCRIPTION

The various features and advantages of the systems, devices, and methods of the technology described herein will become more fully apparent from the following description of the embodiments illustrated in the figures. These embodiments are intended to illustrate the principles of this disclosure, and this disclosure should not be limited to merely the illustrated examples. The features of the illustrated embodiments can be modified, combined, removed, and/or substituted as will be apparent to those of ordinary skill in the art upon consideration of the principles disclosed herein.



FIGS. 1-2 show a fire-rated assembly 100. The fire-rated assembly 100 can be an assembly of various components, strips and/or layers. The fire-rated assembly 100 can include a profile 110. The profile 110 can comprise a metal or polymer material, such as vinyl (e.g., polyvinyl chloride (PVC)). The profile 110 can comprise a single material or multiple materials connected together (e.g., co-extruded). The profile 110 can be sold in standard lengths, (e.g., 10′, 12′, 15′, etc.).


The profile 110 can comprise a plurality of legs. The legs can variously be stiff or flexible depending on their purpose and intended usage of each of the legs in a head-of-wall assembly. The legs can generally form a T-shaped cross-section having one or more horizontal and/or vertical legs. In certain implementations, the profile 110 can have a uniform cross-sectional Y-shape along its entire length. The legs can connect at an intersection 110a. The legs can each be formed integrally or connected to the profile 110 (e.g., at the intersection 110a).


The profile 110 can include a first leg 101 or a gap portion, which is configured to extend along a wall gap. The first leg 101 can be a flexible leg. The first leg 101 can extend in a first direction, such as a generally upward direction (e.g., as shown in FIGS. 1-2) from the intersection 110a. The first leg 101 can be an upper leg. In certain implementations, the first leg 101 can be formed of the same material as the remainder of the profile 110. The first leg 101 can be formed as a unitary piece of the profile 110. In certain implementations, the first leg 101 can be formed of a different material than another portion or the remainder of the profile 110 and connected thereto (e.g., through a co-extrusion process). The different material can comprise a polymer, such as PVC, having different properties than the profile 110 (e.g., relative flexibility or stiffness).


The profile 110 can include a second leg 102 or a wall-face leg, which can extend along an outer face of a wall or wallboard. The second leg 102 can extend in a second direction, such as a generally downward direction relative to the intersection 110a and/or the first leg 101. The second leg 102 can be generally rigid relative to the first leg 101. The second leg 102 can be a lower leg. The second leg 102 can comprise a plurality of perforations 107. The perforations 107 can be apertures extending through a thickness of the second leg 102. The apertures 107 can be arrayed in a pattern extending along a length of the second leg 102. In certain implementations, the second leg 102 can be formed as a unitary piece (e.g., through an extrusion process) with another portion or the remainder of the profile 110.


The first leg 101 and the second leg 102 can connect at the intersection 110a of the profile 110. The first leg 101 and the second leg 102 can be offset (e.g., horizontally, as illustrated) at the intersection 110a. In certain alternative implementations, the first leg 101 and the second leg 102 can be aligned.


The profile 110 can include a third leg 103 or a wall-end leg, which can extend along an end of a wallboard. The third leg 103 can be a horizontal leg. The third leg 103 can extend in a third direction, such as a generally horizontal direction relative to the intersection 110a and/or the first and second legs 101, 102. The third leg 103 can connect to the first leg 101 and/or the second leg 102 at the intersection 110a. In certain implementations, the third leg 103 can be formed as a unitary piece (e.g., through an extrusion process) with the second leg 102 and the first leg 101 and can be connected thereto at the intersection 110a.


The fire-rated assembly 100 can comprise a compressible member in the form of a compressible block 104. The compressible block can be coupled with one or both of the first leg 101 and the third leg 103. The compressible block 104 can be an open or closed cell polymer foam, or another suitable material. The compressible block 104 can extend along the length of the profile 110. The compressible block 104 can be abutted against and/or attached with an inner side of the first leg 101. The compressible block 104 can be abutted against and/or attached with an upper side of the third leg 103. In certain implementations, the compressible block 104 can be attached to the profile 110 with an adhesive.


The fire-rated assembly 100 can include a fire-blocking strip member, such as a fire-blocking 105. The fire-blocking strip 105 can be attached or coupled to the third leg 103. The fire-blocking strip 105 can be attached or coupled to the upper side of the third leg 103 or a lower side of the third leg 103. Alternatively, the fire-blocking strip 105 can be attached to the first leg 101 (e.g., at the inner side thereof). The fire-blocking strip 105 can extend the entire length of the profile 110.


The fire-blocking strip 105 can be located anywhere along a width of the third leg 103. In certain implementations, the fire-blocking strip 105 can be aligned adjacent to the first leg 101, in a central portion of the third leg 103, along an end of the third leg 103 opposite the first leg 101, or span the entire third leg 103. The fire-blocking strip 105 can be located between the profile 110 and the compressible block 104. In certain embodiments, the fire-blocking strip 105 can be located between the compressible block 104 and the third leg 103. The compressible block 104 can partially or completely cover the fire-blocking strip 105. The compressible block 104 can be partially or fully attached to the profile 110 by its connection to the strip 105.


The first leg 101 can have a height or a length 101a in the cross-sectional direction. The length 101a can extend from a distal end of the first leg 101 to the intersection 110a of the first leg 101 with the third leg 103. The length 101a can be ⅝″. In certain implementations, the length 101a can be between approximately ¼″ and 1½″ although other lengths are contemplated herein. The first leg 101 can have a thickness; the thickness can taper from the intersection 110a to the distal end of the first leg 101. The thickness and/or taper can provide for flexibility of the first leg 101.


The second leg 102 can have a height or a length 102a in the cross-sectional direction. The length 102a can be extended from a distal end of the second leg 102 to the intersection 110a of the second leg 102 with the third leg 103. In certain implementations, the length 102a can be between approximately 1″ and 3″. The length 102a can be greater than the length 101a. The second leg 102 can have a thickness. The thickness can be consistent from the intersection 110a to the distal end of the second leg 102. The thickness can provide for relative stiffness of the second leg 102.


The third leg 103 can have a width or a length 103a in the cross-sectional direction. The length 103a can extend from the intersection 110a with either of the first leg 101 or the second leg 102 to a distal end of the third leg 103. The length 103a can be ⅝″. In certain implementations, the length 103a can be between approximately ¼″ and 1½″. The length 103a can be less than the length 101a and/or length 102a. The third leg 103 can have a thickness. The thickness can be consistent from the intersection 110a to the distal end of the third leg 103. The thickness can provide a relative stiffness or flexibility to the third leg 103.


The compressible block 104 can have a height 104a. The height 104a can be measured in a direction orthogonal to the length of 103a of the third leg 103. The height 104a can be in a direction parallel to the length 101a of the first leg 101. The height 104a can be 1″. In certain implementations, the height 104a can be between approximately ½″ and 2″. Desirably, the height 104a can be greater than the length 101a. The compressible block 104 can extend upwardly past the first leg 101. However, this is not required.


The compressible block 104 can have a width 104b. The width 104b can be measured in a direction orthogonal the length 101a of to the first leg 101. The width 104b can be in a direction parallel to the length 103a of the third leg 103. The width 104b can be ½″. In other implementations, the width 104 can be between approximately ¼″ and 1½″. The width 104b can be less than, equal to, or greater than the length 103a of the third leg 103.


The compressible block 104 can have a generally rectangular profile or cross-sectional shape, although this is not required. The compressible block 104 can include a front face 109a, a rear face 109b, an upper face 109c, and/or a lower face 109d. The front face 109a can abut or contact the inner side of the first leg 101. The front face 109a can be adhered to the first leg 101. The bottom face 109d can abut or contact the upper side of the third leg 103. The bottom face 109d can be attached or adhered to the third leg 103. The fire-blocking strip 105 can contact the lower face 109d of the compressible block 104. Alternatively, the fire-blocking strip 105 can be attached to the lower surface of the third leg 103.


The fire-rated assembly 100 can be installed within a wall joint in a building to provide fire, heat, smoke, and/or sound protection across the joint. As one exemplary usage environment, the fire-rated assembly 100 can be used to fire block a head-of-wall assembly 200, as shown in FIG. 3. The head-of-wall assembly 200 can include an upper or overhead structure 210 defining an upper surface. The upper structure 210 can be a ceiling or a floor of an upper level of a multi-level building. The head-of-wall assembly 200 can include a header track 220. The header track 220 can include first and second flanges 221, 222. The first and second flanges 221, 222 can be connected by a web 223. The header track 220 can be generally U-shaped. The flanges 221, 222 can include apertures or slots (not shown) for connecting to a plurality of studs 213. The studs 213 can provide backing for a first wallboard 230.


The wallboard 230 can be a gypsum drywall wallboard. The wallboard 230 can be attached (e.g., via nails, screws, or other fasteners) to the studs 213 of the head-of-wall assembly 200. The wallboard 230 can include an inner face 233 facing towards the studs 213. The wallboard 230 can include an outer face 231 facing outwardly away from the studs 213. The wallboard 230 can include an upper edge 232. The upper edge 232 can extend along a length of the wallboard 230 (e.g., into and out of the page as shown in FIG. 3).


The head-of-wall assembly 200 can define a deflection gap 215. The deflection gap 215 can be a gap across a portion of the head-of-wall assembly 200. The deflection gap 215 can be bounded on an upper side by the upper structure 210 and on a lower side by the upper edge 232. A height of the deflection gap 215 between the upper and lower sides can vary as the upper structure 210 moves with respect to the wallboard 230. The deflection gap 215 can be variable between a closed position and an open position. This movement of the deflection gap 215 can accommodate movement of the building.


The deflection gap 215 can define an opening through which fire, smoke, heat, and/or sound can pass from one side of the assembly 200 to the other side. Accordingly, the fire-rated assembly 100 can be installed in the assembly 200 to fire-block the deflection gap 215 (e.g., in accordance with UL-2079 regulations).


To install the assembly 100, the compressible block 104, the strip 105, and/or the third leg 103 can be placed within the deflection gap 215. The upper face 109c of the compressible block 104 can abut and seal against the upper structure 210. The deflection gap 215 can have a maximum height that is less than the height 104a of the compressible block 104. Accordingly, the compressible block 104 can be compressed to fit within the deflection gap 215. The compression can help to retain the compressible block 104 within the deflection gap 215. The compressible block can compress and expand to provide a seal across the deflection gap 215. The upper face 109c of the compressible block 104 can abut and seal against the upper structure 210. This can allow the assembly 100 to conform to an uneven surface of the upper structure 210.


The fire-blocking strip 105 can be located between the upper edge 232 and the upper structure 210. Accordingly, when heated to an intumescent expansion temperature (e.g., approximately 350° F.), as may occur during a fire, the fire-blocking strip 105 can expand to partially or completely fill the deflection gap 215 (e.g., across the height of the deflection gap 215) and thereby inhibit or prevent the passage of fire, heat, smoke and/or sound across the deflection gap 215.


The third leg 103 can be placed on the upper edge 232 of the wallboard 230. The third leg 103 can position the compressible block 104 and/or the strip 105 within the deflection gap. The vinyl material of the third leg 103 can maintain the position of the fire-blocking strip 105 when heated up to at least a melting point of the vinyl (e.g., approximately 500° F.). The melting point of the vinyl can be above the intumescent expansion temperature of the strip 105 (e.g., approximately 350° F.). Accordingly, the third leg 103 can maintain the position of the strip 105 within the deflection gap 215 at least until the strip 105 begins expansion.


The second leg 102 can be attached to the outer face 231 of the wallboard 230. The second leg 102 can be flush against an upper end of the wallboard 230 on the outer face 231. The second leg 102 can be attached to the upper end of the wallboard 230. The attachment can be by adhesive and/or mechanical fasteners. The second leg 102 can include apertures designed to receive mechanical fasteners therethrough for attachment with the wallboard 230.


The first leg 101 can be aligned with deflection gap 215. The first leg 101 can extend along a portion or an entirety of the height of the deflection gap 215. The first leg 101 can form an outer face blocking the deflection gap 215. In some configurations, the first leg 101 can contact the upper structure 210 at the distal end thereof.


The length 101a can be approximately equal to the height of the deflection gap 215, although this is not required. The flexible nature of the upper leg 101 can accommodate heights of the gap 215 that are less than the length 101a. As the deflection gap 215 varies with relative movement of the upper structure 210 and the wallboard 230, the first leg 101 can remain in contact with the upper structure 210, although this is not required. Accordingly, the first leg 101 can provide a barrier for the compressible block 104. The first leg 101 can extend the life of the compressible block 104 by protecting it from exposure to the elements and/or tampering.


The second leg 102 can be covered with a drywall mud (joint compound) or similar substance. The mud can fill the plurality of holes 107. The holes 107 can enhance the connection between the mud and the second leg 102. Once dried, the mud can be smoothed to mask the appearance of the second leg 102 against the outer surface 231 of the wallboard 230. The dried and smoothed mud can align with the first leg 101 at the offset of the intersection 110a (e.g., because of the offset between the first leg 101 and the second leg 102). The dried and smoothed mud can be painted to match the rest of the outer face 231.


In certain implementations, the head-of-wall assembly 200 can be first assembled. Afterwards, the fire-rated assembly 100 can be installed within the deflection gap 215. The second leg 102 can then be covered with the mud, smoothed and painted. In certain implementations, the fire-rated assembly 100 can be pre-installed on the wallboard 230. The head-of-wall assembly 200 can then be assembled with the assembly 100 located in the deflection gap 215. The head-of-wall assembly 400 can be a one hour fire-rated wall assembly.


The assembly 200 can also include a second side having a second wallboard 230A and a second deflection gap 215A. The second deflection gap 215A can be fire-blocked with a second fire-rated assembly 100A in the same manner as described above.


A head-of-wall assembly 300, as shown in FIG. 4 can include the same general structures as the head-of-wall assembly 200. The head-of-wall assembly 300 can include an upper structure 310, a header track 320, one or more studs 313, and a wallboard 330. The wallboard 330 can include an outer surface 331, an inner surface 333, and/or an upper edge 332. A deflection gap 315 can be defined between the upper structure 310 and the upper edge 332.


In assembly 300, the profile assembly 100 is installed with the second leg 102 against the inner surface 333 of the wallboard 330. In this configuration, the assembly 100 can be pre-installed on the wallboard 330 and the wallboard can afterwards be assembled into the assembly 300. When the assembly 300 is fully assembled, the second leg 102 can be located between the inner surface 333 and the first leg 331 of the header track 320. The first leg 101 can be located at or within the deflection gap 315 and/or contact the upper structure 310. The compressible block 104 and the third leg 103 can be located within the deflection gap 315. The third leg 103 can be located against the upper edge 332. The compressible block 104 can be compressed to contact and/or seal against the upper structure 310.


This configuration can substantially decrease the amount of time required for installing the fire-rated assembly 100 in the assembly 300. All wallboards 330 can have the fire-rated assembly 100 pre-installed. Afterwards, the installation of the wallboard 330 (e.g., attaching to the studs 313) can be carried out following a normal procedure, such as that described above. Moreover, the second leg 102 can be hidden inside the assembly 300 such that no joint compound/paint is required to mask its appearance. In certain implementations, the first leg 101 can be aligned with the second leg 102, although this is not required.


The assembly 300 can also include a second side having a second wallboard 330A and a second deflection gap 315A. The second deflection gap 315A can be fire-blocked with a second fire-rated assembly 100A in a manner similar to that described above.



FIG. 5 shows another head-of-wall assembly 400. The head-of-wall assembly 400 can include an upper structure 410, a header track 420, and one or more studs 413. The head-of-wall assembly 400 can include a first wallboard 430 and a second wallboard 431. The first wallboard 430 can be an outer wallboard and the second wallboard 431 can be an inner wallboard. The first wallboard 431 can include an outer face 432. The second wallboard 431 can include an inner face 433. The first and/or second wallboards 430, 431, can define an upper edge 435. The head-of-wall assembly 400 can define a deflection gap 415 between the upper edge(s) 435 and the upper structure 410. The head-of-wall assembly 400 can be a two hour fire-rated wall assembly 400.


The fire-rated assembly 100 can be installed within the deflection gap 415. The third leg 103 can be placed against the upper edge(s) 435. The compressible block 104 can be compressed against the upper structure 410. The second leg 102 can be pressed against the outer face 432 of the first wallboard 430, and the first leg 101 can block the deflection gap 415.


As shown, the deflection gap 415 includes an empty space 416. The empty space 416 can be located between the wallboard 431 and the upper structure 410. Alternatively, this can be filled by the compressible block 104, the fire-blocking strip 105, the third leg 103 and/or another material. The empty space 416 can form an insulation space that slows the transfer of heat across the head-of-wall assembly 400.


A second side of the assembly 400 can include a deflection gap 415A, a second fire-rated assembly 100A, an outer wallboard 430A, and an inner wall 431A. The second fire-rated assembly 101A can be attached within the deflection gap 415A, as described above.



FIG. 6 shows another embodiment of a head-of-wall assembly 500. The head-of-wall assembly 500 can be similar to the head-of-wall assembly 400 with a different installation configuration of the assembly 100. The head-of-wall assembly 500 can include an upper structure 510, a header track 520, one or more studs 513, an outer wallboard 530, an inner wallboard 531, an outer face 532, an inner face 533, an upper edge 535, and a deflection gap 515.


The compressible material 104, the strip 105 and the third leg 103 can be placed within the deflection gap 515. The second leg 102 of the assembly 100 can be located between the first wallboard 530 and the second wallboard 531. The second leg 102 can be pre-installed on either of the first or second wallboards 530, 531. The compressible material 104 can be faced either outwardly towards the outer face 532, as shown, or inwardly towards the header track 520 and the inner face 533. The compressible block 104, the first leg 101, and/or the fire-blocking strip 105 can fire-block the deflection gap 515.


The fire-rated assembly 100 can be pre-installed on either of the wallboards 530, 531. Moreover, the second leg 102 can be hidden inside the assembly 500 such that no mud/paint is required to mask its appearance. In certain implementations, the first leg 101 can be aligned with the second leg 102, although this is not required.


A second side of the head-of-wall assembly 500 can similarly include a deflection gap 515A, a second fire-rated assembly 100A, an outer wallboard 530A, and an inner wallboard 531A. The fire-rated assembly 100A can be installed within the deflection gap 515A in the same manner as described in relation to the deflection gap 515.



FIGS. 7 and 8 shows another embodiment of a fire-rated assembly 600. The assembly 600 can extend along a length (e.g., a standard length, as noted above). The cross-sectional shape of the assembly 600 can be uniform along the length. The assembly 600 can include a profile 610. The profile 610 can comprise a vinyl material (e.g., PVC). The profile 610 can comprise a first leg 601, a second leg 602 and/or a third leg 603. The first leg 601, second leg 602, and/or third leg 603 can meet at an intersection 610a. The profile 610 can be formed of a single, unitary material or multiple different materials connected together (e.g., through a co-extrusion process).


The first leg 601 can extend upwardly from the intersection 610a. The first leg 601 can comprise a flexible material. The second leg 602 can extend downwardly from the intersection 610a. The second leg 602 can comprise a plurality of holes 607. The holes 607 can be arranged in a pattern along a length of the profile 600. The third leg 603 can extend horizontally with respect to the intersection 610a. The intersection 610a can include a protrusion 608. The protrusion 608 can offset the second leg 602 from the first leg 601.


The profile 610 can include a joint compound and/or paint guard 606. The guard 606 can attach at the intersection 610a (e.g., at the protrusion 608 and/or between the second leg 602 and the first leg 601). The guard 606 can be aligned with the third leg 603. The guard 606 can be attached at a frangible portion 606a. The profile 610 can be formed as an integral unit including the first, second, and third legs 601-603 and the paint guard 606. Alternatively, any of the legs 601-603 or paint guard 606 can be connected with another portion or the remainder of the profile 610.


A compressible block 604 can be attached to the third leg 603 and/or the first leg 601. The compressible block 604 can comprise an open or closed cell foam material. The compressible block 604 can be attached to an inner face of the first leg 601 and/or an upper face of the third leg 603. The compressible block 604 can extend the length of the assembly 600.


The fire-rated assembly 600 can include a fire-blocking strip 605. The fire-blocking strip 605 can be attached to the third leg 603. The fire-blocking strip 605 can be located on a lower surface or the upper surface of the third leg 603. Attaching the fire-blocking strip 605 to the lower surface of the third leg 603 can ease assembly because the compressible block 604 does not have to be assembled over the strip 605. The fire-blocking strip 605 can be adhered to the third leg 603. The fire-blocking strip 605 can be located anywhere along the third leg 603, such as adjacent to the second leg 602, the distal end of the third leg or therebetween. Alternatively or in addition, the strip 605 can be attached to the first leg 601 on an inner side thereof or otherwise to the compressible block 604. The strip 605 can extend the length of the assembly 600. The strip 605 can be or comprise an intumescent material.


The first leg 601 can have a height or length 601a in a cross-sectional direction. The length 601a can extend from the intersection 610a (e.g., the third leg 603 or protrusion 608) to a distal end of the first leg 601. The first leg 601 can be tapered in thickness towards the distal end. The length 601a can be ⅝″. In certain implementations, the length 601a can be between approximately ¼″ and 1½″. The second leg 602 can have a height or length 602a in the cross-sectional direction. The length 602a can extend from the intersection 610a (e.g., the third leg 603 or protrusion 608) to a distal end of the second leg 602. The length 602a can be between approximately ½″ and 3″. The third leg 603 can include a width or length 603a in the cross-sectional direction. The length 603a can extend from the intersection 610a (e.g., the second leg 602 or the first leg 601) to a distal end of the third leg 603. The length 603a can be ⅝″. The length 603a can be between approximately ¼″ and 1½″.


The protrusion 608 is further shown in FIG. 8. The protrusion 608 can at least partially or fully offset the second leg 602 from the first leg 601. The protrusion 608 can include one or more vertical and/or horizontal segments (e.g., L-shaped segments) of the profile 610 that offset the second leg 602 from the first leg 601. In certain implementations, the first leg 601 and the second leg 602 can be aligned.


The compressible block 604 can have a height 604a. The height 604a can be approximately 1″. In certain implementations, the height 604a can be between approximately ½″ and 2″. The height 604a can be greater than the length 601a. Desirably, the height 604a is greater than the length 601a such that the compressible block 604 extends beyond the distal end of the first leg 601 to provide contact with or a seal against an upper surface, as described above and further below.


The compressible block 604 can include a width 604b. The width 604b can be approximately ½″. The width 604b can be between approximately ¼″ and 1½″. In certain implementations, the width 604b can match the length 603a. The compressible block 604 can include a front face 609a, a rear face 609b, an upper face 609c, and/or a lower face 609d. The rear face 609b of the compressible block 604 can extend beyond the distal end of the third leg 603 or vice versa. The front face 609a can abut and/or attach to the first leg 601. The lower face 609d can attach to the third leg 603.


The guard 606 can attach at the frangible portion 606a with the profile 610. The frangible portion 606a can be located between the first leg 601 and the second leg 602. The frangible portion 606a can align generally with the third leg 603. The frangible portion 606a can comprise a thin portion of the material of the profile 610.



FIG. 9 shows a head-of-wall assembly 700. The head-of-wall assembly 700 can include an upper structure 710. The head-of-wall assembly 700 can include a header track 720. The header track 720 can include a web 723 and a pair of slotted flanges or legs 722 (only one shown). The web 723 can be attached to the upper structure 710. The assembly 700 can include one or more studs 713. The stud(s) 713 can be attached to the slotted flange 722.


The assembly 700 can include a wallboard 730. The wallboard 730 can include an outer face 731. The wallboard 730 can include an inner face 733. The wallboard 730 can include an upper edge 732. The wallboard 730 can attached to the stud 713. The connection between the header track 720 and the stud(s) 713 can allow vertical movement between the wallboard 730 and the upper structure 710. The vertical movement can open and close a deflection gap 715. The deflection gap 715 can be located between the upper structure 710 and the upper edge 732 of the wall board 730. The fire-rated assembly 600 can be installed in the assembly 700 to provide protection against fire, smoke, heat, and/or sound across the deflection gap 715.


To install the fire-rated assembly 600, the compressible block 604, the strip 605 and/or the third leg 603 can be placed within the deflection gap 715. The compressible block 604 can be installed within the deflection gap 715 in a compressed configuration. Expansion of the compressible block 604 can contact and/or seal against the upper structure 710 even if the surface of the upper structure 710 is uneven. The strip 605 can be located between the upper edge 732 and the upper structure 710. The third leg 603 can be located at least partially within the deflection gap 715.


The third leg 603 can position the strip 605 and/or the compressible block 604 within the deflection gap 715. The third leg 603 can comprise a material having a melting temperature above a intumescent expansion temperature of the strip 605. Accordingly, when the assembly 700 is exposed to fire, heat, and/or smoke, the third leg 603 can maintain the position of the strip 605 (e.g., within the deflection gap 715) until the fire blocking material at least partially expands to fill and/or seal across the deflection gap 715.


The second leg 602 can be attached to the outer surface 731 of the wallboard 730, such as by an adhesive or a plurality of mechanical fasteners. The second leg 602 can be flush against the outer surface 731.


The distal end of the first leg 601 can contact the upper structure 710, although this is not required. The flexible nature of the first leg 601 and the compressibility of the foam 604 can allow movement of the deflection gap 715. As the deflection gap 715 varies with relative movement of the upper structure 710 and the wallboard 730, the first leg 601 can remain in contact with the upper structure 710, although this is not required. The first leg 601 can provide a barrier for protecting the compressible block 604. This can extend the life of the compressible block 604 by protecting it from exposure to the elements and/or tampering.


The protrusion 608 can align the first leg 601 generally more outwardly from the outer face 731 of the wallboard 730. Accordingly, the addition of a joint compound 702 over the second leg 602 can align with the projection 608. Once dried, the joint compound 702 can be smoothed to align with the end of the protrusion 608. This can create a smoother appearance for the finished assembly 700. The joint compound 702 and/or first leg 601 can be painted to match the rest of the wall.


The guard 606 can remain in place until the joint compound 702 is applied to the second leg 602. The guard 606 can be removed along the frangible portion 606a. Then the remaining joint compound 702 can be sanded and painted along with the first leg 601 to mask the appearance of the fire-rated assembly 600 within the deflection gap 715. Alternatively, the guard 606 can remain in place until the joint compound 702 is smoothed and/or painted.


In certain other implementations, the fire-rated assembly 600 can be preinstalled with the second leg 603 attached to the inner surface 733, similar to the installation shown in head-of-wall assembly 300. In another implementation, the fire-rated assembly 600 can be installed in a head-of-wall assembly including multiple wallboards. The fire-rated assembly 600 can be installed within the multiple wallboards as described above in relation to FIGS. 5 and 6, showing installation of the fire-rated assembly 100.



FIGS. 10-13 illustrate a construction accessory 1000, portions of the construction accessory 1000, and a wall assembly 1500 incorporating a pair of the construction accessories 1000. The construction accessory 1000 is well-suited for the use of mineral wool or a similar material to be used as a fire-resistant material. In some configurations, the construction accessory 1000 incorporates a mineral wool or similar material. However, the construction accessory 1000 can incorporate intumescent material as a fire-resistant material, alone or in combination with a mineral wool or similar material. Although shown in the context of a head-of-wall joint, the construction accessory 1000 can be used in, or modified for use in, any wall joint (e.g., head of wall, bottom of wall, or vertical wall to wall joints) or other similar joint to provide the joint with a fire rating (e.g., according to UL-2079) or a sound rating (e.g., an STC rating).


Mineral wool is a well-known material for use in fire-blocking applications. Mineral wool is available from a plurality of manufacturers and is relatively cheap compared to intumescent materials. Mineral wool is a fibrous material formed by spinning or drawing molten mineral or rock materials, such as slag and ceramics. Mineral wool is also known as mineral fiber, mineral cotton, man-made mineral fibre (MMMF), and man-made vitreous fiber (MMVF). Mineral wool has advantageous fire blocking characteristics, but it is can be a difficult material with which to work. The material itself can be very itchy to handle and is an irritant to bare skin. It can also pull apart quite easily and is not very durable when left unprotected or exposed. When mineral wool is used in conventional head-of-wall joint protection, the mineral wool is typically covered with a wet spray-applied elastomeric coating. The elastomeric coating conceals the mineral wool and protects it from exposure and from falling apart or falling out of the head of wall joint. However, the process of applying the elastomeric coating is time consuming. In addition, the elastomeric coating tends to dry out over time and loses its initial flexibility.


The illustrated construction accessory 1000 provides for the use of mineral wool in a fire-blocking application while avoiding some or all of the above-mentioned shortcomings of conventional mineral wool-protected joints. The illustrate construction accessory 1000 is a finishing drywall accessory that provides a flexible protective vinyl (e.g., PVC) or similar material covering over a mineral wool member. Accordingly, the illustrated construction accessory 1000 can be used in fire rating building joints. The illustrated composite fire-rated drywall accessory 1000 combines the fire blocking attributes of mineral wool with the flexibility and printability of a vinyl/PVC finishing drywall accessory.


In some configurations, the construction accessory 1000 includes an elongate body portion or profile 1002. The profile 1002 can be similar to the other profiles described herein. In particular, the profile 1002 can be an elongate member. The profile 1002 can have a consistent cross-sectional shape along its entire length. In some configurations, the profile 1002 includes an L-shaped portion defined by a first leg 1004 or wall-face leg and a second leg 1006 or wall-end leg. Thus, the first leg 1004 and the second leg 1006 can be oriented at an angle relative to one another, such as a perpendicular or generally perpendicular angle. When the construction accessory 1000 is used in a head-of-wall gap 1502 of the wall assembly 1500, the first leg 1004 is oriented in a vertical direction and the second leg 1006 is oriented in a horizontal direction.


In some configurations, the first leg 1004 can be directly connected to the second leg 1006. However, in the illustrated arrangement, the first leg 1004 and the second leg 1006 are connected by a protrusion 1010, which offsets the first leg 1004 from an edge of the second leg 1006. The offset can be configured to provide a space to accommodate joint compound that covers the first leg 1004. The protrusion 1010 can have a substantial U-shape in cross-section. As illustrated in FIG. 10, the profile 1002 can include a joint compound and/or paint guard 1008, which can be the same as or similar to the joint compound and/or paint guard 606 described herein with respect to FIGS. 7 and 8.


The profile 1002 also includes an upper portion or gap portion in the form of a flexible enclosure 1020 that at least partially defines a space for receiving a compressible fire-blocking member 1022. The flexible enclosure 1020 is positioned along or encloses three sides of the compressible fire-blocking member 1022. In some configurations, the second leg 1006 is positioned along a fourth side of the compressible fire-blocking member 1022 and cooperates with the flexible enclosure 1020 to define the space for receiving the compressible fire-blocking member 1022.


In the illustrated arrangement, the flexible enclosure 1020 is defined by a pair of flexible legs 1024. The flexible legs 1024 are spaced apart from one another along a width of the second leg 1006 and extend in a direction away from the first leg 1004. In some configurations, the flexible legs 1024 can be located at or adjacent opposing edges of the second leg 1006. In other configurations, one or both of the legs 1024 can be spaced from the edge of the second leg 1006. For example, in an accessory 1000 configured for use with multiple layers of wallboard, one of the flexible legs 1024 can be located adjacent the edge nearest the protrusion 1010 and the other of the flexible legs 1024 can be spaced inwardly from the opposite edge of the second leg 1006. Alternatively, both of the flexible legs 1024 can be spaced inwardly from the edges of the second leg 1006.


In the illustrated arrangement, the free ends (or edges) of the flexible legs 1024 are bent towards each other such that the free ends of the flexible legs 1024 are positioned closer to one another than the ends attached to the second leg 1006 of the profile 1002. Accordingly, the bent portions of the flexible legs 1024 can retain or assist in the retention of the compressible fire-blocking member 1022 within the space of the enclosure 1020. In some configurations, the free ends of the flexible legs 1024 can be spread apart to allow the compressible fire-blocking member 1022 to be inserted into the space of the enclosure 1020. In alterative arrangements, the enclosure 1020 can be defined by a single uninterrupted wall, which can have a free end (or edge) adjacent the second leg 1006 to allow for insertion of the compressible fire-blocking member 1022 into the space of the enclosure 1020. In other configurations, the single uninterrupted wall can be attached to the second leg 1006 at each end (or edge) and the compressible fire-blocking member 1022 can be inserted into the enclosure 1020 through an end of the enclosure 1020 at an end of the accessory 1000.


The profile 1002 can be constructed in a manner similar to those of the other components or accessories described herein. For example, the profile 1002 can be constructed as a unitary piece of a single material (e.g., vinyl or PVC) by a suitable process (e.g., extrusion). The first leg 1004 can include a plurality of apertures, similar to the apertures 607 to receive joint compound. The flexible legs 1024 can have a smaller wall thickness than one or both of the first leg 1004 and the second leg 1006 to provide the flexible legs 1024 with greater flexibility than one or both of the first leg 1004 and the second leg 1006. In other arrangements, the flexible legs 1024 can be constructed from a different (e.g., more flexible) material than the material of one or both of the first leg 1004 and the second leg 1006. Such an arrangement can be constructed from any suitable process, such as a co-extrusion process, for example.


The compressible fire-blocking member 1022 can be constructed from any suitable fire-blocking or fire-resistant material in order to achieve a desired level of fire protection. In some configurations, the compressible fire-blocking member 1022 includes a mineral wool material. In some configurations, the compressible fire-blocking member 1022 does not include an intumescent material. In the illustrated arrangement, the compressible fire-blocking member 1022 is a composite comprising a mineral wool material portion 1030 and a foam material portion 1032. The foam material portion 1032 can comprise an open cell foam material. In alternative arrangements, the foam material portion 1032 can comprise a closed cell foam material.


In the illustrated arrangement, the mineral wool material portion 1030 can be larger (greater cross-sectional area or greater volume) than the foam material portion 1032. For example, the mineral wool material portion 1030 can be twice as large or three times as large as the foam material portion 1032. In some configurations, the compressible fire-blocking member 1022 can have a width (direction along the second leg 1006) of about nine-sixteenths of an inch ( 9/16″) and a height (direction away from the second leg 1006) of about one inch (1″). The mineral wool material portion 1030 can have a width of about nine-sixteenths of an inch ( 9/16″) and a height of about three-quarters of an inch (¾″). The foam material portion 1032 can have a width of about nine-sixteenths of an inch ( 9/16″) and a height of about one-quarter of an inch (¼″).


Such an arrangement of the compressible fire-blocking member 1022 provides advantageous fire-blocking performance at a lower cost than relying on intumescent materials. In addition, providing the compressible fire-blocking member 1022 within the flexible enclosure 1020 overcomes several disadvantages of conventional methods and arrangements of using mineral wool materials. The mineral wool material portion 1030 can provide fire-blocking attributes and the foam material portion 1032 can provide resiliency to the compressible fire-blocking member 1022 to provide an expansion force tending to keep the mineral wool material portion 1030 (or the free ends of the flexible legs 1024) located towards or in contact with an adjacent structure, such as an overhead structure as described below.


With reference to FIG. 12, an alternative compressible member 1022a can be provided for a sound-rated version of the construction accessory 1000. The compressible member 1022a of FIG. 12 comprises or is constructed entirely from an open cell foam material. The compressible member 1022a can omit mineral wool material and/or intumescent material. The compressible member 1022a can provide increased resistance to sound transmission relative to an open gap. The dimensions of the construction accessory 1000 can be the same as or similar to the dimensions described above with respect to the compressible fire-blocking member 1022.


With reference to FIG. 13, the illustrated wall assembly 1500 includes a pair of the construction accessories 1000 installed on each side of the wall assembly 1500 in the head-of-wall (e.g., deflection) gap 1502. However, as noted above, the construction accessory 1000 can be used in any other wall gap and possibly in other construction gaps. The wall assembly 1500 includes or is located adjacent to an upper or overhead structure 1510 defining an upper surface. The upper structure 1510 can be a ceiling or a floor of an upper level of a multi-level building. The wall assembly 1500 can include a header track 1520. The header track 1520 can include first and second flanges 1521, 1522. The first and second flanges 1521, 1522 can be connected by a web 1523. The header track 1520 can be generally U-shaped. The flanges 1521, 1522 can include apertures or slots (not shown) for connecting to a plurality of studs 1513. The studs 1513 can provide support for a wall material, such as one or more wallboards 1530, on each side of the wall assembly 1500.


The wallboard 1530 can be a gypsum drywall wallboard. The wallboard 1530 can be attached (e.g., via nails, screws, or other fasteners) to the studs 1513 of the wall assembly 1500. The wallboard 1530 can include an inner face facing towards the studs 1513. The wallboard 1530 can include an outer face facing outwardly away from the studs 1513. The wallboard 1530 can include an upper edge 1532. The upper edge 1532 can extend along a length of the wallboard 1530 (e.g., into and out of the page as shown in FIG. 13).


The wall assembly 1500 can define a head-of-wall gap or a deflection gap 1502. The deflection gap 1502 can be a gap across a portion of the wall assembly 1500. The deflection gap 1502 can be bounded on an upper side by the upper structure 1510 and on a lower side by the upper edge 1532. A height of the deflection gap 1502 between the upper and lower sides can vary as the upper structure 1510 moves with respect to the wallboard 1530. The deflection gap 1502 can be variable between a closed position and an open position. This movement of the deflection gap 1502 can accommodate movement of the building.


The deflection gap 1502 can define an opening through which fire, smoke, heat, and/or sound can pass from one side of the wall assembly 1500 to the other side. Accordingly, the construction accessory 1000 can be installed in the wall assembly 1500 to fire-block the deflection gap 1502 (e.g., in accordance with UL-2079 regulations).


To install the construction accessory 1000, the compressible fire-blocking member 1022 (or compressible member 1022a), the flexible enclosure 1020, and/or the second leg 1006 can be placed within the deflection gap 1502. The flexible enclosure 1020 and/or the compressible fire-blocking member 1022 (or compressible member 1022a) can abut and/or seal against the upper structure 1510. The deflection gap 1502 can have a maximum height that is less than a height of the compressible fire-blocking member 1022 (or compressible member 1022a). Accordingly, the compressible fire-blocking member 1022 (or compressible member 1022a) can be compressed to fit within the deflection gap 1502. The compression can help to retain the compressible fire-blocking member 1022 (or compressible member 1022a) within the deflection gap 1502. The compressible fire-blocking member 1022 (or compressible member 1022a), and especially the foam material portion 1032, can compress and expand to provide a seal across the deflection gap 1502. The compressibility can also allow the construction accessory 1000 to conform to an uneven surface of the upper structure 1510.


With reference to FIGS. 14a-d, one example procedure for installation of the compressible fire-blocking member 1022 (or compressible member 1022a) into the space defined by the enclosure 1020 is illustrated. In FIG. 14a, the profile 1002 is shown prior to installation of the compressible fire-blocking member 1022 (or compressible member 1022a). As described above, the profile 1002 can be constructed in any suitable manners, such as by an extrusion process. Each of the flexible legs 1024 have a relaxed position configured to fully or substantially enclose the compressible fire-blocking member 1022 (or compressible member 1022a). As shown in FIG. 14b, the flexible legs 1024 can be flexed to separate their upper ends, creating an access opening to the interior space of the enclosure 1020.


As shown in FIG. 14c, with the flexible legs 1024 separated, the compressible fire-blocking member 1022 (or compressible member 1022a) can be inserted into the interior space of the enclosure 1020. As shown in FIG. 14d, once the compressible fire-blocking member 1022 (or compressible member 1022a) is positioned within the interior space of the enclosure 1020, the flexible legs 1024 can be allowed to return to their relaxed positions to capture the compressible fire-blocking member 1022 (or compressible member 1022a).


Advantageously, the flexible vinyl (or other plastic) legs 1024 are paintable, unlike mineral wool or intumescent foams that are not paintable. In addition, the vinyl (or plastic) material of the flexible legs 1024 will not dry out or lose its flexible characteristics and will provide the wall joint with a long useful life. Another benefit of the construction accessory 1000 is that it does not require any fire sealant or fire spray, both of which dry out over time and must be re-sealed to maintain satisfactory performance. Furthermore, the construction accessory 1000 has a long shelf life prior to installation, unlike fire sealants and sprays.


Certain Terminology


Terms of orientation used herein, such as “top,” “bottom,” “proximal,” “distal,” “longitudinal,” “lateral,” and “end,” are used in the context of the illustrated embodiment. However, the present disclosure should not be limited to the illustrated orientation. Indeed, other orientations are possible and are within the scope of this disclosure. Terms relating to circular shapes as used herein, such as diameter or radius, should be understood not to require perfect circular structures, but rather should be applied to any suitable structure with a cross-sectional region that can be measured from side-to-side. Terms relating to shapes generally, such as “circular,” “cylindrical,” “semi-circular,” or “semi-cylindrical” or any related or similar terms, are not required to conform strictly to the mathematical definitions of circles or cylinders or other structures, but can encompass structures that are reasonably close approximations.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.


Conjunctive language, such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, in some embodiments, as the context may dictate, the terms “approximately,” “about,” and “substantially,” may refer to an amount that is within less than or equal to 10% of the stated amount. The term “generally” as used herein represents a value, amount, or characteristic that predominantly includes or tends toward a particular value, amount, or characteristic. As an example, in certain embodiments, as the context may dictate, the term “generally parallel” can refer to something that departs from exactly parallel by less than or equal to 20 degrees. Given ranges are inclusive of endpoints.


SUMMARY

Several illustrative embodiments of fire-rated assemblies have been disclosed. Although this disclosure has been described in terms of certain illustrative embodiments and uses, other embodiments and other uses, including embodiments and uses which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Components, elements, features, acts, or steps can be arranged or performed differently than described and components, elements, features, acts, or steps can be combined, merged, added, or left out in various embodiments. All possible combinations and subcombinations of elements and components described herein are intended to be included in this disclosure. No single feature or group of features is necessary or indispensable.


Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can in some cases be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.


Any portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in one embodiment or example in this disclosure can be combined or used with (or instead of) any other portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in a different embodiment, flowchart, or example. The embodiments and examples described herein are not intended to be discrete and separate from each other. Combinations, variations, and some implementations of the disclosed features are within the scope of this disclosure.


While operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Additionally, the operations may be rearranged or reordered in some implementations. Also, the separation of various components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products. Additionally, some implementations are within the scope of this disclosure.


Further, while illustrative embodiments have been described, any embodiments having equivalent elements, modifications, omissions, and/or combinations are also within the scope of this disclosure. Moreover, although certain aspects, advantages, and novel features are described herein, not necessarily all such advantages may be achieved in accordance with any particular embodiment. For example, some embodiments within the scope of this disclosure achieve one advantage, or a group of advantages, as taught herein without necessarily achieving other advantages taught or suggested herein. Further, some embodiments may achieve different advantages than those taught or suggested herein.


Some embodiments have been described in connection with the accompanying drawings. The figures are drawn and/or shown to scale, but such scale should not be limiting, since dimensions and proportions other than what are shown are contemplated and are within the scope of the disclosed invention. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, any methods described herein may be practiced using any device suitable for performing the recited steps.


For purposes of summarizing the disclosure, certain aspects, advantages and features of the inventions have been described herein. Not all, or any such advantages are necessarily achieved in accordance with any particular embodiment of the inventions disclosed herein. No aspects of this disclosure are essential or indispensable. In many embodiments, the devices, systems, and methods may be configured differently than illustrated in the figures or description herein. For example, various functionalities provided by the illustrated modules can be combined, rearranged, added, or deleted. In some embodiments, additional or different processors or modules may perform some or all of the functionalities described with reference to the example embodiment described and illustrated in the figures. Many implementation variations are possible. Any of the features, structures, steps, or processes disclosed in this specification can be included in any embodiment.


In summary, various embodiments and examples of fire-rated assemblies and related methods have been disclosed. This disclosure extends beyond the specifically disclosed embodiments and examples to other alternative embodiments and/or other uses of the embodiments, as well as to certain modifications and equivalents thereof. Moreover, this disclosure expressly contemplates that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another. Accordingly, the scope of this disclosure should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims.

Claims
  • 1. A fire, smoke, and/or sound blocking head-of-wall assembly that allows dynamic movement, the assembly comprising: a header track coupled with an upper surface, the header track having a web and first and second flanges extending from the web in a same direction, wherein each of the first and second flanges is substantially planar such that the track defines a substantially U-shaped cross section;a stud coupled with the header track, an upper end of the stud located between the first and second flanges;a wall board coupled with the stud;a deflection gap with a variable height formed between an upper end of the wall board and the upper surface, wherein the height of the deflection gap is larger in an open position than in a closed position;an elongate component to block fire, smoke, and/or sound, the elongate component comprising:a first leg having a first end and a second free end opposite the first end, wherein the first leg extends in an upward direction;a second leg having a first end and a second free end opposite the first end;a third leg perpendicular to the second leg, the third leg having a first free end and a second end, wherein the second end of the third leg joins the first end of the first leq and the first end of the second leg; anda compressible block positioned on top of the third leg, the compressible block having a lower face positioned on the third leg and an upper face opposite the lower face, wherein when the compressible block is uncompressed, the upper face of the compressible block extends above the second free end of the first leg.
  • 2. The assembly of claim 1, wherein the first end of the second leg forms a generally L-shaped protrusion.
  • 3. The assembly of claim 1, wherein the upper face of the compressible block is a generally horizontal surface parallel with the third leg.
  • 4. The assembly of claim 1, wherein a fire-blocking strip is positioned below the third leg.
  • 5. The assembly of claim 4, wherein the fire blocking strip is positioned between the third leg and the wall board when in use.
  • 6. The assembly of claim 4, wherein the fire-blocking strip is an intumescent tape.
  • 7. The assembly of claim 1, wherein the compressible block contacts the first leg.
  • 8. The assembly of claim 1, wherein the second leg comprises a plurality of holes.
  • 9. The assembly of claim 1, wherein the second leg and the third leg are co-extruded to form a single unit.
  • 10. The assembly of the claim 1, wherein a thickness of the first leg is larger at the first end than it is at the second end.
  • 11. The assembly of claim 1, wherein the first leg is perpendicular to the third leg.
  • 12. The assembly of claim 1, wherein the compressible block is configured to contact an overhead structure when in use.
  • 13. The assembly of claim 1, wherein a height of the compressible block is shorter when the deflection gap is in a closed position than when the deflection gap is in the open position.
  • 14. The assembly of claim 1, wherein the compressible block comprises closed cell foam material.
  • 15. The assembly of claim 1, wherein the first leg, the second leg, and the third leg are flexible legs.
  • 16. The assembly of claim 1, wherein the width of the compressible block is smaller than the third leg.
  • 17. The assembly of claim 1, wherein the third leg contacts the first flange of the header track when in use.
  • 18. The assembly of claim 1, wherein the second leg contacts the wall board when in use.
  • 19. The assembly of claim 1, wherein the elongate component further comprises a fourth leg connected to the first end of the second leg, wherein the fourth leg is generally aligned with the third leg.
  • 20. The assembly of claim 19, wherein the fourth leg connects to the first end of the second leg with a frangible portion.
PRIORITY

This application is a continuation of U.S. patent application Ser. No. 17/129,589, filed Dec. 21, 2020, which is a continuation of U.S. patent application Ser. No. 16/598,211, filed Oct. 10, 2019, which claims the benefit of U.S. Patent Application No. 62/796,500, filed Jan. 24, 2019, the entireties of which are all hereby incorporated by reference.

US Referenced Citations (591)
Number Name Date Kind
661832 Wilkinson Nov 1900 A
716628 Dickey Dec 1902 A
965595 Nicholson Jul 1910 A
1130722 Fletcher Mar 1915 A
1563651 Pomerantz Dec 1925 A
1719728 Saunders Jul 1929 A
2020576 Runde Nov 1935 A
2105771 Holdsworth Jan 1938 A
2114386 Killion Apr 1938 A
2218426 Hulbert, Jr. Oct 1940 A
2556878 Kohlhaas Jun 1951 A
2664739 Marcy Jan 1954 A
2683927 Maronek Jul 1954 A
2688927 Nuebling Sep 1954 A
2733786 Drake Feb 1956 A
2994114 Black Aug 1961 A
3019866 Grabowski Feb 1962 A
3041682 Alderfer et al. Jul 1962 A
3129792 Gwynne Apr 1964 A
3153467 Nelsson et al. Oct 1964 A
3271920 Downing, Jr. Sep 1966 A
3309826 Zinn Mar 1967 A
3324615 Zinn Jun 1967 A
3346909 Blackburn Oct 1967 A
3355852 Lally Dec 1967 A
3397495 Thompson Aug 1968 A
3460302 Cooper Aug 1969 A
3481090 Joseph Dec 1969 A
3493460 Windecker Feb 1970 A
3495417 Ratliff Feb 1970 A
3537219 Navarre Nov 1970 A
3562985 Nicosia Feb 1971 A
3566559 Dickson Mar 1971 A
3600854 Dallaire et al. Aug 1971 A
3604167 Hays Sep 1971 A
3609933 Jahn et al. Oct 1971 A
3648419 Marks Mar 1972 A
3668041 Lonning Jun 1972 A
3683569 Holm Aug 1972 A
3696569 Didry Oct 1972 A
3707819 Calhoun et al. Jan 1973 A
3713263 Mullen Jan 1973 A
3730477 Wavrunek May 1973 A
3744199 Navarre Jul 1973 A
3757480 Young Sep 1973 A
3786604 Kramer Jan 1974 A
3837126 Voiturier et al. Sep 1974 A
3839839 Tillisch et al. Oct 1974 A
3866370 Guarino et al. Feb 1975 A
3908328 Nelsson Sep 1975 A
3921346 Sauer et al. Nov 1975 A
3922830 Guarino et al. Dec 1975 A
3934066 Murch Jan 1976 A
3935681 Voiturier et al. Feb 1976 A
3955330 Wendt May 1976 A
3964214 Wendt Jun 1976 A
3974607 Balinski Aug 1976 A
3976825 Anderberg Aug 1976 A
3998027 Wendt et al. Dec 1976 A
4011704 O'Konski Mar 1977 A
4017090 Cohen Apr 1977 A
4103463 Dixon Aug 1978 A
4122203 Stahl Oct 1978 A
4130972 Varlonga Dec 1978 A
4139664 Wenrick Feb 1979 A
4144335 Edwards Mar 1979 A
4144385 Downing Mar 1979 A
4152878 Balinski May 1979 A
4164107 Kraemling et al. Aug 1979 A
4178728 Ortmanns et al. Dec 1979 A
4197687 Benoit Apr 1980 A
4203264 Kiefer et al. May 1980 A
4205498 Unayama Jun 1980 A
4217731 Saino Aug 1980 A
4269890 Breitling et al. May 1981 A
4276332 Castle Jun 1981 A
4281494 Weinar Aug 1981 A
4283892 Brown Aug 1981 A
4295304 Kim Oct 1981 A
4318253 Wedel Mar 1982 A
4324835 Keen Apr 1982 A
4329820 Wendt May 1982 A
4356672 Beckman et al. Nov 1982 A
4361994 Carver Dec 1982 A
4424653 Heinen Jan 1984 A
4433732 Licht et al. Feb 1984 A
4434592 Reneault et al. Mar 1984 A
4437274 Slocum et al. Mar 1984 A
4454690 Dixon Jun 1984 A
4461120 Hemmerling Jul 1984 A
4467578 Weinar Aug 1984 A
4480419 Crites Nov 1984 A
4495238 Adiletta Jan 1985 A
4497150 Wendt et al. Feb 1985 A
4507901 Carroll Apr 1985 A
4509559 Cheetham et al. Apr 1985 A
4517782 Shamszadeh May 1985 A
4574454 Dyson Mar 1986 A
4575979 Mariani Mar 1986 A
4578913 Eich Apr 1986 A
4598516 Groshong Jul 1986 A
4622791 Cook et al. Nov 1986 A
4622794 Geortner Nov 1986 A
4632865 Tzur Dec 1986 A
4649089 Thwaites Mar 1987 A
4663204 Langham May 1987 A
4672785 Salvo Jun 1987 A
4709517 Mitchell et al. Dec 1987 A
4711183 Handler et al. Dec 1987 A
4723385 Kallstrom Feb 1988 A
4756945 Gibb Jul 1988 A
4761927 O'Keeffe et al. Aug 1988 A
4787767 Wendt Nov 1988 A
4798035 Mitchell et al. Jan 1989 A
4805364 Smolik Feb 1989 A
4810986 Leupold Mar 1989 A
4822659 Anderson et al. Apr 1989 A
4825610 Gasteiger May 1989 A
4830913 Ortmans et al. May 1989 A
4845904 Menchetti Jul 1989 A
4850173 Beyer et al. Jul 1989 A
4850385 Harbeke Jul 1989 A
4854096 Smolik Aug 1989 A
4854107 Roberts Aug 1989 A
4866898 LaRoche et al. Sep 1989 A
4881352 Glockenstein Nov 1989 A
4885884 Schilger Dec 1989 A
4897976 Williams et al. Feb 1990 A
4899510 Propst Feb 1990 A
4914880 Albertini Apr 1990 A
4918761 Harbeke Apr 1990 A
4930276 Bawa et al. Jun 1990 A
4935281 Tolbert et al. Jun 1990 A
4982540 Thompson Jan 1991 A
4986040 Prewer et al. Jan 1991 A
4987719 Goodson, Jr. Jan 1991 A
4992310 Gelb et al. Feb 1991 A
5010702 Daw et al. Apr 1991 A
5058342 Crompton Oct 1991 A
5090170 Propst Feb 1992 A
5094780 von Bonin Mar 1992 A
5103589 Crawford Apr 1992 A
5105594 Kirchner Apr 1992 A
5111579 Andersen May 1992 A
5125203 Daw Jun 1992 A
5127203 Paquette Jul 1992 A
5127760 Brady Jul 1992 A
5140792 Daw et al. Aug 1992 A
5146723 Greenwood et al. Sep 1992 A
5152113 Guddas Oct 1992 A
5155957 Robertson et al. Oct 1992 A
5157883 Meyer Oct 1992 A
5157887 Watterworth, III Oct 1992 A
5167876 Lem Dec 1992 A
5173515 von Bonin et al. Dec 1992 A
5203132 Smolik Apr 1993 A
5205099 Grünhage et al. Apr 1993 A
5212914 Martin et al. May 1993 A
5214894 Glesser-Lott Jun 1993 A
5222335 Petrecca Jun 1993 A
5228254 Honeycutt, Jr. Jul 1993 A
5244709 Vanderstukken Sep 1993 A
5279087 Mann Jan 1994 A
5279088 Heydon Jan 1994 A
5279091 Williams et al. Jan 1994 A
5282615 Green et al. Feb 1994 A
5285615 Gilmour Feb 1994 A
5307600 Simon et al. May 1994 A
5315804 Attalla May 1994 A
5319339 Leupold Jun 1994 A
5325651 Meyer et al. Jul 1994 A
5339577 Snyder Aug 1994 A
5347780 Richards et al. Sep 1994 A
5367850 Nicholas Nov 1994 A
5374036 Rogers et al. Dec 1994 A
5376429 McGroarty Dec 1994 A
5390458 Menchetti Feb 1995 A
5390465 Rajecki Feb 1995 A
5394665 Johnson Mar 1995 A
5412919 Pellock et al. May 1995 A
5433991 Boyd, Jr. et al. Jul 1995 A
5452551 Charland et al. Sep 1995 A
5454203 Turner Oct 1995 A
5456050 Ward Oct 1995 A
5460864 Heitkamp Oct 1995 A
5471791 Keller Dec 1995 A
5471805 Becker Dec 1995 A
5475961 Menchetti Dec 1995 A
5477652 Torrey et al. Dec 1995 A
5502937 Wilson Apr 1996 A
5505031 Heydon Apr 1996 A
5531051 Chenier, Jr. et al. Jul 1996 A
5552185 De Keyser Sep 1996 A
5592796 Landers Jan 1997 A
5604024 von Bonin Feb 1997 A
5607758 Schwartz Mar 1997 A
5644877 Wood Jul 1997 A
5687538 Frobosilo et al. Nov 1997 A
5689922 Daudet Nov 1997 A
5694726 Wu Dec 1997 A
5709821 von Bonin et al. Jan 1998 A
5724784 Menchetti Mar 1998 A
5735100 Campbell Apr 1998 A
5740635 Gil et al. Apr 1998 A
5740643 Huntley Apr 1998 A
5755066 Becker May 1998 A
5765332 Landin et al. Jun 1998 A
5787651 Horn et al. Aug 1998 A
5797233 Hascall Aug 1998 A
5798679 Pissanetzky Aug 1998 A
5806261 Huebner et al. Sep 1998 A
5820958 Swallow Oct 1998 A
5822935 Mitchell et al. Oct 1998 A
5870866 Herndon Feb 1999 A
5913788 Herren Jun 1999 A
5921041 Egri, II Jul 1999 A
5927041 Sedlmeier et al. Jul 1999 A
5930963 Nichols Aug 1999 A
5930968 Pullman Aug 1999 A
5945182 Fowler et al. Aug 1999 A
5950385 Herren Sep 1999 A
5968615 Schlappa Oct 1999 A
5968669 Liu et al. Oct 1999 A
5970672 Robinson Oct 1999 A
5974750 Landin et al. Nov 1999 A
5974753 Hsu Nov 1999 A
6023898 Josey Feb 2000 A
6058668 Herren May 2000 A
6061985 Kraus et al. May 2000 A
6110559 De Keyser Aug 2000 A
6116404 Heuft et al. Sep 2000 A
6119411 Mateu Gil et al. Sep 2000 A
6128874 Olson et al. Oct 2000 A
6128877 Goodman et al. Oct 2000 A
6131352 Barnes et al. Oct 2000 A
6151858 Ruiz et al. Nov 2000 A
6153668 Gestner et al. Nov 2000 A
6176053 St. Germain Jan 2001 B1
6182407 Turpin et al. Feb 2001 B1
6189277 Boscamp Feb 2001 B1
6207077 Burnell-Jones Mar 2001 B1
6207085 Ackerman Mar 2001 B1
6213679 Frobosilo et al. Apr 2001 B1
6216404 Vellrath Apr 2001 B1
6233888 Wu May 2001 B1
6256948 Van Dreumel Jul 2001 B1
6256960 Babcock et al. Jul 2001 B1
6256980 Lecordix et al. Jul 2001 B1
6279289 Soder et al. Aug 2001 B1
6305133 Cornwall Oct 2001 B1
6318044 Campbell Nov 2001 B1
6374558 Surowiecki Apr 2002 B1
6381913 Herren May 2002 B2
6405502 Cornwall Jun 2002 B1
6408578 Tanaka et al. Jun 2002 B1
6430881 Daudet et al. Aug 2002 B1
6470638 Larson Oct 2002 B1
6487825 Silik Dec 2002 B1
6574930 Kiser Jun 2003 B2
6595383 Pietrantoni Jul 2003 B2
6606831 Degelsegger Aug 2003 B2
6647691 Becker et al. Nov 2003 B2
6668499 Degelsegger Dec 2003 B2
6679015 Cornwall Jan 2004 B1
6688056 von Hoyningen Huene et al. Feb 2004 B2
6688499 Zhang Feb 2004 B2
6698146 Morgan et al. Mar 2004 B2
6705047 Yulkowski Mar 2004 B2
6708627 Wood Mar 2004 B1
6711871 Beirise et al. Mar 2004 B2
6732481 Stahl, Sr. May 2004 B2
6739926 Riach et al. May 2004 B2
6748705 Orszulak Jun 2004 B2
6783345 Morgan et al. Aug 2004 B2
6792733 Wheeler et al. Sep 2004 B2
6799404 Spransy Oct 2004 B2
6843035 Glynn Jan 2005 B1
6854237 Surowiecki Feb 2005 B2
6871470 Stover Mar 2005 B1
6944997 Verkamp Sep 2005 B2
6951162 Shockey et al. Oct 2005 B1
6996944 Shaw Feb 2006 B2
7043880 Morgan et al. May 2006 B2
7059092 Harkins et al. Jun 2006 B2
7104024 deGirolamo et al. Sep 2006 B1
7152385 Morgan et al. Dec 2006 B2
7191845 Loar Mar 2007 B2
7240905 Stahl Jul 2007 B1
7251918 Reif et al. Aug 2007 B2
7284355 Becker et al. Oct 2007 B2
7302776 Duncan et al. Dec 2007 B2
7398856 Foster et al. Jul 2008 B2
7413024 Simontacchi et al. Aug 2008 B1
7441565 Imamura et al. Oct 2008 B2
7487591 Harkins et al. Feb 2009 B2
7497056 Surowiecki Mar 2009 B2
7506478 Bobenhausen Mar 2009 B2
7513082 Johnson Apr 2009 B2
7540118 Jensen Jun 2009 B2
7594331 Andrews et al. Sep 2009 B2
7603823 Cann Oct 2009 B2
7610725 Willert Nov 2009 B2
7617643 Pilz et al. Nov 2009 B2
7681365 Klein Mar 2010 B2
7685792 Stahl, Sr. et al. Mar 2010 B2
7716891 Radford May 2010 B2
7735295 Surowiecki Jun 2010 B2
7752817 Pilz et al. Jul 2010 B2
7770348 Tollenaar Aug 2010 B2
7775006 Giannos Aug 2010 B2
7776170 Yu et al. Aug 2010 B2
7797893 Stahl, Sr. et al. Sep 2010 B2
7810295 Thompson Oct 2010 B2
7814718 Klein Oct 2010 B2
7827738 Abrams et al. Nov 2010 B2
7836652 Futterman Nov 2010 B2
7866108 Klein Jan 2011 B2
7870698 Tonyan et al. Jan 2011 B2
7921537 Rodlin Apr 2011 B2
7921614 Fortin et al. Apr 2011 B2
7941981 Shaw May 2011 B2
7950198 Pilz et al. May 2011 B2
7966778 Klein Jun 2011 B2
7984592 Jiras Jul 2011 B1
8029345 Messmer et al. Oct 2011 B2
8056293 Klein Nov 2011 B2
8061099 Andrews Nov 2011 B2
8062108 Carlson et al. Nov 2011 B2
8069625 Harkins et al. Dec 2011 B2
8074412 Gogan et al. Dec 2011 B1
8074416 Andrews Dec 2011 B2
8079188 Swartz et al. Dec 2011 B2
8087205 Pilz et al. Jan 2012 B2
8096084 Studebaker et al. Jan 2012 B2
8100164 Goodman et al. Jan 2012 B2
8132376 Pilz et al. Mar 2012 B2
8136314 Klein Mar 2012 B2
8151526 Klein Apr 2012 B2
8181404 Klein May 2012 B2
8225581 Strickland et al. Jul 2012 B2
8281552 Pilz et al. Oct 2012 B2
8286397 Shaw Oct 2012 B2
8318304 Valenziano Nov 2012 B2
8322094 Pilz et al. Dec 2012 B2
8353139 Pilz Jan 2013 B2
8375666 Stahl, Jr. et al. Feb 2013 B2
8389107 Riebel et al. Mar 2013 B2
8413394 Pilz et al. Apr 2013 B2
8468759 Klein Jun 2013 B2
8495844 Johnson Jul 2013 B1
8499512 Pilz et al. Aug 2013 B2
8541084 Deiss et al. Sep 2013 B2
8544226 Rubel Oct 2013 B2
8555566 Pilz et al. Oct 2013 B2
8578672 Mattox et al. Nov 2013 B2
8584415 Stahl, Jr. et al. Nov 2013 B2
8590231 Pilz Nov 2013 B2
8595999 Pilz et al. Dec 2013 B1
8596019 Aitken Dec 2013 B2
8601760 Hilburn Dec 2013 B2
8607519 Hilburn Dec 2013 B2
8640415 Pilz et al. Feb 2014 B2
8646235 Hilburn, Jr. Feb 2014 B2
8671632 Pilz et al. Mar 2014 B2
8728608 Maisch May 2014 B2
8782977 Burgess Jul 2014 B2
8793947 Pilz et al. Aug 2014 B2
8826599 Stahl Sep 2014 B2
8871326 Flennert Oct 2014 B2
8938922 Pilz et al. Jan 2015 B2
8950132 Collins et al. Feb 2015 B2
8955275 Stahl, Jr. Feb 2015 B2
8973319 Pilz et al. Mar 2015 B2
9045899 Pilz Jun 2015 B2
9085907 Rutherford Jul 2015 B2
9127454 Pilz et al. Sep 2015 B2
9151042 Simon et al. Oct 2015 B2
9157232 Stahl, Jr. Oct 2015 B2
9163444 Fontijn et al. Oct 2015 B1
9206596 Robinson Dec 2015 B1
9284730 Klein Mar 2016 B2
9290932 Pilz et al. Mar 2016 B2
9290934 Pilz et al. Mar 2016 B2
9316133 Schnitta Apr 2016 B2
9371644 Pilz et al. Jun 2016 B2
9458628 Pilz et al. Oct 2016 B2
9481998 Pilz et al. Nov 2016 B2
9506246 Joseph et al. Nov 2016 B2
9512614 Klein et al. Dec 2016 B2
9523193 Pilz Dec 2016 B2
9551148 Pilz Jan 2017 B2
9616259 Pilz et al. Apr 2017 B2
9637914 Pilz et al. May 2017 B2
9683364 Pilz et al. Jun 2017 B2
9719253 Stahl, Jr. et al. Aug 2017 B2
9739052 Pilz et al. Aug 2017 B2
9739054 Pilz et al. Aug 2017 B2
9752318 Pilz Sep 2017 B2
9879421 Pilz Jan 2018 B2
9885178 Barnes et al. Feb 2018 B1
9909298 Pilz Mar 2018 B2
9931527 Pilz et al. Apr 2018 B2
9995039 Pilz et al. Jun 2018 B2
10000923 Pilz Jun 2018 B2
10010805 Maxam et al. Jul 2018 B2
10011983 Pilz et al. Jul 2018 B2
10077550 Pilz Sep 2018 B2
10166418 Förg et al. Jan 2019 B2
10174499 Tinianov et al. Jan 2019 B1
10184246 Pilz et al. Jan 2019 B2
10214901 Pilz et al. Feb 2019 B2
10227775 Pilz et al. Mar 2019 B2
10246871 Pilz Apr 2019 B2
10323409 Robinson Jun 2019 B1
10323411 Ackerman et al. Jun 2019 B2
10406389 Pilz et al. Sep 2019 B2
10472819 Klein et al. Nov 2019 B2
10494818 Maziarz Dec 2019 B2
10563399 Pilz et al. Feb 2020 B2
10619347 Pilz et al. Apr 2020 B2
10626598 Klein Apr 2020 B2
10669710 Förg Jun 2020 B2
10689842 Pilz Jun 2020 B2
10731338 Zemler et al. Aug 2020 B1
10753084 Pilz et al. Aug 2020 B2
10900223 Pilz Jan 2021 B2
10914065 Pilz Feb 2021 B2
10920416 Klein et al. Feb 2021 B2
10954670 Pilz Mar 2021 B2
11041306 Pilz et al. Jun 2021 B2
11060283 Pilz et al. Jul 2021 B2
11111666 Pilz Sep 2021 B2
11118346 Klein et al. Sep 2021 B2
11141613 Pilz et al. Oct 2021 B2
11162259 Pilz Nov 2021 B2
11230839 Klein et al. Jan 2022 B2
11268274 Pilz Mar 2022 B2
11299884 Stahl, Jr. et al. Apr 2022 B2
11313121 Quirijns et al. Apr 2022 B2
11401711 Klein Aug 2022 B2
11421417 Pilz et al. Aug 2022 B2
11466449 Pilz et al. Oct 2022 B2
11486150 Stahl Nov 2022 B2
11512464 Klein Nov 2022 B2
11560712 Pilz et al. Jan 2023 B2
11674304 Landreth et al. Jun 2023 B2
11697937 Campbell Jul 2023 B2
20020029535 Loper Mar 2002 A1
20020095908 Kiser Jul 2002 A1
20020139060 Contreras et al. Oct 2002 A1
20020160149 Garofalo Oct 2002 A1
20020170249 Yulkowski Nov 2002 A1
20030079425 Morgan et al. May 2003 A1
20030089062 Morgan et al. May 2003 A1
20030196401 Surowiecki Oct 2003 A1
20030213211 Morgan et al. Nov 2003 A1
20040010998 Turco Jan 2004 A1
20040016191 Whitty Jan 2004 A1
20040045234 Morgan et al. Mar 2004 A1
20040139684 Menendez Jul 2004 A1
20040149390 Monden et al. Aug 2004 A1
20040157012 Miller et al. Aug 2004 A1
20040211150 Bobenhausen Oct 2004 A1
20050031843 Robinson et al. Feb 2005 A1
20050183361 Frezza Aug 2005 A1
20050246973 Jensen Nov 2005 A1
20060032163 Korn Feb 2006 A1
20060096200 Daudet May 2006 A1
20060123723 Weir et al. Jun 2006 A1
20060137293 Klein Jun 2006 A1
20060213138 Milani et al. Sep 2006 A1
20060261223 Orndorff, II et al. Nov 2006 A1
20060277841 Majusiak Dec 2006 A1
20070056245 Edmondson Mar 2007 A1
20070068101 Weir et al. Mar 2007 A1
20070125027 Klein Jun 2007 A1
20070130873 Fisher Jun 2007 A1
20070193202 Rice Aug 2007 A1
20070261343 Stahl, Sr. Nov 2007 A1
20080053013 Tollenaar Mar 2008 A1
20080087366 Yu et al. Apr 2008 A1
20080134589 Abrams et al. Jun 2008 A1
20080172967 Hilburn Jul 2008 A1
20080196337 Surowiecki Aug 2008 A1
20080250738 Howchin Oct 2008 A1
20090090074 Klein Apr 2009 A1
20090107064 Bowman Apr 2009 A1
20090197060 Cho Aug 2009 A1
20090223159 Colon Sep 2009 A1
20090282760 Sampson et al. Nov 2009 A1
20100126092 Pilz et al. May 2010 A1
20100170172 Klein Jul 2010 A1
20100199583 Behrens et al. Aug 2010 A1
20100266781 Kusinski et al. Oct 2010 A1
20110011019 Stahl, Jr. et al. Jan 2011 A1
20110041415 Esposito Feb 2011 A1
20110056163 Kure Mar 2011 A1
20110067328 Naccarato et al. Mar 2011 A1
20110099928 Klein et al. May 2011 A1
20110113709 Pilz May 2011 A1
20110123801 Valenciano May 2011 A1
20110146180 Klein Jun 2011 A1
20110167742 Klein Jul 2011 A1
20110185656 Klein Aug 2011 A1
20110214371 Klein Sep 2011 A1
20110247281 Pilz Oct 2011 A1
20110262720 Riebel et al. Oct 2011 A1
20110274886 Flennert Nov 2011 A1
20110302857 McClellan et al. Dec 2011 A1
20120023846 Mattox et al. Feb 2012 A1
20120066989 Pilz et al. Mar 2012 A1
20120180414 Burgess Jul 2012 A1
20120247038 Black Oct 2012 A1
20120266550 Naccarato et al. Oct 2012 A1
20120297710 Klein Nov 2012 A1
20130031856 Pilz Feb 2013 A1
20130118102 Pilz May 2013 A1
20130118764 Porter May 2013 A1
20130133844 Smart et al. May 2013 A1
20130205694 Stahl, Jr. Aug 2013 A1
20140219719 Hensley et al. Aug 2014 A1
20140260017 Noble, III Sep 2014 A1
20140345886 Yano et al. Nov 2014 A1
20150086793 Kreysler et al. Mar 2015 A1
20150135622 Muenzenberger et al. May 2015 A1
20150135631 Förg May 2015 A1
20150275506 Klein et al. Oct 2015 A1
20150275507 Klein et al. Oct 2015 A1
20150275510 Klein et al. Oct 2015 A1
20150354210 Stahl, Jr. et al. Dec 2015 A1
20150368898 Stahl, Jr. et al. Dec 2015 A1
20160016381 Celis Marin Jan 2016 A1
20160017598 Klein et al. Jan 2016 A1
20160017599 Klein et al. Jan 2016 A1
20160097197 Pilz Apr 2016 A1
20160130802 Pilz May 2016 A1
20160201893 Ksiezppolski Jul 2016 A1
20160208484 Pilz Jul 2016 A1
20160265219 Pilz Sep 2016 A1
20160296775 Pilz et al. Oct 2016 A1
20160348357 Smith Dec 2016 A1
20170016227 Klein Jan 2017 A1
20170175386 Pilz Jun 2017 A1
20170198473 Pilz Jul 2017 A1
20170234004 Pilz Aug 2017 A1
20170234010 Klein Aug 2017 A1
20170260741 Ackerman et al. Sep 2017 A1
20170306615 Klein et al. Oct 2017 A1
20180010333 Förg Jan 2018 A1
20180044913 Klein et al. Feb 2018 A1
20180051470 Smith Feb 2018 A1
20180072922 Canale Mar 2018 A1
20180171624 Klein et al. Jun 2018 A1
20180171646 Stahl et al. Jun 2018 A1
20180195282 Pilz Jul 2018 A1
20180291619 Ackerman et al. Oct 2018 A1
20190284797 Pilz Sep 2019 A1
20190284799 Förg Sep 2019 A1
20190316350 Pilz et al. Oct 2019 A1
20190323234 Watanabe et al. Oct 2019 A1
20190323347 Hensley et al. Oct 2019 A1
20190360195 Pilz et al. Nov 2019 A1
20200240140 Pilz Jul 2020 A1
20200308829 Hunsaker Oct 2020 A1
20200340239 Chang Oct 2020 A1
20200340240 Pilz Oct 2020 A1
20200362551 Klein et al. Nov 2020 A1
20210010257 Klein et al. Jan 2021 A1
20210017761 Klein et al. Jan 2021 A1
20210040731 Pilz Feb 2021 A1
20210062502 Archer et al. Mar 2021 A1
20210101319 Klein et al. Apr 2021 A1
20210148112 Klein May 2021 A1
20210164222 Pilz Jun 2021 A1
20210189721 Klein et al. Jun 2021 A1
20210285208 Pilz Sep 2021 A1
20210396004 Pilz Dec 2021 A1
20220010553 Pilz et al. Jan 2022 A1
20220023684 Pilz et al. Jan 2022 A1
20220042303 Pilz Feb 2022 A1
20220056686 Pilz Feb 2022 A1
20220098856 Pilz Mar 2022 A1
20220106785 Klein Apr 2022 A1
20220154456 Griffith et al. May 2022 A1
20220162851 Pilz May 2022 A1
20220259852 Pilz Aug 2022 A1
20220268017 Pilz Aug 2022 A1
20230114420 Pilz et al. Apr 2023 A1
20230115315 Pilz et al. Apr 2023 A1
20230203807 Pilz et al. Jun 2023 A1
20230220665 Pilz et al. Jul 2023 A1
Foreign Referenced Citations (29)
Number Date Country
2234347 Oct 1999 CA
2498537 Aug 2006 CA
2711659 Feb 2012 CA
2803439 Mar 2017 CA
2645807 Mar 1978 DE
60213279 Jul 2007 DE
0 335 347 Oct 1989 EP
0 346 126 Dec 1989 EP
0509701 Oct 1992 EP
3 196 376 Jul 2017 EP
3 348 729 Jul 2018 EP
3 556 957 Oct 2019 EP
2 159 051 Nov 1985 GB
2 239 213 Jun 1991 GB
2 411 212 Aug 2005 GB
2 424 658 Oct 2006 GB
2 494 721 Mar 2013 GB
H06-042090 Feb 1994 JP
H06-146433 May 1994 JP
H06-220934 Aug 1994 JP
H07-004620 Jan 1995 JP
100664665 Jan 2007 KR
WO 2003038206 May 2003 WO
WO 2004071584 Aug 2004 WO
WO 2007103331 Sep 2007 WO
WO 2013113734 Aug 2013 WO
WO 2016128301 Aug 2016 WO
WO 2017129398 Jan 2017 WO
WO 2019108295 Jun 2019 WO
Non-Patent Literature Citations (22)
Entry
U.S. Appl. No. 17/653,771, filed Mar. 7, 2022, Pilz.
U.S. Appl. No. 17/668,629, filed Feb. 10, 2022, Pilz.
U.S. Appl. No. 17/303,173, filed May 21, 2021, Pilz et al.
BlazeFrame 2009 catalog of products, available at least as of Mar. 4, 2010 from www.blazeframe.com, in 20 pages.
Catalog page from Stockton Products, printed from www.stocktonproducts.com, on Dec. 16, 2007, showing #5 Drip, in 1 page.
ClarkDietrich Building Systems, Product Submittal Sheet, (FTSC) Flat Trail Vertical Slide Clip. CD-FTSC11 Jul. 2011. 1 page.
DoubleTrackTM information sheets by Dietrich Metal Framing, in 2 pages; accessible on Internet Wayback Machine on Jul. 8, 2006.
FireStikTM by CEMCO Brochure, published on www.firestik.us, in 18 pages; accessible on Internet Wayback Machine on Aug. 13, 2007.
Information Disclosure Statement letter; U.S. Appl. No. 12/196,115, dated Aug. 4, 2011.
“Intumescent Expansion Joint Seals”, Astroflame; http://www.astroflame.com/intumescent_expansion_joint_seals; Jul. 2011; 4 pages.
James A. Klein's Answer, Affirmative Defenses and Counterclaims to Third Amended Complaint; U.S. District Court, Central District of California; Case No. 2:12-cv-10791-DDP-MRWx; Filed Sep. 17, 2014; pp. 1-37.
Letter from Thomas E. Loop; counsel for defendant; Jun. 26, 2015.
Expert Report of James William Jones and exhibits; Case No. CV12-10791 DDP (MRWx); May 18, 2015.
Letter from Ann G. Schoen of Frost Brown Todd, LLC; Jun. 24, 2015.
“System No. HW-D-0607”, May 6, 2010, Metacaulk, www.rectorseal.com, www.metacault.com; 2008 Underwriters Laboratories Inc.; 2 pages.
Trim-Tex, Inc., Trim-Tex Wall Mounted Deflection Bead Installation Instructions, 2 pages. [Undated. Applicant requests that the Examiner review and consider the reference as prior art for the purpose of examination.].
“Wall Mounted Deflection Bead,” Trim-Tex Drywall Products; Oct. 9, 2016; 3 pages.
“Wall Mounted Deflection Bead,” Trim-Tex Drywall Products, Jul. 2016, 1 pg. (https://web.archive.org/web/20160710062112/https://www.trim-tex.com/products/overview/commercial-beads/deflection-beads/wall-mounted-deflection-bead/).
“CEMCO Hotrod Type-X Compressible Firestopping,” CEMCO, Product Data Sheet, May 2019, 1 pg. (https://cemcosteel.com/steel-framming/head-wall/hot-rod-type-x).
U.S. Appl. No. 17/821,128, filed Aug. 19, 2022, Pilz et al.
U.S. Appl. No. 17/935,291, filed Sep. 26, 2022, Pilz et al.
U.S. Appl. No. 18/150,111, filed Jan. 4, 2023, Pilz et al.
Related Publications (1)
Number Date Country
20220349177 A1 Nov 2022 US
Provisional Applications (1)
Number Date Country
62796500 Jan 2019 US
Continuations (2)
Number Date Country
Parent 17129589 Dec 2020 US
Child 17655738 US
Parent 16598211 Oct 2019 US
Child 17129589 US