Wall mounted toy track set

Information

  • Patent Grant
  • 9421473
  • Patent Number
    9,421,473
  • Date Filed
    Friday, October 4, 2013
    11 years ago
  • Date Issued
    Tuesday, August 23, 2016
    8 years ago
Abstract
A toy vehicle track set is provided including a first track portion and a second track portion. The second track portion is distal from the first track portion. The first track portion and the second track portion define a gap therebetween. The toy vehicle track set also includes a pair of separately rotating arms. The rotating arms cooperate to transfer a toy vehicle across the gap from the first track portion to the second track portion. When the toy vehicle is released at the second track portion, the toy vehicle may traverse along a path of the track set from the second track portion to the first track portion.
Description
BACKGROUND

Various embodiments of the present invention are related to toys. In particular, various embodiments of the present invention are related to a track set for toy vehicles.


Toy vehicle track sets have been popular for many years and generally include one or more track sections arranged to form a path around which one or more toy vehicles can travel. Some toy vehicles that may be used on such track sets are self-powered vehicles, and some receive power from an external source.


Accordingly, it is desirable to provide toy track set with features that provide unique paths for the toy vehicles of the toy track to travel on.


BRIEF SUMMARY OF INVENTION

In one embodiment a toy vehicle track set is provided including a first track portion and a second track portion. The second track portion is distal from the first track portion. The first track portion and the second track portion define a gap therebetween. The toy vehicle track set also includes a pair of separately rotating arms. The rotating arms cooperate to transfer a toy vehicle across the gap from the first track portion to the second track portion. When the toy vehicle is released at the second track portion, the toy vehicle may traverse along a path of the track set from the second track portion to the first track portion.


In another embodiment, a toy vehicle track set is provided. The toy vehicle track set having: a first track portion; a second track portion elevated vertically from the first track portion; a pair of arm members rotatably mounted to a support, wherein each arm member has a claw member configured to releasably receive and retain a toy vehicle therein, wherein the pair of arm members and each claw member associated therewith are configured to transfer a toy vehicle therebetween as the pair of arm members each rotate about an axis.


In yet another embodiment, a toy vehicle track set is provided. The toy vehicle track set having: a lower track portion; a first toy vehicle feed mechanism configured to release a toy vehicle from the lower track portion upon actuation of an actuator of the first toy vehicle feed mechanism; an upper track portion having an upper end and a first lower end; a second toy vehicle feed mechanism configured to release a toy vehicle from the upper track portion upon actuation of an actuator of the second toy vehicle feed mechanism; a first arm member rotatably secured to the toy vehicle track set, the first arm member having a claw member configured to move from an open position to a closed position in order to receive the toy vehicle from the first toy vehicle feed mechanism; a second arm member rotatably secured to the toy vehicle track set, the second arm member having a claw member configured to move from an open position to a closed position in order to receive the toy vehicle from the claw member of the first arm member, wherein the second arm member transfers the toy vehicle to the upper end of the upper track portion after it has received the toy vehicle from the claw member of the first arm member; and wherein the actuator of the first toy vehicle feed mechanism is actuated through rotational movement of the first arm member.





BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:



FIG. 1 is a perspective view of a toy vehicle track set according to an embodiment of the invention;



FIG. 2 is a perspective view of a toy vehicle track set according to an embodiment of the invention;



FIG. 3 is a perspective view of a toy vehicle feed system according to an embodiment of the invention;



FIG. 4 is a perspective view of a switch of a toy vehicle track set according to an embodiment of the invention;



FIG. 5 is a perspective view of a second arm of a toy vehicle track set according to an embodiment of the invention;



FIG. 6 is a perspective view of a first arm of a toy vehicle track set according to an embodiment of the invention;



FIG. 7 is a perspective view of the first arm and the second arm of the toy vehicle track set in a vertically aligned position; and



FIG. 8 is a perspective view of the first arm as it actuates a toy feed mechanism of the toy vehicle track set.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to the FIGS., a track set 20 in accordance with various embodiments of the present invention is illustrated. In some embodiments, the track set 20 is mounted to a wall 16 via one or more wall mounts 10. Each wall mount 10 has a planar member 14 that is secured to a wall 16 via removable double-sided adhesive tape or other equivalent material. One non-limiting example of such adhesive tape it is commercially available from 3M and sold under the trademark COMMAND STRIP. In some embodiments, the wall mount 10 may be that described in commonly owned U.S. patent Ser. No. 13/220,364, filed on Aug. 29, 2011, and U.S. Provisional Patent Application Ser. Nos. 61/377,743, filed on Aug. 27, 2010, and 61/480,793, filed on Apr. 29, 2011, the contents each of which are incorporated herein by reference thereto in their entirety. It should be appreciated that while embodiments of this invention illustrate the track set 20 mounted to a wall 16, the claimed invention should not be so limited, in other embodiments the track set 20 may include support stands that allow the track set 20 to be a free standing track set that rests on a play surface, which may be a horizontal play surface. In yet other embodiments, portions of the track set 20 may be mounted to a wall 16 while other portions of the track set 20 may include support stands for resting on a playing surface (e.g., horizontal or otherwise).


The track set 20 includes multiple track portions, for example a lower track portion 30 and an upper track portion 70. The track portions 30, 70 provide at least one path of travel for a toy, such as a toy vehicle 18 for example. The lower track portion 30 and the upper track portion 70 are disconnected from one another and may be separated by both a vertical distance and a horizontal distance. In some embodiments, each track portion 30, 70 is oriented such that a gravitational force causes the toy vehicle 18 to move along the path of travel of the track set 20.


The lower track portion 30 includes a first track segment 32 having a generally curved section 38 adjacent a first end 34 and a generally straight section 40 extending from the curved section 38 to a second end 36. In some embodiments, a start platform 42 is connected to a portion of the first track segment 32, such that the start platform 42 provides an entrance for the toy vehicle 18 into the path of travel of the track set 20.


A toy vehicle feed system 44 is connected to the first track segment 32 for releasably retaining a toy vehicle 18. In some embodiments, the toy vehicle feed system 44 is connected to the straight section 40 adjacent the second end 36. Alternatively, the toy vehicle feed system 44 may be mounted to the curved section 38 of the first track segment 32. The toy vehicle feed system 44 includes a gate 46 pivotally coupled to the first track segment 32 for movement between a blocking position (e.g., where toy vehicles 18 are retained by gate 46) and a release position (e.g., where toy vehicles 18 can travel underneath gate 46) such that the gate 46 is configured to rotate out of the path of travel along the track set 20, in the direction indicated by arrow A as it moves from the blocking position to the release position. The gate 46 includes an activation device or component 48, such as a lever for example, such that when the activation device 48 is actuated or moved, the gate 46 moves from the blocking position to the release position. In the illustrated embodiment, the gate 46 may rotate away from the start platform 22. Application of a force to the activation device 48 causes the activation device 48, and therefore the gate 46 coupled thereto by any suitable means such as a linkage or direct physical connection, to rotate relative to the first track segment 32. When the gate 46 pivots out of the path of travel of the track set 20, the feed system 44 releases a toy vehicle 18, which then moves to the second end 36 of the first track segment 32 as a result of gravity. In some embodiments, when the applied force is removed from the activation device 48, gravity causes the gate 46 to rotate back to a position that blocks that path of travel along the track set 20. In other embodiments, a biasing force, such as from a spring, may move the gate 46 back to the blocking position.


The lower track portion 30 of the track set 20 also includes a second track segment 50 connected to the first track segment 32. In the embodiment illustrated in FIG. 1, a first end 52 of the second track segment 50 connects to the first end 34 of the first track segment 32. In some embodiments, the second track segment 50 may be formed integrally with the first track segment 32. In other embodiments, the first end 52 of the second track segment 50 may connect to a central portion of the first track segment 32 (see FIG. 2), such as the curved section 38 for example.


A first end 58 of a third track segment 56 is positioned adjacent the curved section 38 of the first track segment 32. In some embodiments, the first end 58 of the third track segment 56 is connected to the first end 34 of the first track segment 32 (see FIG. 2). In other embodiments, the first end 58 of the third track segment 56 is spaced a distance above a portion of the first track segment 32 such that a toy vehicle 18 may travel along the first track segment 32 and underneath the third track segment 56 without interference (see FIG. 1). A second end 60 of the third track segment 56 may be flared compared to the remainder of the third track segment 56. A connector 62 supports the second end 54 of the second track segment 50 and the second end 60 of the third track segment 56. The connector 62 may extend to the first track segment 32 as well. In some embodiments, the connector 62 retains the third track segment 56 and the second track segment 50 in a generally parallel and vertically aligned position separated by a distance to prevent interference with the path of travel of a toy vehicle 18.


The upper track portion 70 includes a fourth track segment 72 having a generally straight section 78 adjacent a first end 74 and a generally curved section 80 adjacent a second end 76. In some embodiments, the straight section 78 includes an unconnected end 75 configured to couple the track set 20 to other track set(s) (not shown). A guide or diverter 77 pivotable between a first position and a second position is mounted between the unconnected end 75 and the curved section 80 of the fourth track segment. When the guide is in a first position (see FIG. 4), toy vehicles 18 travel from the straight section 78 to the curved section 80. When the guide 77 is rotated to the second position, the guide 77 blocks the path to the curved portion 80, such that toy vehicle 18 travels to the unconnected end 75 and to a coupled track set.


Both a first end 84 of a vertically aligned fifth track segment 82 and a first end 90 of a vertically aligned sixth track segment 88 are coupled to the second end 76 of the fourth track segment 72. A gate 100 for selectively controlling the path of travel of a toy vehicle 18 is positioned adjacent the second end 76 of the fourth track segment 72. The gate 100, as shown in FIG. 4, includes a generally flat piece of track 102 coupled to a lever 106. The lever 106 and the piece of track 102 are pivotable about a pin between an open position and a closed position. When the gate 100 is in a closed position, a free end 104 of the piece of track 102 is in contact or flush with the curved section 80 of the fourth track segment 72, such that a toy vehicle 18 travels to the connected fifth track segment 82. In some embodiments, the second end 86 of the fifth track segment 82 is curved in a direction away from the sixth track segment 88. When the gate 100 is in an open position, the free end 104 of the piece of track 102 is rotated away from the curved section 80 of the fourth track segment 72, thereby allowing a toy vehicle 18 to travel to the connected sixth track segment 88. A toy vehicle feed system 110, similar to the toy vehicle feed system 44 may be mounted adjacent the second end 92 of the sixth track segment 88. A portion of the toy vehicle feed system 110 is configured to rotate in the direction indicated by arrow D to selectively release a toy vehicle 18. In some embodiments, the activation device 112 of the toy vehicle feed system 110 is a lever extending beyond the second end 93 of the sixth track segment 88.


A generally vertical support 120 extends between the lower track portion 30 and the upper track portion 70 of the track set 20. In some embodiments, the second end 36 of the first track segment 32 is mounted to a first end 122 of the support 120 and the first end 74 of the fourth track segment 72 is mounted to the second end 124 of the support 120.


A first arm 130 is rotatably or movably mounted to the support 120 with a first shaft 137 and a second, similar arm 160 is rotatably or movably mounted to the support 120 with a second shaft 166. When the first arm 130 and the second arm 160 are arranged substantially vertically, a first end 132 of the first arm 130 can be positioned adjacent the second end 36 of the first track segment 32 and a first end 162 of the second arm 160 can be located adjacent the first end 74 of the fourth track segment 72. It is also understood the first and the second arm 130, 160 can also be arranged vertically or in any other position angular or otherwise without the first end 132 of the first arm 130 being adjacent the second end 36 of the first track segment 32 and the first end 162 of the second arm 160 being located adjacent the first end 74 of the fourth track segment 72 as the first arm 130 rotates about the first shaft 137 and the second arm 160 rotates about the second shaft 166.


The first arm 130 and the second arm 160 are configured to rotate about the first shaft 137 and the second shaft 166 respectively. In some embodiments, the first arm 130 is configured to rotate relative to the support 120 in the direction indicated by arrow B, and the second arm 160 is configured to rotate in an opposite direction, indicated by arrow C. In some embodiments, the support 120 includes a casing 126 that encloses a drive mechanism 128, such as a motor 127 coupled to a gear train 129, for rotating the first arm 130 and the second arm 160 simultaneously. In other words, a motor when activated applies a rotational force to a first one of a plurality of gears of the gear train 129 such that at least one of the gears of the gear train 129 causes the first arm 130 and the second arm 160 to rotated by the motor and in opposite directions. The gear train 129 may also keep the first arm 130 and the second arm 160 rotating in a fixed coordination with each other. In embodiments where the support 120 houses a drive mechanism 128, the support 120 acts as a central, motorized spine of the track set 20.


The pair of separately rotatable arms 130, 160 are configured to move a toy vehicle 18 from a first position on the lower track portion 30 to a second position on the upper track portion 70. In some embodiments, the pair of arms move a toy vehicle 18 from a first position at the second end 36 of the first track segment 32 to a second position at the first end 74 of the fourth track segment 72. Connected to a first end 132, 162 of both the first arm 130 and the second arm 160 is a claw member 136, 136′ configured to releasably connect with a toy vehicle 18. In some embodiments, a claw member 136 is also connected to the second end 134, 164 of at least one of the first arm 130 and the second arm 160. Alternatively, a hazard 135, such as a gear portion, may be connected to the second end 134, 164 of the either first arm 130 and/or the second arm 160 (see FIG. 1). The hazard 135 may be configured to feign interference with the toy vehicle 18 as it travels from the upper portion track 70 to the lower track portion 30 of the track set 20. The first arm 130 and the second arm 160 are mounted to the support 120 such that the claw member 136 mounted to the first end 132 of the first arm 130 is in substantially meshing engagement with the claw member 136′ mounted to the first end 162 of the second arm 160 when the first arm 130 and the second arm 160 are vertically aligned and the first ends 132, 162 are adjacent one another.


Referring now to FIGS. 3 and 5, each claw member 136, 136′ includes a base 138, 138′ and a plurality of claw arms 140, 140′ pivotally mounted to the base 138, 138′ for movement between an open position and a closed position. A generally hollow cylindrical mount 142, 142′ connects the base 138, 138′ of the claw member 136, 136′ to a housing 144, 144′ of the arm 130, 160.


In some embodiments, a protrusion 146 extends from the base 138 of the first arm 130. The protrusion 146 is configured to engage or contact the activation device 48 of the toy vehicle feed mechanism 44 mounted to the first track segment 32 as the first arm 130 rotates in the direction of arrow B. Contact of the actuation member 48 with protrusion 146 causes downward movement of actuation member 48 in the direction of arrow 49, which in turn causes gate 46 to move in the direction of arrow A and thus release a toy vehicle 18 therefrom. Accordingly, the rotational movement of first arm 130 in the direction of arrow B provides an automatic or sequential release of toy vehicles 18 from vehicle feed mechanism 44 as protrusion 146 actuation member 48 each time the first arm 130 rotates completely about its shaft 137.


In some non-limiting embodiments, a slidable member 148, 148′ is movably mounted in the cylindrical mount 142, 142′ such that translational or linear movement of the slidable member 148, 148′ with respect to arm 130, 160 is possible. The movement of the slidable member 148, 148′ facilitates the capture and release of the toy vehicles 18 by the claw members 136 and 136′. The slidable movement of member 148, 148′ with respect to arm 130, 160 causes the claw members 136 and 136′ to move between open (e.g., toy vehicle 18 release or receive) and closed positions (e.g., toy vehicle 18 capture or holding during rotational movement of arm 130, 160).


A cam surface 150, 150′ located on the shaft 137, 166 that supports the arm 130, 160 causes or facilitates the movement of slidable member 148, 148′. As the arm 130, 160 rotates about the shaft 137, 160, a distal end 147, 147′ of the slidable member 148, 148′ makes intermittent contact with the cam surface 150, 150′ due to its cam profile. The intermittent contact causes slidable member 148, 148′ to move within the cylindrical mount 142, 142′. In some embodiments, a spring member 145, 145′ located within cylindrical mount 142, 142′ provides a biasing force to slidable member 148, 148′.


A contact member 149, 149′ is secured to slidable member 148, 148′. The contact member 149, 149′ protrudes through slotted openings of cylindrical mount 142, 142′ such that as slidable member 148, 148′ moves within cylindrical mount 142, 142′ contact member 149, 149′ moves within the slotted openings of the cylindrical mount 142, 142′. The contact member 149, 149′ is configured to contact at least one of the claw arms 140, 140′ such that as the slidable member 148, 148′ moves within cylindrical mount 142, 142′ the contact member 149, 149′ contacts at least one of the claw arms 140, 140′. The contact with the contact member 149, 149′ transitions the claw members 136, 136′ between the open and closed positions as the end 147, 147′ of the slidable member 148, 148′ makes contact with cam surface 150, 150′.


In some non-limiting embodiments, the contact member 149, 149′ extends from opposite sides of the cylindrical mount 142, 142′. As the contact member 149, 149′ moves within the cylindrical mount 142, 142′, the claw arms 140, 140′ on opposite sides of cylindrical mount 142, 142′ are contacted by contact member 149, 149′ and are thus moved between the open and closed positions.


As illustrated in the FIGS. the claw arms 140, 140′ are pivotally mounted to the base 138, 138′ and extend above and below the base 138, 138′ of the claw member 136, 136′ so that one end of the claw arms 140, 140′ can grasp a toy vehicle while an opposite end can be manipulated by contact member 149, 149′ as the slidable member 148, 148′ moves within cylindrical mount 142, 142′.


In some non-limiting embodiments, the claw arms 140, 140′ are spring biased into the closed position by at least one elastic member or rubber band 151, 151′. In some embodiments, the at least one elastic member or rubber band 151, 151′ is coupled to a hook 143, 143′ on the cylindrical mount 142, 142′ at one end and coupled to a portion of the claw arms 140, 140′ at the other end.


As the arms 130, 160 rotate about their respective shafts 137, the cam surface 150, 150′ intermittingly applies a force to the distal end 147, 147′ of the slidable member 148, 148′. This force overcomes the biasing force of the spring 145, 145′ and causes the contact member 149, 149′ to move the claw members 140, 140′ from their closed position to their open position by overcoming the biasing force of the elastic member 151, 151′. This action is facilitated by the pivotal movement or securement of the claw members 140, 140′ to the base member 138, 138′. The movement of the slidable member 148, 148′ by the cam surface 150, 150′ compresses spring 145, 145′ and force the claw members 140, 140′ into the open position. When the distal end 147, 147′ of the slidable member 148, 148′ loses contact with the cam surface 150, 150′, the slidable member 148, 148′ is moved back towards the cam surface 150, 150′ or the shaft 137, 166 due to the biasing force of compresses spring 145, 145′, and the contact member 149, 149′ no longer maintains the claw members 140, 140′ in the open position. Under these conditions, the elastic member 151, 151′ rotates the claw arm 140, 140′ to its closed position.


As the arm 130, 160 rotates further about the cam surface 150, 150′ the cam force is removed, and the biasing spring biases the claw arms 140 back to a closed position. In some non-limiting embodiments, the claw arms 140 of claw member 136′ connected to the second arm 160 may have a higher spring-loaded grip than the claw arms 140 of claw member 136 of the first arm 130 (via a higher constant associated with the respective elastic members 151, 151′). The higher spring-loaded grip may allow the claw arms 140′ of the second arm 160 to grab or snatch a toy vehicle 18 from the claw arms 140 of the first arm 130 when the claw member 136 of the first arm 130 is aligned or adjacent with the claw member 136′ of the second arm 160.


Still further cam 150, 150′ can be configured such that the claw arms 140 and 140′ of claw members 136 and 136′ are positioned into respective open positions when they are aligned with each other such that a toy vehicle 18 can be transferred from claw member 136 to claw member 136′.


As the first arm or first arm member 130 rotates about its axis a toy vehicle 18 is captured by claw member 136. Once captured, the first arm member 130 continues to rotate in the direction of arrow B until the toy vehicle 18 is inverted (e.g., 180 degrees of rotation of the first arm member 130). At this point, the claw member 136′ of the second arm or second arm member 160 is adjacent to the claw member 136 of the first arm member 130 such that the inverted toy vehicle 18 can be transferred therebetween. At this point, the second arm member 160 rotates in an opposite direction (illustrated by arrow C) for approximately 180 degrees of rotation such that the inverted toy vehicle 18 is now upright (inverted once again) and ready to be released onto the first end 74 of the fourth track segment 72. Accordingly, the toy vehicle 18 is captured, inverted (via the rotation of the first arm member 130 in a first direction), transferred (between claw member 136 and claw member 136′), inverted once again (via rotation of the second arm member 160 in a second direction opposite to the first direction), and released onto an upper track portion.


Although the first arm member 130 and the second arm member 160 are illustrated as rotating in opposite directions it is, of course, understood that various embodiments of the present invention contemplates that the rotational directions of the first arm member 130 and a second arm member 160 may be the same direction or alternatively completely opposite to those illustrated in the attached drawings.


A seventh track segment 170 is mounted between the first end 132 and the second end 134 of the first arm 130 via a base 176 secured thereto. Accordingly, base 176 and the seventh track segment 170 is rotationally or pivotally mounted to support 120 such that seventh track segment 170 rotates as the first arm 130 rotates.


The seventh track segment 170 is generally arced or has a concave shape to retain a toy vehicle 18 while the first arm rotates 130. As the first arm 130 rotates about its shaft 137, a second end 174 of the seventh track segment 170 is momentarily positioned adjacent the second end 92 of the sixth track segment 88. Further rotation of the first arm 130 temporarily positions the first end 172 of the seventh track segment 170 next to the second end 54 of the second track segment 50, such that the seventh track segment 170 provides a path between the sixth track segment 88 of the upper track portion 70 and the second track segment 50 of the lower track portion 30 of the track set 20.


In some embodiments, a lever 178 extends outwardly from the seventh track segment 170, or alternatively base 176 or first arm member 130, and is configured to engage the activation device 112 of the toy vehicle feed system 110 mounted to the sixth track segment 88. As the first arm 130 rotates, lever 178 contacts an end of the arm member of the activation device 112. The arm member may be pivotally mounted to the sixth track segment 88 and may cause the gate member 115 to move upwardly in the direction of arrow D, for example, from a blocking position to an unblocking position (similar to feed system 44). The movement to the unblocked position releases the toy vehicles 18 from the sixth track segment 88 onto the seventh track segment 170.


In some embodiments, a pair of track segments 170 are secured to base 176 in a facing spaced arrangement such that a track segment 170 is located to receive toy vehicles 18 for each one hundred and eighty degrees of rotation of the lower arm member 130. As such, the base 176 is configured to have a pair of levers 178 configured and positioned to engage actuation device 112 as the base 176 and lower arm 130 rotates about axis 137.


When power is applied to the driving mechanism 128, the first arm 130, and the second arm 160 rotate about their respective shafts 137, 166. A toy vehicle 18 released from the start platform 42 travels, as a result of gravity, along a portion of the first track segment 32 until reaching the toy vehicle feed system 44. As the claw member 136 mounted to the first end 132 of the first arm 130 approaches the second end 36 of the first track segment 32, the protrusion 146 engages the activation device 48, thereby releasing the toy vehicle 18 from the feed system 44.


The released toy vehicle 18 from the feed system 44 reaches the second end 36 of the first track segment 32 at approximately the same time as the claw member 136 mounted to the first end 132 of the first arm member 130. As the first end 132 of the first arm 130 rotates towards the second end 36 of the first track segment 32, the cam surface 150 of the shaft 137 causes the claw arms 140 of the claw member 136 to pivot open to receive the toy vehicle 18. As the first end 132 of the first arm 130 rotates away from the first track segment 32, the cam surface 150 force is minimized and the claw arms 140 are biased back to a closed position to grab the toy vehicle 18 and carry it upwardly and away from the first track segment 32 in the direction of arrow B.


As the first arm 130 and the second arm 160 continue to rotate in their respective directions they rotate or move to a position where the claw member 136 mounted to the first end 132 of the first arm 130 and the claw member 136′ mounted to the first end 162 of the second arm 160 are adjacent one another. The cam surfaces 150, 150′ of both shafts 137, 166 once again cause the claw arms 140, 140′ of both claw members 136, 136′ to pivot open to allow transference of the toy vehicle 18 from the claw member 136 of the first arm 130 to the claw member 136′ of the second arm 160.


In some embodiments, the cam surface 150′ is configured such that the claw arms 140′ of the claw member 136′ mounted to the second arm 160 are configured to pivot closed when in or slightly after being in meshing engagement (adjacent to) with the claw arms 140 of the claw member 136 of the first arm 130, thereby allowing the claw member 136′ of the second arm 160 to grab the toy vehicle 18 from the claw member 136 of the first arm 130. In other words, when the claw member 136 of the first arm 130 is adjacent to the claw member 136′ of the second arm 160 the cam surface 150′ is configured to first open and then close claw arms 140′ of the claw member 136′. While the claw arms 140′ of the claw member 136′ open and close, the cam surface 150 is configured to maintain the claw arms 140 of the claw member 136 in the open position when the claw member 136′ is adjacent to the claw member 136 such that toy vehicle 18 transference can occur as the arms 130 and 160 rotate in their respective directions, which in one embodiment is opposite to each other.


After vehicle transference, further rotation of the second arm 160 positions the claw member 136′ containing the toy vehicle 18 adjacent the first end 74 of the fourth track segment 72. When adjacent the fourth track segment 72, the claw arms 140′ of the claw member 136′ are in an open position (contact of member 148′ with cam surface 150′) such that the toy vehicle 18 moves from the claw member 136′ onto the fourth track segment 72.


Alternatively or in conjunction with the opening of claw arms 140′ a tongue member 175 is located at the first end 74 of the fourth track segment 72 such that as the claw member 136′ rotates in the direction of arrow C the tongue member 175 is configured and positioned such that it slides under the toy vehicle 18 and dislodge it from base member 138′ and claw arms 140′ as well as providing a path for the toy vehicle 18 to travel on to as the claw member 136′ rotates in the direction of arrow C and away from the first end 74 of the fourth track segment 72.


Once released from the claw member 136′ onto the first end 74 of the fourth track segment 72 the toy vehicle 18 travels downwardly along the fourth track segment 72. If the gate 100 is in a closed position, the toy vehicle 18 travels to the fifth track segment 82. The fifth track segment 82 is positioned at a downward angle such the toy vehicle 18 traverses the gap between the upper track portion 70 and the lower track portion 30, specifically from the fifth track segment 82 to the third track segment 56 by jumping across the gap.


Upon successful traversal of the gap between the fifth track segment 82 and the third track segment 56 the toy vehicle 18 then travels from the third track segment 56 back to the adjacent first track segment 32, where it stops at the toy vehicle feed system 44, when the gate 46 is in the blocking position.


When the gate 100 is in the open position, the toy vehicle 18 instead travels down the sixth track segment 88 where it is stopped by the gate 115 of the toy vehicle feed system 110. As the first arm 130 rotates about its shaft 137, the lever 178 protruding from the seventh track segment 170 engages the activation device 112 of the toy vehicle feed system 110 (as illustrated in FIG. 8) such that the toy vehicle 18 is released from the feed system 110. The toy vehicle 18 is then received on the seventh track segment 170 which has been rotated into a receiving position as the first arm 130 rotates about shaft 137. Rotation of the first arm 130 causes the toy vehicle 18 to move from the second end 174 to the first end 172 of the seventh track segment 170. When the first end 172 of the seventh track segment 170 is adjacent the second end 54 of the second track segment 50, gravity causes the toy vehicle 18 to move to the second track segment 50. As illustrated, the convex shape of track segment 170 helps facilitate this transference of the toy vehicle 18 as arm 130 rotates in the direction of arrow B.


Once transferred, the toy vehicle 18 travels from the second track segment 50 back to the first track segment 32 where it is stopped once again by the toy vehicle feed system 44.


Accordingly, a toy track set 20 having a central motorized spine for rotating two arms (130, 160) is provided. Each arm has gripper claws 140, 140′ on one end. The gripper claws 140, 140′ are configured for movement between an open and closed position via a cam surface 150, 150′ that works in conjunction with the rotating arms 130, 160 in order to grip and release toy vehicles 18 in order to raise them from the bottom of the toy track set 20 to the top of the toy track set 20. Alternatively, the rotating arms 130, 160 are configured to vertically raise the toy vehicles 18 from a lower position to a higher position such that gravity can them be used to have them traverse back down to the lower position for subsequent vertical movement.


In an alternative embodiment, the rotating arms 130, 160 may be configured to grip and release toy vehicles 18 in order to lower them from the top or elevated position of the toy track set 20 to a bottom or lower position of the toy track set 20.


In various embodiments, the toy vehicles 18 can traverse downwardly (e.g., gravity driven) through at least three possible user-determined paths. For example, one path directs the toy vehicles around a U-turn, then jumping across a gap directly through the path of the rotating arms, which regularly or intermittently block the jump path or gap and provide an element of peril.


A user operated gate on one of the track segment allows the user to select another path that directs the toy vehicles around the same U-turn, then directs them down to a lower track having an automatic stop gate, which is lifted and dropped regularly in sync with one of the rotating arms.


This gate when lifted by movement of the rotating arm allows a retained toy vehicle to be released onto one of two arced segments that rotate along with rotating arm. As such, the vehicles released by the rotating arm get a motorized ride across a gap and then deposited on the other side. There are two possible paths from the gap, one via the aforementioned vehicle jump and the other via the aforementioned rotating arced track segment. Both of these paths lead into another U-turn, which feeds the toy vehicles a feeder lane that directs the toy vehicles towards one of the claw members of one of the rotating arms for pickup. This feeder lane also has an automated or automatic gate that is lifted as one of the rotating arms rotates about it axis. Similar to the other gate actuation of the same allows a toy vehicle to traverse into the appropriately positioned claw member as the arm rotates about its axis.


Another or third path simply lets the cars exit the track set at the top to enter another track set adjacent to this track set.


A lower arm of the two rotating arms is configured to reliably grab the way vehicle off the feeder track segment, and then rotate it approximately one hundred and eighty degrees to vertically raise the toy vehicle and hand it off to an upper rotating arm. The upper rotating arm is configured to reliably grab the toy vehicle, which is now inverted due to it being rotated one hundred and eighty degrees. At this point, wherein the claw members of the upper and lower arms are now adjacent to each other the claw member of the lower arm will release the toy vehicle into the claw member of the upper arm, which then rotates it approximately one hundred and eighty degrees so it is still further upward. At this point the claw member will release the captured toy vehicle onto an upper track segment. Also by virtue of rotating another one hundred and eighty degrees the toy vehicle is now operate and ready to roll onto the upper track segment.


In one non-limiting embodiment each claw member has a plurality or three finger grippers or claw arms rotatably or pivotally mounted thereto. Still further and in one non-limiting embodiment, the claw arms are positioned or staggered with respect to each other such that the claw arms of the upper and lower claw members interleave or mesh with each other when they are adjacent to each other and the toy vehicle is being transferred therebetween. In one embodiment, the grippers or claw arms have rubber fingertips for grip, and they are spring-loaded in the closed position so they snap shut to grab the car when the cam member dictates.


In one non-limiting embodiment, the upper grippers or claw arms of the upper claw member have a higher spring-loaded grip, so that they will pull the car away from the lower grippers if there is overlap on a narrow toy vehicle being transferred therebetween.


In one embodiment, the track section feeding the toy vehicles into the rotating track segment is fully automatic in that the stop gate of the associated feeder mechanism automatically opens and closes to allow a waiting toy vehicle to ride the rotating track across the gap. In order to ensure that the toy vehicle traverses the gap the opening and closing of the gate is operated by the lower rotating arm which is connected to the rotating track segment and thus can be configured for proper synchronization.


The toy vehicle feeder mechanism for the claw member of their lower rotating arm is also configured to be actuated or synchronized with the rotating arm member such that the feeder mechanism or feed system is configured to allow a plurality of toy vehicles to be queued up and dispense exactly one toy vehicle at the right time to be picked up by the lower rotating claw member, and not let other waiting toy vehicles to get mixed or lost from the track set when multiple toy vehicles are queued up in other ones are entering the rear of the queue after recirculating through the toy track set.


In the preceding detailed description, numerous specific details are set forth in order to provide a thorough understanding of various embodiments of the present invention. However, those skilled in the art will understand that embodiments of the present invention may be practiced without these specific details, that the present invention is not limited to the depicted embodiments, and that the present invention may be practiced in a variety of alternative embodiments. Moreover, repeated usage of the phrase “in an embodiment” does not necessarily refer to the same embodiment, although it may. Lastly, the terms “comprising,” “including,” “having,” and the like, as used in the present application, are intended to be synonymous unless otherwise indicated. This written description uses examples to disclose the invention, including the best mode, and to enable any person skilled in the art to practice the invention, including making and using any devices or systems. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims
  • 1. A toy vehicle track set comprising: a first track portion;a second track portion distal from the first track portion, the first track portion and second track portion defining a gap therebetween; anda pair of separately rotating arms that cooperate to transfer a toy vehicle from one of said pair of arms to another one of said pair of arms and across the gap from the first track portion to the second track portion such that when released at the second track portion, the toy vehicle may traverse along a path of the track set from the second track portion to the first track portion.
  • 2. The toy vehicle track set according to claim 1, wherein the track set is mounted to a wall and the toy vehicle may traverse along the path due to gravitational forces acting on the toy vehicle.
  • 3. The toy vehicle track set according to claim 1, wherein the track set is positioned on a horizontal surface or any combination of vertical and horizontal surfaces.
  • 4. The toy vehicle track set according to claim 1, wherein each of the pair of separately rotating arms includes at least one claw member having a plurality of claw arms, the claw member being movable between an open position and a closed position for releasably grasping the toy vehicle.
  • 5. The toy vehicle track set according to claim 4, wherein the pair of separately rotating arms are configured to transfer a toy vehicle from a first position on the first track portion to a second position on the second track portion.
  • 6. The toy vehicle track set according to claim 5, wherein the claw members mounted to pair of separately rotating arms are configured to transfer a toy vehicle from one of the pair of rotating arms to another of the pair of rotating arms.
  • 7. The toy vehicle track set according to claim 4, wherein movement of the claw members from the closed position to the open position is facilitated by contact with a cam surface of a shaft upon which each rotating arm is configured to rotate.
  • 8. The toy vehicle track set according to claim 7, wherein the cam surface intermittently moves each claw member between the open position and the closed position as the pair of rotating arms rotate.
  • 9. The toy vehicle track set according to claim 8, wherein the claw members connected to a first arm of the pair of rotating arms include a first grip mechanism having a first spring load force and the claw members mounted to a second arm of the pair of rotating arms include a second grip mechanism having a second spring load force, wherein the second spring load force is greater than the first spring load force.
  • 10. The toy vehicle track set according to claim 1, wherein each one of the pair of rotating arms is rotatably secured to a central motorized spine.
  • 11. The toy vehicle track set according to claim 1, wherein the path of the track set includes a plurality of user-determined alternative paths.
  • 12. The toy vehicle track set according to claim 11, wherein one of the alternative paths directs toy vehicles around a curved portion, then across the gap between the second track portion and the first track portion directly through the path of the pair of rotating arms, which intermittently block the gap as they rotate and provide an element of peril as the arms rotate.
  • 13. The toy vehicle track set according to claim 11, wherein one of the alternative paths directs toy vehicles around a curved portion and then down to a lower track and toy vehicle feed system, which is synchronized with the pair of rotating arms.
  • 14. The toy vehicle track set according to claim 13, wherein the synchronized toy vehicle feed system allows toy vehicles to enter an arced segment of track that rotates with at least one of the arms.
  • 15. The toy vehicle track set according to claim 11, wherein the plurality of user-determined alternative paths lead into a curved portion, which feeds the toy vehicles into a straight portion of track directing the toy vehicles towards the claw members for pickup.
  • 16. The toy vehicle track set according to claim 1, wherein the toy vehicle track set includes a third path configured to couple to other toy vehicle tracks sets.
  • 17. A toy vehicle track set comprising: a first track portion;a second track portion elevated vertically from the first track portion;a pair of arm members rotatably mounted to a support, wherein each arm member has a claw member configured to releasably receive and retain a toy vehicle therein, wherein the pair of arm members and each claw member associated therewith are configured to transfer a toy vehicle from one of said pair of arm members to another one of said pair of arm members as the pair of arm members each rotate about an axis.
  • 18. The toy vehicle track set as in claim 17, wherein the toy vehicle is moved vertically from a first position to a second position as it is being transferred between the pair of arm members.
  • 19. A toy vehicle track set comprising: a lower track portion;a first toy vehicle feed mechanism configured to release a toy vehicle from the lower track portion upon actuation of an actuator of the first toy vehicle feed mechanism;an upper track portion having an upper end and a first lower end;a second toy vehicle feed mechanism configured to release a toy vehicle from the upper track portion upon actuation of an actuator of the second toy vehicle feed mechanism;a first arm member rotatably secured to the toy vehicle track set, the first arm member having a claw member configured to move from an open position to a closed position in order to receive the toy vehicle from the first toy vehicle feed mechanism;a second arm member rotatably secured to the toy vehicle track set, the second arm member having a claw member configured to move from an open position to a closed position in order to receive the toy vehicle from the claw member of the first arm member, wherein the second arm member transfers the toy vehicle to the upper end of the upper track portion after it has received the toy vehicle from the claw member of the first arm member; andwherein the actuator of the first toy vehicle feed mechanism is actuated through rotational movement of the first arm member.
  • 20. The toy vehicle track set as in claim 19, wherein the actuator of the second toy vehicle feed mechanism is actuated through rotational movement of the first arm member and the first arm member further comprises a concave shaped track segment configured to receive a toy vehicle from the second toy vehicle feed mechanism and transfer the toy vehicle across a gap of the toy vehicle track set as the first arm member rotates about its axis.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 61/709,426, filed Oct. 4, 2012, the contents of which are incorporated herein by reference thereto.

US Referenced Citations (263)
Number Name Date Kind
469948 Reed Mar 1892 A
806930 Smith Dec 1905 A
812595 Roberts Feb 1906 A
831907 Townsend Sep 1906 A
889169 Brothen Jun 1908 A
1113945 Bain Oct 1914 A
1116577 Dugger Nov 1914 A
1209127 Corey Dec 1916 A
1244457 Bain Oct 1917 A
1244702 Christ Oct 1917 A
1247226 Cole Nov 1917 A
1252616 Reif Jan 1918 A
1261691 Bunkley Apr 1918 A
1279271 Cole Sep 1918 A
1284477 Seils Nov 1918 A
1287450 Sabina et al. Dec 1918 A
1287608 Austin Dec 1918 A
1295504 Howard et al. Feb 1919 A
1301552 Gaines Apr 1919 A
1314238 Bain Aug 1919 A
1315108 Gaines Sep 1919 A
1317184 Voss Sep 1919 A
RE14902 Gaines Jun 1920 E
1347968 O'Doie Jul 1920 A
1351981 Zipf Sep 1920 A
1355636 Bain Oct 1920 A
1361449 Danner Dec 1920 A
1392727 Welsh Oct 1921 A
1454173 Keiner May 1923 A
1472783 Bauer Nov 1923 A
1478350 Okel Dec 1923 A
RE15900 Hetzner Aug 1924 E
1523244 Bain Jan 1925 A
1527006 O'Reilly Feb 1925 A
1546377 Gunderman Jul 1925 A
1560181 Marx Nov 1925 A
1561633 Bain Nov 1925 A
1568492 Zabel Jan 1926 A
1599699 Zabel Sep 1926 A
1599982 Bauer Sep 1926 A
1617846 Hawk Feb 1927 A
RE16791 Hawk Nov 1927 E
1666417 Harris Apr 1928 A
1696532 Enloe Dec 1928 A
RE17312 Beck Jun 1929 E
1715891 Beck Jun 1929 A
1724447 Abbott et al. Aug 1929 A
1725536 Marx Aug 1929 A
1739719 Gunderman Dec 1929 A
1748184 Nichols Feb 1930 A
1758061 Rentz et al. May 1930 A
1870586 Platakis Aug 1932 A
1872204 Wily Aug 1932 A
2128863 Turrian Aug 1938 A
2211220 Verplanck Aug 1940 A
2249728 Cross Jul 1941 A
2336773 Black et al. Dec 1943 A
2391529 Walker Dec 1945 A
2392722 Burlin Jan 1946 A
2400013 Lowell et al. May 1946 A
2400410 Hatcher May 1946 A
2419990 Dishmaker May 1947 A
2434571 Long Jan 1948 A
2531564 Garbe Nov 1950 A
2616699 Franks Nov 1952 A
2634128 Reed Apr 1953 A
2655116 Gowland Oct 1953 A
2672709 Ernst Mar 1954 A
2756687 Fields Jul 1956 A
2785504 Kooistra, Sr. Mar 1957 A
2838159 Siegfried Jun 1958 A
2853301 Glass Sep 1958 A
2998673 Rhodes Sep 1961 A
2999689 Litwinczuk Sep 1961 A
3251155 Bjork May 1966 A
3298692 Glass et al. Jan 1967 A
3300891 Glass et al. Jan 1967 A
3314169 Wold Apr 1967 A
3343793 Waser Sep 1967 A
3401484 Anslover Sep 1968 A
3542366 Schocker Nov 1970 A
3548534 Beny et al. Dec 1970 A
3570171 Shook Mar 1971 A
3572713 Krause Mar 1971 A
3600849 Faller Aug 1971 A
3621602 Barcus et al. Nov 1971 A
3633308 Yang Jan 1972 A
3666264 Bartlett May 1972 A
3703989 Tomiyama Nov 1972 A
3708116 Woodward Jan 1973 A
3712538 Starr et al. Jan 1973 A
3726476 Porter et al. Apr 1973 A
3734404 Baynes et al. May 1973 A
3735923 Brigham et al. May 1973 A
3795983 Gallagher et al. Mar 1974 A
3803756 Strongin Apr 1974 A
3818628 Ensmann et al. Jun 1974 A
3860238 Kojima Jan 1975 A
3908303 McKay et al. Sep 1975 A
3986296 Hamano Oct 1976 A
4037355 Street Jul 1977 A
4055913 Sindelar Nov 1977 A
4068402 Tanaka Jan 1978 A
4091561 Kimura May 1978 A
4094089 Sano Jun 1978 A
4128964 Ogasawara Dec 1978 A
4140276 Halford Feb 1979 A
4146991 Sano Apr 1979 A
4159593 Miller Jul 1979 A
4161279 Halford Jul 1979 A
4185409 Cheng Jan 1980 A
4195776 Lehmann Apr 1980 A
4203247 Moe et al. May 1980 A
4219198 Meyer et al. Aug 1980 A
4223834 Fechter Sep 1980 A
4241534 Larsson et al. Dec 1980 A
4249733 Eddins et al. Feb 1981 A
4254576 Matsumoto et al. Mar 1981 A
4267661 Hanson May 1981 A
4291488 Orenstein Sep 1981 A
4301613 Kooistra, Sr. Nov 1981 A
4312149 Iwao Jan 1982 A
4357778 Matsumoto et al. Nov 1982 A
4373693 Greenberger Feb 1983 A
4386777 Prehodka Jun 1983 A
4394961 Muller Jul 1983 A
4426797 Burkemper et al. Jan 1984 A
4468031 Barlow et al. Aug 1984 A
4475303 Ribas et al. Oct 1984 A
4496100 Schwager et al. Jan 1985 A
4513966 Mucaro et al. Apr 1985 A
4519789 Halford et al. May 1985 A
4557064 Thompson Dec 1985 A
4558867 Hippely Dec 1985 A
4564197 Lambert et al. Jan 1986 A
4575350 Hippely et al. Mar 1986 A
RE32106 Lemelson Apr 1986 E
4585166 Stephens Apr 1986 A
4609363 Udagawa Sep 1986 A
4659320 Rich et al. Apr 1987 A
4673308 Reilly Jun 1987 A
4678449 Udagawa Jul 1987 A
4708685 Udagawa Nov 1987 A
4715843 Ostendorff et al. Dec 1987 A
4734076 Goldstein et al. Mar 1988 A
4795394 Thompson Jan 1989 A
4874342 Klitsner Oct 1989 A
4909464 Levine et al. Mar 1990 A
4928955 Chuan May 1990 A
4932917 Klitsner Jun 1990 A
4951872 Sheffield Aug 1990 A
4961716 Hippely et al. Oct 1990 A
5022884 Hippely et al. Jun 1991 A
5075515 Yoneda et al. Dec 1991 A
5078642 Glessner Jan 1992 A
5102133 Chilton et al. Apr 1992 A
5107601 Semchuck Apr 1992 A
5161104 Fox et al. Nov 1992 A
5174569 Ngai Dec 1992 A
5254030 Ostendorff et al. Oct 1993 A
5299969 Zaruba Apr 1994 A
5312285 Rieber et al. May 1994 A
5342048 Jones et al. Aug 1994 A
5344143 Yule Sep 1994 A
5370571 Bosch Dec 1994 A
5392987 Ropers et al. Feb 1995 A
5419066 Harnois et al. May 1995 A
5473833 Ostrovsky Dec 1995 A
5480115 Haltof Jan 1996 A
5542668 Casale et al. Aug 1996 A
5586923 Hippely et al. Dec 1996 A
5735724 Udagawa Apr 1998 A
5767655 Ostendorff et al. Jun 1998 A
5785573 Rothbarth et al. Jul 1998 A
5803782 Selton Sep 1998 A
5846018 Frobosilo et al. Dec 1998 A
5855501 Kato et al. Jan 1999 A
5899011 Brinkman May 1999 A
5899789 Rehkemper et al. May 1999 A
5967052 Prokopf Oct 1999 A
6000992 Lambert Dec 1999 A
6026603 Kump et al. Feb 2000 A
6056620 Tobin May 2000 A
6170754 Halford Jan 2001 B1
6241573 Ostendorff et al. Jun 2001 B1
6358112 Lambert et al. Mar 2002 B1
6409132 Heisler et al. Jun 2002 B2
6439955 Feketo Aug 2002 B1
6478654 Rehkemper et al. Nov 2002 B1
6508179 Annis et al. Jan 2003 B2
6640453 Eisenmenger Nov 2003 B2
6647893 Fugitt et al. Nov 2003 B1
6676480 Sheltman Jan 2004 B2
6766585 Thomas Jul 2004 B2
6783419 Paukert et al. Aug 2004 B1
6862997 Bussink Mar 2005 B2
6951307 Lin Oct 2005 B2
6951497 Ngan Oct 2005 B1
6951498 Rudell Oct 2005 B2
6953377 Quercetti Oct 2005 B2
D511961 Jordan Nov 2005 S
6976316 Patterson Dec 2005 B1
7066783 Fischer Jun 2006 B2
7325348 Mueller et al. Feb 2008 B2
7353758 Murray Apr 2008 B2
7373731 Nyberg May 2008 B2
7517272 Bedford et al. Apr 2009 B2
7527156 Wisnoski et al. May 2009 B2
7549906 Bedford et al. Jun 2009 B2
7600757 Matilla et al. Oct 2009 B1
7600859 Huang et al. Oct 2009 B2
7614931 Nuttall Nov 2009 B2
7618302 Collins et al. Nov 2009 B2
7628673 Bedford et al. Dec 2009 B2
7651398 Ostendorff et al. Jan 2010 B2
7690964 Nuttall et al. Apr 2010 B2
7708317 Leblanc May 2010 B2
7766720 Ostendorff Aug 2010 B2
7770811 Belding Aug 2010 B2
7857679 O'Connor et al. Dec 2010 B2
8162716 Nuttall Apr 2012 B2
8430712 O'Connor et al. Apr 2013 B2
8608527 O'Connor et al. Dec 2013 B2
8690462 Shaw et al. Apr 2014 B2
8690632 O'Connor et al. Apr 2014 B2
8747180 O'Connor et al. Jun 2014 B2
8814628 O'Connor et al. Aug 2014 B2
20030220044 Andrews et al. Nov 2003 A1
20030224697 Sheltman et al. Dec 2003 A1
20040078991 Thomas Apr 2004 A1
20050287915 Sheltman et al. Dec 2005 A1
20050287919 Sheltman et al. Dec 2005 A1
20060027779 McGuire Feb 2006 A1
20060277779 Bauer Dec 2006 A1
20060286896 Bedford et al. Dec 2006 A1
20060286897 Bedford et al. Dec 2006 A1
20070012636 Wisnoski et al. Jan 2007 A1
20070049160 Matthes et al. Mar 2007 A1
20070128969 Shrock et al. Jun 2007 A1
20070209543 Beaulieu et al. Sep 2007 A1
20080064295 Abrams Mar 2008 A1
20080066560 Yu et al. Mar 2008 A1
20080070474 Nuttall Mar 2008 A1
20080268743 O'Connor et al. Oct 2008 A1
20090075558 Ostendorff Mar 2009 A1
20100056015 Nuttall Mar 2010 A1
20100112896 Chang et al. May 2010 A1
20100184353 Jobe Jul 2010 A1
20100199598 Townsend et al. Aug 2010 A1
20100273394 O'Connor et al. Oct 2010 A1
20110086574 Nuttall et al. Apr 2011 A1
20110124265 O'Connor et al. May 2011 A1
20110269372 Nuttall Nov 2011 A1
20120052766 Payne Mar 2012 A1
20120052767 Martino et al. Mar 2012 A1
20120061484 Payne et al. Mar 2012 A1
20120062766 Park Mar 2012 A1
20120115393 Moh et al. May 2012 A1
20120164914 O'Connor et al. Jun 2012 A1
20120276808 Nuttall et al. Nov 2012 A1
20120322342 De La Torre Dec 2012 A1
20130288568 Schmid et al. Oct 2013 A1
20140070015 Matthes et al. Mar 2014 A1
Foreign Referenced Citations (10)
Number Date Country
201067632 Jun 2008 CN
101687116 Mar 2010 CN
2043469 Oct 1980 GB
07-328241 Dec 1995 JP
88-04191 Jun 1988 WO
2011137433 Mar 2011 WO
2012027737 Jan 2012 WO
2012027737 Mar 2012 WO
2012027753 Mar 2012 WO
2012027753 Mar 2012 WO
Non-Patent Literature Citations (10)
Entry
Partial European Search Report for Application No. 13187427.3-1658; Dated: Feb. 5, 2014.
European Search Report dated Nov. 13, 2013 for Application No. 13168331.0.
European Search Report dated Nov. 5, 2013 for Application No. 13184129.8.
International Search Report dated Apr. 9, 2012 for International Application No. PCT/US2011/049587.
Written Opinion dated Apr. 9, 2012 for International Application No. PCT/US2011/049587.
English Abstract JP7328241.
English Translation of Abstract CN201067632.
English Translation of Abstract CN101687116.
English Translation of Chinese Office Action for Application No. 2013101901814 dated Feb. 3, 2015.
Chinese Office Action for Application No. 2013101901814 dated Feb. 3, 2015.
Related Publications (1)
Number Date Country
20140097263 A1 Apr 2014 US
Provisional Applications (1)
Number Date Country
61709426 Oct 2012 US