Wall segment for a combustion chamber and a combustion chamber

Information

  • Patent Grant
  • 6397765
  • Patent Number
    6,397,765
  • Date Filed
    Tuesday, September 19, 2000
    24 years ago
  • Date Issued
    Tuesday, June 4, 2002
    22 years ago
Abstract
A wall segment is for a combustion area to which a hot fluid can be applied. The wall segment includes a metallic supporting structure, with a heat protection element mounted on it. The metallic supporting structure is provided at least in places with a thin and/or metallic, heat-resistant separating layer. The separating layer is fitted between the metallic supporting structure and the heat protection element.
Description




FIELD OF THE INVENTION




The invention relates to a wall segment for a combustion area to which a hot fluid can be applied, in particular for a combustion chamber in a gas turbine. The invention also relates to a combustion area.




A thermally highly stressed combustion area, such as a furnace, a hot-gas channel or a combustion chamber in a gas turbine, in which a hot fluid is produced and/or carried, is provided with a lining for protection against excessive thermal stress. The lining is composed of heat-resistant material and protects a wall of the combustion area against direct contact with the hot fluid, and the severe thermal stress associated with this.




BACKGROUND OF THE INVENTION




U.S. Pat. No. 4,840,131 relates to improved attachment of ceramic lining elements to a wall of a furnace. A rail system, which is attached to the wall and has a number of ceramic rail elements by means of which the lining elements are held is provided in this document. Further ceramic layers may be provided between a lining element and the wall of the furnace, including a layer composed of loose, partially compressed ceramic fibers, which layer has at least the same thickness as the ceramic lining elements, or a greater thickness. The lining elements in this case have a rectangular shape with a planar surface and are composed of a heat-insulating, fire-resistant ceramic fiber material.




U.S. Pat. No. 4,835,831 likewise relates to the fitting of a fire-resistant lining on a wall of a furnace, in particular a vertical wall. A layer composed of glass, ceramic or mineral fibers is fitted to the metallic wall of the furnace. This layer is attached to the wall by metallic brackets or by adhesive. A wire mesh network with honeycomb meshes is fitted to this layer. The mesh network is likewise used to protect the layer composed of ceramic fibers from falling off. A continuous, closed surface composed of fire-resistant material is applied to the layer secured in this way, by means of a suitable spraying method. The described method largely avoids fire-resistant particles produced during the spraying process from being thrown back, as would be the case if the fire-resistant particles were sprayed directly onto the metallic wall.




A lining for walls of highly stressed combustion areas is described in EP 0 724 116 A2. The lining comprises wall elements composed of high-temperature-resistant structural ceramic, such as silicon carbide (SiC) or silicon nitride (Si


3


N


4


), which are mechanically attached by means of a fastening bolt to a metallic supporting structure (wall) of the combustion chamber. A thick insulation layer is provided between the wall element and the wall of the combustion area, so that the wall element is at a distance from the wall of the combustion chamber. The insulation layer, which is three times as thick as the wall element, is composed of ceramic fiber material, which is prefabricated in blocks. The dimensions and the external shape of the heat protection segments can be matched to the geometry of the area to be lined.




Another type of lining for a thermally highly stressed combustion area is specified in EP 0 419 487 B1. The lining is composed of heat protection segments, which are held mechanically on a metallic wall of the combustion area. The heat protection segments touch the metallic wall directly. In order to avoid excessive heating of the wall, for example by direct heat transfer from the heat protection segment or by the ingress of hot active fluid into the gaps formed by mutually adjacent heat protection segments, the area formed by the wall of the combustion area and the heat protection segment has cooling air, so-called sealing air, applied to it. The sealing air prevents the hot active fluid from penetrating as far as the wall, and at the same time cools the wall and the heat protection segment.




SUMMARY OF THE INVENTION




The object of the invention is to specify a wall segment for a combustion area, in particular a combustion chamber in a gas turbine, to which a hot fluid can be applied. A further object is to specify a heat-resistant combustion area.




The object relating to a wall segment is achieved according to the invention by a wall segment for a combustion area, to which a hot fluid can be applied, having a metallic supporting structure and having a heat protection element which is mounted on the metallic supporting structure. The metalllic supporting structure is provided at least in places with a thin, heat-resistant separating layer, with the separating layer being fitted between the metallic supporting structure and the heat protection element. Alternatively or additionally, the object is achieved by a wall segment in which, according to the invention, a metallic, heat-resistant separating layer is fitted at least in places between the supporting structure and the heat protection element. The metallic separating layer may be thin.




The invention is based on the knowledge that the heat protection segment and the wall of a combustion area are composed predominantly of relatively inelastic materials such as structural ceramic and metal. A disadvantage of a lining designed in such a way for a combustion area is that the heat protection elements directly touch the wall of the combustion area. For production reasons and owing to the different thermal expansion of the wall and the heat protection element, the heat protection element may not always be able to lie flat on the wall. In consequence, high forces may be produced locally at the contact points. If the heat protection element and the wall have different thermal expansion characteristics, it is possible in unfavorable conditions for the heat protection segments and/or the wall to be damaged due to the introduction of high forces at the contact points when the operating state of the combustion area changes, for example in the event of a load change in a gas-turbine system. In consequence, gaps between the heat protection element and the wall may be formed between the contact points of the heat protection element and the wall, where there is no contact. These gaps form access channels for hot fluid. In order to prevent the ingress of hot fluid, an increased amount of sealing air would be required in this situation between the wall and the heat protection element.




The refinement of a wall segment according to the invention has the advantage that a deformable separating layer inserted between the metallic supporting structure and the heat protection element can absorb and compensate for possible relative movements of the heat protection element and of the supporting structure. Such relative movements can be caused, for example, in the combustion chamber of a gas turbine, in particular an annular combustion chamber, by the materials used having different thermal expansion characteristics or by pulsations in the combustion area. This can occur in the event of irregular combustion to produce the hot active fluid or as a result of resonance effects, for example. At the same time, the separating layer results in the relatively inelastic heat protection element lying flatter on the separating layer and on the metallic supporting structure overall, since the heat protection element penetrates into the separating layer in places. The separating layer can thus also compensate for irregularities, due to production effects, on the supporting structure and/or on the heat protection element, which can lead to disadvantageous introduction of forces at specific points, locally.




The heat-resistant separating layer inserted between the heat protection element and the metallic supporting structure can advantageously be deformed elastically and/or plastically by the heat protection element. The heat protection element can thus penetrate into the heat-resistant separating layer in places, and deform it, and compensate for irregularities in the contact surface of the heat protection element and/or of the supporting structure due to production effects and/or occurring as a result of operation of the system. Forces can thus be introduced over a larger area to the largely inelastic heat protection element, overall. Thus the risk of damage to the heat protection element and/or to the metallic supporting structure is less than when forces are introduced via the direct contact, which occurs at specific points at least in places, between the heat protection element and the supporting structure. The deformation of the separating layer in places by the heat protection element also leads to a reduction in the gap openings between the heat protection element and the separating layer, which reduces the flow of hot fluid behind the heat protection element. In order to avoid, or at least reduce, the flow behind the heat protection elements, sealing air can be applied to a cavity formed by the heat protection element and the metallic supporting structure. The requirement for sealing air is decreased by reducing the gap openings and reducing the size of the cavity volume by means of the separating layer.




The separating layer preferably has a thickness which is less than the height of the heat protection element. The expression height of the heat protection element in this case refers to the extent of the heat protection element in the direction at right angles to the surface of the metallic supporting structure. The height may in this case correspond directly to the layer thickness of the heat protection element. In the case of a domed, curved or cap-shaped heat protection element, the height is, in contrast, greater than the wall thickness of the heat protection element. The separating layer may have a layer thickness of up to a few millimeters. The layer thickness is preferably less than one millimeter, in particular up to a few tenths of a millimeter.




The heat-resistant separating layer preferably comprises a metal grid with honeycomb cells, which grid can be deformed by the heat protection element. The honeycomb cells of the metal grid are advantageously filled with a deformable filling material. The honeycomb cells may be produced from thin metal sheets, with a thickness of only a few tenths of a millimeter, for example from a nickel-based alloy. The filling material is preferably in the form of powder and is formed from a metal and/or a ceramic. The ceramic powders can be heated and transported in a plasma jet (atmospheric plasma spray). Depending on the nature of the powder and the spraying condition, a layer produced by the powder can be formed with a greater or lesser number of pores. The honeycomb cells are preferably filled with a porous layer, which can thus be deformed easily and provides good insulation. A metallic filling material is preferably formed from a heat-resistant alloy as is also used, for example, for coating gas turbine blades. A metallic filling material is formed, in particular, from a base alloy of the MCrAlY type, in which case M may be nickel, cobalt or iron, Cr chromium, Al aluminum and Y yttrium or some other reactive rare-earth element. During the deformation and penetration of the heat protection element into the separating layer, the deformable filling material closes the gap openings which exist between the contact surfaces, or reduces their size, which leads to a reduction in the requirement for sealing air. Furthermore, the separating layer reduces the volume of the cavity formed by the heat protection element and the supporting structure, as a result of which the requirement for sealing air is further reduced. In a gas turbine, the active fluid can furthermore be cooled by the cooler sealing air when said sealing air enters the combustion area, which can lead to a reduction in the overall efficiency of a gas turbine system being operated using the hot active fluid. The reduced requirement for sealing air in this case also leads to less reduction in overall efficiency than would be the case in a gas turbine system with heat protection elements but without a separating layer.




The heat-resistant separating layer may also advantageously comprise a felt composed of thin metal wires. Such a metal felt may also be laid on contours having very small radii of curvature. Thus, it is particularly suitable as a separating layer for a supporting structure with an irregular shape in a combustion area, for example a metallic supporting structure for holding heat protection elements, to which sealing air is applied, in the combustion chamber of a gas turbine. The thickness of the metal felt is chosen such that even relatively large gap openings between two contact surfaces of a heat protection element and the supporting structure can be closed, or at least greatly reduced in size, by the metal felt. It is thus possible to use a wall segment designed in such a way even in systems in which the amount of sealing air available is limited.




If the gap openings which result between the metallic supporting structure and the associated heat protection elements are relatively small and uniform, then the heat-resistant separating layer is preferably applied as a thin coating to the metallic supporting structure.




In order to make it possible to withstand the loads resulting from the ingress of hot fluid and to protect the metallic supporting structure effectively, the heat-resistant separating layer installed between the supporting structure and the heat protection element is designed to be scale-resistant at a temperature of more than 500° C., in particular up to approximately 800° C.




The heat protection element is advantageously mechanically connected to the metallic supporting structure of the combustion area. The contact force which the mechanical retention exerts on the heat protection element in the direction of the supporting structure, and thus the penetration depth of the heat protection element and the deformation of the heat-resistant separating layer, can be adjusted by means of a mechanical joint. The remaining gap openings and the requirement for sealing air which results from them can thus be matched to the operating conditions and to the amount of sealing air available at the respective point of use.




The heat protection element is advantageously held on the supporting structure by means of a bolt. The bolt acts approximately in the center of the heat protection element, in order to introduce the contact force as centrally as possible into the heat protection element. The heat-resistant separating layer has a recess in the region in which the bolt of the associated heat protection element is attached to the metallic supporting structure. Further recesses and openings in the separating layer, in particular in a gas turbine, are likewise provided wherever the supporting structure has channels for supplying sealing air into the cavity formed by the heat protection element and the supporting structure. Sealing air can thus flow into the cavity, thus making it possible to prevent the hot active fluid from flowing behind the heat protection elements and/or the separating layer.




The heat protection element can preferably also be mechanically held against the metallic supporting structure by means of a tongue-and-groove joint.




The object relating to a combustion area is achieved, according to the invention, by a combustion chamber forming a combustion area, in particular a combustion chamber in a gas turbine, which is formed from wall segments described above. In order to provide a heat-resistant lining for the combustion area, heat protection elements are fitted on a metallic supporting structure of the wall segment. The heat protection elements are, for example, in the form of flat or curved polygons with straight or curved edges, or of flat, regular polygons. They completely cover the metallic supporting structure which forms the outer wall of the combustion area, except for expansion gaps provided between the heat protection elements. Hot fluid can penetrate into the expansion gaps only as far as a heat-resistant separating layer on the wall segment, and cannot flow behind the heat protection elements. Mechanical holders for the heat protection elements, and the metallic supporting structure, are thus largely protected against being damaged by hot fluid.











BRIEF DESCRIPTION OF THE DRAWINGS




The wall segment and a combustion area will be explained in more detail with reference to the exemplary embodiments which are illustrated in the drawings. The following schematic illustrations are shown in the figures:





FIG. 1

shows a wall segment with a separating layer composed of a metal grid with filled, honeycomb cells on a curved supporting structure,





FIG. 2

shows an enlarged details of,

FIG. 1

,





FIG. 3

shows a wall segment with a separating layer composed of a metal felt on a supporting structure provided with webs, and





FIG. 4

shows a wall segment with a thin coating in the form of a separating layer applied to a supporting structure.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS





FIG. 1

shows a wall segment


1


of a gas turbine combustion chamber forming a combustion area


2


, which is not illustrated in any more detail. The wall segment


1


comprises a metallic supporting structure


3


, to whose internal wall


5


, facing the combustion area


2


, a heat-resistant separating layer


7


is applied. The heat-resistant separating layer


7


comprises a metal grid, which is not shown in any more detail, with honeycomb cells. The metal strips of the metal grid which form the honeycomb cells have a height which corresponds to the thickness of the separating layer


7


. The honeycomb cells of the metal grid are filled with a deformable filling material.




A ceramic heat protection element


9


is fitted on the combustion-area side of the separating layer


7


. The ceramic heat protection element


9


is held on the metallic supporting structure


3


by means of a bolt


11


. The bolt


11


is held in a hole


10


in the ceramic heat protection element


9


, and this hole runs essentially perpendicular to a hot-gas side


21


of the heat protection element


9


, through the region of the center of the heat protection element


9


. In consequence, a contact force F produced by the bolt


11


is introduced essentially centrally into the heat protection element


9


. One end of the bolt


11


projects through a hole


12


in the supporting structure


3


. This end of the bolt


11


is closed off by a nut


13


, which has an associated spring


15


. The nut


13


makes it possible to adjust the contact force F applied to the heat protection element


9


via the bolt


11


. It is thus also possible at the same time to adjust the penetration depth of the heat protection element


9


into the separating layer


7


, and thus its deformation. The greater the contact force F with which the heat protection element


9


is pressed onto the heat-resistant separating layer


7


, the deeper the heat protection element


9


penetrates into the separating layer


7


.

FIG. 2

shows how the heat protection element


9


deforms the separating layer


7


, and partially penetrates into it, as a result of the contact force F.




Channels


17


are provided in the metallic supporting structure


3


, through which sealing air S can be applied to a cavity


19


formed by the heat protection element


9


and the supporting structure


3


with the separating layer


7


. For this purpose, the separating layer


7


is provided with corresponding openings, which are not illustrated, at those points on the supporting structure


3


where channels


17


are provided, through which openings the sealing air S can enter the cavity


19


. In the region in which the bolt


11


is held against the metallic supporting structure


3


, the separating layer


7


has an opening, which is not shown in any more detail, in which the bolt


11


is held.




During operation of the gas turbine, hot active fluid A is produced in the combustion area


2


of the combustion chamber. The active fluid A is guided by the wall segment


1


on the hot-gas side


21


which faces the combustion area and is formed by the heat protection elements


9


. The heat protection elements


9


prevent direct contact between the hot active fluid A and the metallic supporting structure


3


. Expansion gaps


22


, to compensate for length changes of the heat protection elements


9


, are provided between adjacent heat protection elements


9


of a wall segment


3


, for thermal expansion. Hot active fluid A can penetrate into these expansion gaps


22


as far as the separating layer


7


. The deformable filling material of the heat-resistant separating layer


7


prevents direct contact between the active fluid A and the metallic supporting structure


3


, seals the cavity


19


against the ingress of hot active fluid A, and thus prevents any flow behind the heat protection elements


9


. The separating layer


7


is slightly domed in the region of the expansion gap


22


as a result of the longitudinal expansion of the heat protection elements


9


, and thus additionally seals the cavity


19


against the ingress of active fluid A. In order to reinforce the barrier effect of the separating layer


7


and of the heat protection elements


9


, sealing air S is applied to the cavity


19


through the channels


17


. The sealing air S emerges into the expansion gaps


22


at those points which are not completely sealed against the hot active fluid A by the separating layer


7


, as is shown schematically in FIG.


2


. The pressure drop from the cavity


19


to the combustion area produced by the sealing air S prevents active fluid A from entering the cavity


19


.




The different thermal expansion of the heat protection element


9


and of the metallic supporting structure


3


can lead to relative movements between the heat protection element


9


and the supporting structure


3


when load changes occur in the gas turbine. However, relative movements can also occur as a result of pulsations in the combustion area, caused by irregular combustion or resonances. Such relative movements which occur during operation can likewise be compensated for by the partially elastically deformable separating layer


7


. The introduction of increased forces into the heat protection element


9


on the contact surfaces, for example as a result of a sudden pressure rise, can be reduced by the compression of the separating layer


7


, and the enlarged contact area resulting from this.





FIG. 3

shows a further embodiment of a wall segment


1


for a gas turbine combustion chamber which forms a combustion area


2


not shown in any more detail. The wall segment


1


comprises a metallic supporting structure


23


, a heat-resistant separating layer


25


and a metallic heat protection element


27


. The metallic supporting structure


3


has webs


29


, which each form a contact surface for the heat protection element


27


. The webs


29


are arranged such that the associated heat protection element


27


rests on the webs


29


in the region of the edge of its surface on the supporting structure side. The heat protection element


27


thus acts like a cover closing the depression formed by the webs


29


and by parts of the supporting structure


23


. At least one channel


31


for supplying sealing air S is provided between each two webs


29


. The metallic heat protection element


27


is held in a sprung manner against the metallic supporting structure


23


by means of a bolt


28


(analogously to the bolt described in FIG.


1


).




The separating layer


25


is in the form of a felt composed of thin, heat-resistant metal wires, which are not shown in any more detail, and lines the inner side of the supporting structure


23


, facing the combustion area


2


. The separating layer


25


has openings in the region of an opening


26


for the bolt


28


to pass through the supporting structure


23


, and in the region of the opening


32


of the channel


31


. The bolt


28


held in the opening


26


, while sealing air S can flow through the other opening, out of the channel


31


into the cavity


33


formed by the heat protection element


27


and the supporting structure


23


. The heat protection element


27


deforms the separating layer


25


in the region of the webs


29


. Gap openings which are formed between the contact surfaces of the heat protection element


27


and the web


28


are not shown in any more detail, are closed by the separating layer


25


, or their cross-sectional area is reduced. This prevents the sealing air S from emerging from the cavity


33


into the expansion gaps


35


formed between two heat protection elements


27


, or at least reduces such flow. It is thus impossible for hot active fluid A to penetrate as far as the metallic supporting structure


23


, or to flow behind the heat protection elements


27


.





FIG. 4

shows a further embodiment of a wall segment


1


. The wall segment


1


comprises a metallic supporting structure


41


with a heat protection element


47


. The heat protection element


47


is linked to the supporting structure


41


in a sprung manner by means of a bolt


49


, in an analogous manner to the bolt described in

FIG. 1

on the inner side


43


of the supporting structure


41


. A heat-resistant separating layer


45


is applied to the supporting structure


41


between the side of the supporting structure


41


facing the combustion area


2


and the side


51


of the heat protection element


47


facing away from the combustion area. The heat-resistant separating layer is in the form of a thin, heat-resistant coating


45


on the metallic supporting structure


41


. The thin, deformable coating


45


fills the entire area between the heat protection element


47


and the supporting structure


41


, so that irregularities of the supporting structure


41


and/or of the heat protection element


47


caused by production effects or occurring during operation of the system are compensated for. Furthermore, hot active fluid A thus cannot flow behind the heat protection element


47


. The active fluid A can penetrate as far as the heat-resistant coating


45


through the expansion gaps


22


formed by adjacent heat protection elements


47


. The coating


45


prevents direct contact of the active fluid A with the metallic supporting structure


41


. Relative movements of the heat protection element


47


and of the supporting structure


41


can be compensated for by the elastic and/or plastic deformation of the coating


45


. This avoids damage to the heat protection element and/or to the supporting structure


41


.



Claims
  • 1. A wall segment for a combustion chamber, to which a hot fluid can be applied, comprising:a metallic supporting structure; a heat protection element located above the metallic supporting structure; and a metallic, heat-resistant separating layer, fitted between the metallic supporting structure and the heat protection element, wherein the separating layer and the heat protection element protect the metallic supporting structure from the hot fluid, the separating layer being exposable to the hot fluid and the combustion chamber through gaps in the heat protection element, and wherein the heat-resistant separating layer is a thin coating on the metal supporting structure.
  • 2. A combustion chamber including a wall segment as claimed in claim 1.
  • 3. A gas turbine including the combustion chamber of claim 2.
  • 4. A wall segment for a combustion chamber, to which a hot fluid can be applied, comprising:a metallic supporting structure; a heat protection element located above the metallic supporting structure; and a metallic, heat-resistant separating layer, fitted between the metallic supporting structure and the heat protection element, wherein the separating layer and the heat protection element protect the metallic supporting structure from the hot fluid, the separating layer being exposable to the hot fluid and the combustion chamber through gaps in the heat protection element, wherein the heat-resistant separating layer is at least one of elastically and plastically deformed by the heat protection element, and wherein the heat-resistant separating layer is a thin coating on the metal supporting structure.
  • 5. A combustion chamber including a wall segment as claimed in claim 4.
  • 6. A gas turbine including the combustion chamber of claim 5.
Priority Claims (1)
Number Date Country Kind
198 12 074 Mar 1998 DE
Parent Case Info

This application is the national phase under 35 U.S.C. §371 of PCT International Application No. PCT/DE99/00542 which has an International filing date of Mar. 1, 1999, which designated the United States of America.

PCT Information
Filing Document Filing Date Country Kind
PCT/DE99/00542 WO 00
Publishing Document Publishing Date Country Kind
WO99/47874 9/23/1999 WO A
US Referenced Citations (29)
Number Name Date Kind
2867112 Krone Jan 1959 A
3204939 Ipsen Sep 1965 A
3362698 Cerny Jan 1968 A
4189301 Twort Feb 1980 A
4379382 Sauder Apr 1983 A
4441324 Abe et al. Apr 1984 A
4642993 Sweet Feb 1987 A
4698948 Yamashita et al. Oct 1987 A
4749029 Becker et al. Jun 1988 A
4751962 Havekost et al. Jun 1988 A
4838030 Cramer Jun 1989 A
4838031 Cramer Jun 1989 A
4840131 Meumann et al. Jun 1989 A
4944151 Hovnanian Jul 1990 A
5033959 Bernt et al. Jul 1991 A
5083424 Becker Jan 1992 A
5129223 Doellner Jul 1992 A
5142839 Kraemer Sep 1992 A
5163831 Hammond Nov 1992 A
5216886 Ewing Jun 1993 A
5265411 Belsom Nov 1993 A
5431020 Maghon Jul 1995 A
5431375 Mitais et al. Jul 1995 A
5592814 Palusis et al. Jan 1997 A
5605046 Liang Feb 1997 A
5624256 Pfeiffer et al. Apr 1997 A
6012401 Orita et al. Jan 2000 A
6095807 Reyes-Gonzales Sep 2000 A
6223538 Benz et al. May 2001 B1
Foreign Referenced Citations (3)
Number Date Country
2321561 Nov 1974 DE
0724116 Jul 1996 EP
9854367 Dec 1998 WO
Non-Patent Literature Citations (2)
Entry
Database WPI, Derwent Publications Ltd., London, GB; AN 86-034116; & SU 1 167 202 A (UMET), Jul. 15, 1985.
Patent Abstracts of Japan, vol. 018, No. 151, Mar. 14, 1994 & JP 05 322455 A, (Kawasaki Steel Corp), Dec. 7, 1993.