Electrical fixtures such as switches and power outlets are ubiquitous in modern buildings. Accordingly, what is needed are systems and methods that leverage such electrical fixtures to provide additional functionality for the benefit of human users thereof.
The accompanying drawings illustrate various examples of the principles described herein and are a part of the specification. The illustrated examples are merely examples and do not limit the scope of the claims.
Reference will now be made to the figures wherein like structures will be provided with like reference designations. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present systems and methods. It will be apparent, however, that systems and methods may be practiced without these specific details. It is understood that the figures are diagrammatic and schematic representations of some embodiments of the invention, and are not limiting of the present invention, nor are they necessarily drawn to scale. Reference in the specification to “an example” or similar language means that a particular feature, structure, or characteristic described in connection with the example is included in at least that one example, but not necessarily in other examples. Additionally, features shown and/or described in connection with one figure may be combined with features shown and/or described in connection with other figures.
Referring to
For example, modern buildings may include electrical wires (12) that deliver electrical power to one or more electrical fixtures (14) such as lights, outlets, switches, and other devices. The electrical wiring (12) may typically terminate in an electrical box (16) mounted in a wall, ceiling, or floor. Connections between the electrical wiring (12) and the electrical fixture (14) may be made within the electrical box (16). For example, within an electrical box (16), electrical wiring (12) may be connected to an electrical fixture (14) by stab-in connectors or with screw terminals on the sides of the electrical fixture (14).
After the connections between the electrical wires (12) and the electrical fixture (14) have been made, a wall-plate system (18) in accordance with the present invention may be placed over the electrical fixture (14) to cover the opening to the electrical box (16), allow access to the electrical fixture (14), and provide an aesthetically pleasing interface or transition between the electrical fixture (14) and the surrounding wall, ceiling, floor, or the like.
A wall-plate system (18) may comprise a wall plate (22), one or more fasteners (24), one or more electrical circuits (26), a switch cover (28), one or more other components (30), or the like or a combination or sub-combination thereof. A wall plate (22) may form the backbone of a wall-plate system (18) and may be primarily responsible for covering the opening to the electrical box (16), allowing access to the electrical fixture (14), and providing an aesthetically pleasing interface or transition between the electrical fixture (14) and the surrounding wall, ceiling, floor, or the like.
One or more fasteners (24) may secure a wall plate (22) in place. For example, one or more fasteners (24) may secure a wall plate (22) to an electrical fixture (14). The electrical fixture (14) may be mounted within an electrical box (16), which may be mounted to a wall, ceiling, floor, or the like. Accordingly, the one or more fasteners (24) may provide one link in securing a wall plate (22) with respect to a wall, ceiling, floor, or the like.
One or more electrical circuits (26) may provide functionality above and beyond the functionality provided by an electrical fixture (14). For example, in selected embodiments, one or more electrical circuits (26) may provide a nightlight, guidelight, or the like. In such embodiments, one or more electrical circuits (26) may comprise one or more prongs (32), a switch (34), a light (36), a light sensor (38), one or more other components (40), or the like or a combination or sub-combination thereof. In selected embodiments, a switch cover (28), switch (34), light sensor (38), and base supporting the switch (34) may combine to form a switch assembly in accordance with the present invention.
In selected embodiments, to minimize the aesthetic impact of an electrical circuit (26) on a wall-plate system (18), a switch cover (28) may cover a light sensor (38) and extend to engage a switch (34). Thus, certain more functional aspects of an electrical circuit (26) may be hidden behind a switch cover (28).
Referring to
Switches are a standard fixture in modern homes. Switches are typically placed near entryways or doors so that a person entering or leaving an area can easily turn on or off the lights or appliances. The position of the switch installations makes them ideal for incorporating nightlights, guidelights, illuminated images, or to provide other functions. For example, if a switch installation incorporated a nightlight, the nightlight would illuminate the entry way, the floor around the entryway and the light switch itself. The nightlight would provide a valuable reference point to allow a home owner to orient themselves and properly navigate the area.
Standard switches in North America (Canada, United States, Mexico, etc.) have two standard styles: toggle and decor.
The body (44) of an electrical fixture (14) may include two or more screw terminals (46, 48) and a yoke (50). The screw terminals (46, 48) may serve as attachment points for electrical wiring (12). For example, a “hot” wire may be attached to one of the terminals (46, 48) and a traveler wire may be attached to another terminal (46, 48). The hot wire may supply electrical power to the electrical fixture (14) and the traveler wire may connect the electrical fixture (14), in this case a switch, to an electrical load. Accordingly, when the switch is in the ON position, internal contacts may connect the first screw terminal (46) to the second screw terminal (48) and electrical energy is available to the load. When the switch is in the OFF position, the internal contacts do not make a connection between the screw terminals and there is no electrical power available to the load.
A yoke (50) may provide a structure to connect an electrical fixture (14) to an electrical box (16). In some electrical fixtures (14), a yoke (50) may be formed of metal and may include or be connected to a ground screw terminal (52). A ground wire may be connected to the ground screw terminal (52) to ensure that if there is a fault in the electrical system and electricity is applied to the yoke (50), this electricity will be dissipated through the ground wire.
One method of connecting one or more electrical wires (12) to the screw terminals (46, 48, 52) may include loosening the corresponding screws and wrapping the respective electrical wire (12) around the shaft of the screw, then tightening the screw to sandwich the wire (12) between the head of the screw and the body (44). Alternatively, or in addition thereto, one or more electrical wires (12) may be connected to an electrical fixture (14) using one or more stab-in connectors (54, 56). In such embodiments, the ends of the electrical wires (12) may be stripped and forced into the stab-in connectors (54, 56) to make an electrical connection with the internal contacts without utilizing screw terminals (46, 48). Even when stab-in connectors (54, 56) are used, the screw terminals (46, 48) may remain part of the electrical circuit of the electrical fixture (14).
Referring to
In certain embodiments, a wall-plate system (18) may include a wall plate (22), a back plate (58), and two or more prongs (32) extending rearward from the wall plate (22). The prongs (32) may be configured to contact the screw terminals (46, 48) of an electrical fixture (14). A circuit board (60) represented by the dashed shape may be sandwiched between the wall plate (22) and the back plate (58). A circuit board (60) may be connected to the prongs (32) by conductors (62) represented by the dotted lines. A circuit board (60) may also structurally and/or electrically support one or more components of an electrical circuit (26) such as a switch (34), light (36), light sensor (38), one or more other components (40), one or more electrical pathways there between, or the like or a combination or sub-combination thereof. When electrical power is available at the prongs (32) (i.e., when there is a voltage difference between the prongs (32)), an electrical circuit (26) may produce illumination (64) and/or some other desired functionality. In selected embodiments, the illumination (64) may extend downward from a bottom edge of the wall-plate system (18).
There are a wide variety of other ways that a wall-plate system (18) may be configured. For example, the illumination (64) may project out of different locations and/or be presented in different patterns. The illumination (64) may be a continuous bar or may be segmented into two, three, or more segments. The illumination (64) may be produced by individual LEDs, LED filaments, or other light sources.
Alternatively, or in addition thereto, the location and size of the circuit board (60) may be different from that shown. For example, in other embodiments, a circuit board (60) may be a different size such as a simple rectangle and/or may be divided into multiple sections or may be located in other locations with respect to a wall plate (22). Further, the prongs (32) may have different shapes, quantities and locations. For example, there may be two, three, four, five, or more prongs (32) at various locations and with various shapes.
In selected embodiments, a wall-plate system (18) in accordance with the present invention may enable one or more users thereof to control in one or more ways the light (64) output or other functionality provided by the wall-plate system (18). For example, in certain embodiments, a wall-plate system (18) may include a switch (34) providing manual control of the nightlight function of a wall-plate system (18). This switch (34) may be very small and may have, for example, the capability of controlling/stopping current flow through the electrical circuit (26) that accepts and operates on electrical line voltages (i.e., 120V AC in the United States) through wires (12). The switch (34) may fit in between a wall plate (22) and a back plate (58) without causing any change to the profile of the wall plate (22).
A switch (34) may have any of a number of configurations, including, but not limited to, an ON/OFF operation, a multi-illumination-level operation, a dimming operation, a light color changing operation, wireless networking, or other function. In certain embodiments, an aperture (66) in a wall plate (22) may provide access to a switch (34). For example, in selected embodiments, a switch cover (28) may be positioned within an aperture (66) in a wall plate (22) and extend slightly above the surface of the wall plate (22). Manipulation of a switch cover (28) may enable, support, or provide actuation of the switch (34).
Referring to
As noted hereinabove, a switch (34) may control various aspects or functionality of an electrical circuit (26). A light sensor (38) may similarly control various aspects or functionality of an electrical circuit (26). For example, a light sensor (38) may enable an electrical circuit (26) to detect when ambient illumination renders unnecessary the illumination (64) provided by a wall-plate system (18). Accordingly, the output of a light sensor (38) may be used to control the operation of a light (36).
In order to sense ambient light, a light sensor (38) may require visual access to an ambient environment. In selected embodiments, a light sensor (38) may obtain such access through an aperture (66) corresponding to a switch cover (28). For example, a switch cover (28) may also function as a light sensor cover. Accordingly, in selected embodiments, a switch cover (28) may enable light to pass through and reach a light sensor (38). Thus, a switch cover (28) may be formed (e.g., molded) of a material (e.g., polymer) that is transparent or semitransparent.
In selected embodiments, a switch cover (28) may include a body portion (68), a handle portion (70), and one or more protrusions (72). A handle portion (70) may extend forward from the body portion (68). One or more protrusions (72) may extend (e.g., rearward) to engage a switch (34). For example, in certain embodiments, there may be two protrusions (72) with a gap (74) between them. The gap (74) may be sized and positioned to engage (e.g., bracket) an actuator (76) of a switch (34). Thus, a switch cover (28) may operate in conjunction with a circuit board (60) and certain components (34, 38) thereof.
For example, in certain embodiments, a light sensor (38) may be placed on a surface of a base material so as to be facing a switch cover (28). The base material may be a circuit board (60) or portion thereof. Accordingly, the appropriate electrical connections for the light sensor (38) may be made by the circuit board (60). On the opposite side of the base material (e.g., on the opposite side of a circuit board (60) or portion thereof) may be a switch (34) (e.g., a small low voltage switch). The switch (34) may include an actuator (76). Actuation of the actuator (76) may change a state of the switch (34). In certain embodiments, the switch (34) may be a multi-position slider switch, toggle switch, or the like.
Accordingly, in certain embodiments, a switch cover (28) may be placed over a light sensor (38) and an actuator (76) of a switch (34) may fit within a gap (74) between two protrusions (72). When a switch cover (28) is moved by a user (e.g., translated to the left or right) one or more protrusions (72) may move an actuator (76) of the switch (34) to a new position.
For example, a switch cover (28) may be selectively moved with respect to the base material through a first range of motion. This first range of motion may be aligned with a first axis (78). A switch (34), when actuated, may selectively move through a second range of motion. This second range of motion may be aligned with a second axis (80). In selected embodiments, the first axis (78) may be parallel to or co-axial with the second axis (80). Additionally, a base material (e.g., a circuit board (60)) may be planar in shape. Accordingly, in certain embodiments, the first axis (78) and/or second axis (80) may be parallel to the base material. Alternatively, the first axis (78) and/or second axis (80) may be perpendicular to the base material. In other embodiments, the first axis (78) may be parallel to the base material and the second axis (80) may be perpendicular or at another angle to the first axis and base material. For example, the switch cover (28) may include a ramp that depresses a plunger on a switch when the switch cover (28) is laterally translated parallel to the base material.
In selected embodiments, a switch cover (28) may include a cavity (82) on a back or rear side thereof. A cavity (82) may receive a light sensor (38) and allow for lateral translation of the switch cover (28) over the light sensor (38) while the light sensor (38) remains within the cavity (82). Thus, a switch cover (28) may serve dual purposes. It may be a cover that protects a light sensor (38). It may also be a handle that can be manually manipulated by a user to change the state of a switch (34) and consequently the behavior of an electrical circuit (26).
Referring to
Referring to
Referring to
Referring to
The preceding description has been presented only to illustrate and describe examples of the principles described. This description is not intended to be exhaustive or to limit these principles to any precise form disclosed. Many modifications and variations are possible in light of the above teaching.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 15/409,508 filed Jan. 18, 2017, which claims the benefit of U.S. Patent Application Ser. No. 62/279,831 filed Jan. 18, 2016, both of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2015698 | Tiffany | Oct 1935 | A |
2227549 | McNeill | Jan 1941 | A |
2385620 | Fleckenstein | Sep 1945 | A |
2428167 | Linton | Sep 1947 | A |
2515820 | Clark | Jul 1950 | A |
2575820 | Linton | Nov 1951 | A |
2580056 | Wheeler, Jr. | Dec 1951 | A |
2749381 | Farish | Jun 1956 | A |
2880285 | Robison et al. | Mar 1959 | A |
2908743 | Premoshis | Oct 1959 | A |
2934590 | Thompson et al. | Apr 1960 | A |
3120414 | Farish, Jr. | Feb 1964 | A |
3307030 | Francisco | Feb 1967 | A |
D212760 | Bordner | Nov 1968 | S |
3522595 | White | Aug 1970 | A |
3588489 | Gaines | Jun 1971 | A |
3680237 | Finnerty, Sr. | Aug 1972 | A |
3739226 | Seiter et al. | Jun 1973 | A |
D230274 | Polus | Feb 1974 | S |
3859454 | Mann | Jan 1975 | A |
3879101 | McKissic | Apr 1975 | A |
4000405 | Horwinski | Dec 1976 | A |
4038582 | Horwinski | Jul 1977 | A |
4117258 | Shanker | Sep 1978 | A |
4255780 | Sakellaris | Mar 1981 | A |
4282591 | Andreuccetti | Aug 1981 | A |
4514789 | Jester | Apr 1985 | A |
4534486 | Eidson | Aug 1985 | A |
4611264 | Bradley | Sep 1986 | A |
4616285 | Sackett | Oct 1986 | A |
4617613 | Rice | Oct 1986 | A |
4755913 | Sleveland | Jul 1988 | A |
4774641 | Rice | Sep 1988 | A |
D330267 | Hendrix | Oct 1992 | S |
5248919 | Hanna | Sep 1993 | A |
5290175 | Robinson | Mar 1994 | A |
5384428 | Luu | Jan 1995 | A |
5406439 | Crane et al. | Apr 1995 | A |
5434378 | McLean | Jul 1995 | A |
5473517 | Blackman | Dec 1995 | A |
D366339 | Waller | Jan 1996 | S |
5481442 | Dickie et al. | Jan 1996 | A |
5485356 | Nguyen | Jan 1996 | A |
5622424 | Brady | Apr 1997 | A |
5670776 | Rothbaum | Sep 1997 | A |
5683166 | Lutzker | Nov 1997 | A |
D395314 | Oikawa | Jun 1998 | S |
D399825 | Heung et al. | Oct 1998 | S |
5816682 | Marischen | Oct 1998 | A |
D401566 | Gesmondi | Nov 1998 | S |
D407072 | Gaule | Mar 1999 | S |
5914826 | Smallwood | Jun 1999 | A |
6000807 | Moreland | Dec 1999 | A |
6010228 | Blackman | Jan 2000 | A |
6023021 | Matthews et al. | Feb 2000 | A |
6087588 | Soules | Jul 2000 | A |
6089893 | Yu et al. | Jul 2000 | A |
D429829 | Doran | Aug 2000 | S |
6234651 | Kodama | May 2001 | B1 |
D464865 | Luu | Oct 2002 | S |
D473528 | Wengrower | Apr 2003 | S |
6547411 | Dornbusch | Apr 2003 | B1 |
6765149 | Ku | Jul 2004 | B1 |
D500743 | Savicki, Jr. et al. | Jan 2005 | S |
6974910 | Rohmer | Dec 2005 | B2 |
7011422 | Robertson et al. | Mar 2006 | B2 |
7036948 | Wyatt | May 2006 | B1 |
D542627 | Rohmer et al. | May 2007 | S |
7247793 | Hinkson | Jul 2007 | B2 |
7270436 | Jasper | Sep 2007 | B2 |
7318653 | Chien | Jan 2008 | B2 |
D567633 | Anderson | Apr 2008 | S |
7360912 | Savicki, Jr. | Apr 2008 | B1 |
D576566 | Wu et al. | Sep 2008 | S |
D577985 | Kidman | Oct 2008 | S |
7506990 | Glazner | Mar 2009 | B2 |
7547131 | Faunce et al. | Jun 2009 | B2 |
7576285 | Savicki, Jr. | Aug 2009 | B1 |
D606029 | Chou | Dec 2009 | S |
7745750 | Hewson et al. | Jun 2010 | B2 |
7821160 | Roosli et al. | Oct 2010 | B1 |
7946871 | Yu et al. | May 2011 | B1 |
8003886 | Rintz | Aug 2011 | B1 |
D650112 | Bryant | Dec 2011 | S |
8148637 | Davidson | Apr 2012 | B2 |
8304652 | McBain | Nov 2012 | B2 |
8393747 | Kevelos et al. | Mar 2013 | B2 |
8511866 | Mendez | Aug 2013 | B1 |
8564279 | Johnson et al. | Oct 2013 | B2 |
8668347 | Ebeling | Mar 2014 | B2 |
8697991 | Davidson | Apr 2014 | B2 |
D719699 | Bryant | Dec 2014 | S |
9482426 | Diotte | Nov 2016 | B2 |
20010046130 | Cunningham et al. | Nov 2001 | A1 |
20030013503 | Menard et al. | Jan 2003 | A1 |
20030124022 | Georges et al. | Jul 2003 | A1 |
20040247300 | He et al. | Dec 2004 | A1 |
20050264383 | Zhang | Dec 2005 | A1 |
20060065510 | Kiko et al. | Mar 2006 | A1 |
20060072302 | Chien | Apr 2006 | A1 |
20060161270 | Luskin et al. | Jul 2006 | A1 |
20060262462 | Barton | Nov 2006 | A1 |
20080073117 | Misener | Mar 2008 | A1 |
20080266121 | Ellul | Oct 2008 | A1 |
20090153438 | Miller et al. | Jun 2009 | A1 |
20090225480 | Baxter | Sep 2009 | A1 |
20090284385 | Tang et al. | Nov 2009 | A1 |
20110056720 | Davidson | Mar 2011 | A1 |
20110210833 | McNeely et al. | Sep 2011 | A1 |
20120008307 | Delany | Jan 2012 | A1 |
20120156937 | Almouli | Jun 2012 | A1 |
20120182172 | Sorensen | Jul 2012 | A1 |
20120215470 | Maguire | Aug 2012 | A1 |
20120316808 | Frader-Thompson et al. | Dec 2012 | A1 |
20130063848 | Thorpe et al. | Mar 2013 | A1 |
20130221868 | Diotte et al. | Aug 2013 | A1 |
20150371534 | Dimberg et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
202006006354 | Oct 2007 | DE |
2211210 | Mar 2007 | EP |
1019930025223 | Jun 1995 | KR |
1020080047328 | Nov 2009 | KR |
1020090098056 | Apr 2010 | KR |
2007122141 | Nov 2007 | WO |
2012006812 | Jan 2012 | WO |
Entry |
---|
Plate Pals Wallplate Thermometers, http://www.platepals.com/ last visited Apr. 21, 2017, 2006. |
Number | Date | Country | |
---|---|---|---|
20170208663 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62279831 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15409508 | Jan 2017 | US |
Child | 15428099 | US |