The present invention is drawn to a mortarless wall structure that may be adapted for use in many applications. Specifically, the present invention is a mortarless wall structure that may be adapted for use as a skirting wall, as wainscoting, as a small retaining wall, as a pool wall, as a veneer or fascia, as a fence, and as a bearing or non-bearing wall, among others.
Mobile homes, trailer homes, and modular homes are residential structures that are not built on a foundation. As a result, in order to prevent shifting and sinking of these structures, and moreover to ensure the structure is level regardless of the ground's topography, they are placed on stilts or supports that protrude from the ground and elevate the structure thereabove. This causes a visible gap in some areas between the ground and the bottom of the structure.
Mobile home skirting efforts, until now, have resulted in a variety of products which are either prohibitively expensive, or unattractive and unable to withstand sustained exposure to nature's elements. Attempts that fall into the latter category include such easily breakable products as wooden cross-hatching and plastic or foam panels that imitate a stone or brick wall. Solutions that tend to be prohibitively expensive or difficult to install include large, custom-made, cement slabs having a decorative face, and the use of standard cinder blocks and mortar to build a wall around the bottom of the structure. Consequently, there is a need for a sturdy, inexpensive alternative for skirting a mobile home, which is easy to install.
Until now, where brick, stone, or concrete were used as veneer or fascia, for fencing, and as bearing- and non-bearing walls, these structures were typically permanent in nature. In addition, the erection of these structures typically required specialized knowledge and skills to achieve. In light of these shortcomings, there is an additional need for a wall structure that may be used as a veneer or fascia, as a fence, and as a bearing or non-bearing wall, that is easily assembled by an unskilled user and that may also be dismantled and rebuilt without damage to the constituent parts of the wall structure.
The present invention provides a composite masonry block and wall system to be used to skirt elevated structures. The block is shaped to be stacked in vertically independent columns, held in place by specially shaped, lightweight, synthetic beams placed between adjacent columns, and also by synthetic U-shaped lateral supports which open downwardly and are attached to the bottom of the elevated structure.
The blocks comprise a split front face, a rear face, top and bottom surfaces, and side surfaces. The side surfaces comprise grooves for receiving supporting portions of the synthetic beams. The top and bottom surfaces are preferably shaped so that when an upper block is stacked on a lower block, the lower surface of the upper block sits on the upper surface of the lower block and the two blocks are relatively coplanar and vertical. This configuration is most easily accomplished using blocks having flat top surfaces and flat bottom surfaces that are relatively perpendicular to the front and rear faces. It would also be possible to accomplish this vertical block-to-block relationship using top and bottom surfaces comprised of complementary angles and/or curves.
The synthetic beams are preferably a weather resistant metal or plastic, nylon or other synthetic, durable, inexpensive material, such as poly-vinyl chloride (PVC). The purpose of the beams is to keep the independent vertical columns from buckling when subjected to a force normal to the plane of the wall. The rigidity of the blocks provides enough support to prevent failure in other directions. This purpose may be accomplished using relatively thin beams having lateral extensions for being received by the grooves in the sides of the blocks.
Preferably, these beams provide little to no support in a vertical direction. They merely maintain the blocks in independent vertical columns. The columns are considered independent because, unlike conventional brick or stonewalls, one horizontal course of blocks is aligned with the adjacent upper and lower courses so that the blocks in each course are in line with the blocks above and below them, as opposed to being laterally offset. This results in the formation of vertical columns of blocks that can move up and down, due to forces exerted by the ever-shifting earth, without upsetting, or otherwise exerting forces on, adjacent columns of blocks.
The resulting wall of this system is surprisingly strong. It may even be used to provide support to the elevated structure. Once installed the elevated structure may be lowered onto the blocks. Alternatively, the blocks may merely serve as a skirt, which improves the aesthetics of the structure and keeps unwanted birds and animals from nesting or otherwise residing under the structure. In this embodiment, it is not necessary that the blocks make actual contact with the structure.
The use of the lateral support beams also obviates the need for mortar between the blocks. This mortarless system is advantageous over traditional brick and mortar walls for obvious reasons. First, fewer materials are required to build a wall. Second, one person can easily construct a wall at their leisure. There are no time constraints imposed by drying mortar. Third, the wall can be constructed regardless of weather conditions. Also, the loose block system can be constructed on any surface, including sand, gravel, dirt, or concrete. It is not necessary to pour a foundation.
The lateral support beams also allow the use of relatively thin blocks. These thin, wafer-like blocks are relatively lightweight, resulting in ease of handling and shipping, and a reduction in material costs. The blocks are preferably between 1 and 4 inches thick, more preferably on the order of 2½ inches thick. As they are generally between 6 and 12 inches in height, it would be difficult to use such a tall thin block to create a brick wall using mortar. The tall, thin blocks would have to be held in place somehow to allow the mortar to dry. However, tall thin blocks provide certain advantageous and the present invention provides a way of incorporating the advantageous of such a block. These advantageous include an increased front face surface area, resulting in a more attractive wall. The design also provides increased lateral support, ideal for use with such a beam system.
The loose block system also allows the wall to be disassembled and reassembled. This not only gives flexibility during initial construction, but also allows later renovations to be made easily and inexpensively. For instance, often it is desirable to vent wall structures such as skirting walls to prevent the buildup of moisture or condensation between the ground and the elevated structure. These vents can be easily installed into an existing wall, especially if they are of similar dimensions and configurations as the blocks. The blocks of a given column are simply removed and reinstalled, replacing one of the blocks with the vent. Other auxiliary items, such as an access door or lights, could be installed in a similar manner.
The wall design of the present invention also allows a wall corner to be constructed without supporting beams or mortar. Two walls are simply aligned to form a butt joint and fasteners such as appropriate plastic pegs or screws and plastic inserts are used to fasten one wall to the other. Alternatively, construction mastic, a type of adhesive, may be applied instead of or in combination with the screws. Again, ease of installation is greatly improved by the loose block, mortarless system of the present invention.
Another embodiment of the present invention is well suited for use as a veneer or as wainscoting. In this embodiment, the support beam also includes one or more leg structures that extend from the support beam toward a structure over which the wall structure will be applied as a veneer. The leg structure comprises a leg and a foot that are preferably arranged at right angles to one another and to the support beam, but which may be constructed at any appropriate angle.
A double-ended support beam is useful in adapting the wall structure of the present invention to the creation of a double-sided wall. In this embodiment of the present invention, two block engaging structures comprising a web and at least one flange extending therefrom are coupled together in a spaced apart relationship by a spacer or web. The respective block engaging structures engage the grooves between the side edges of adjacent block columns of respective wall faces to couple the wall faces together.
Another embodiment of the support beam of the present invention is useful in constructing walls having a single face. In this embodiment, the support beam comprises a block engaging structure that extends from a sold or hollow elongate post. The block engaging structure of this support beam preferably comprises a web having extending therefrom a pair of flanges that are constructed and arranged to engage the opposing grooves formed in the side surfaces of adjacent block columns in the wall face. The post portion of this support beam can be secured directly to a wall support structure such as a foundation, footing, ledge, or bracket. Where the post portion of the support beam is hollow, the support beam can be slipped over a structural member that is secured directly to a wall support structure such as a foundation, footing, ledge, or bracket.
These and other objectives and advantages of the invention will appear more fully from the following description, made in conjunction with the accompanying drawings wherein like reference characters refer to the same or similar parts throughout the several views. And, although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention, which may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
Referring now to the drawings and first to
Attention is now directed to the individual components of wall system 10.
Front face 20 is forwardly spaced from rear face 22 by a predetermined distance herein defining the depth 30 of block 12. As shown in
Top surface 24 is separated from bottom surface 26 by a distance defining the height 32 of block 12. When blocks 12 are arranged vertically to form a column 14, bottom surface 26 of any block 12 other than the bottom block of a column, rests on the top surface 24 of the block below. It is therefore preferred that top surface 24 and bottom surface 26 are so shaped to facilitate a stacking relationship between two blocks 12 that results in an upper block 12 resting vertically on a vertically oriented lower block 12. This relationship is most easily achieved by making top surface 24 and bottom surface 26 flat and relatively perpendicular to rear face 22 and/or front face 26, as shown in the Figures. Alternatively, it is envisioned that top and bottom surfaces 24 and 26 be comprised of complementary angles which are not perpendicular to rear face 22 and/or front face 26, but result in the vertical relationship between upper and lower blocks 12, described above. It is also envisioned that this relationship be achieved through the use of concave and convex surfaces or using tongue and groove configurations.
Side surfaces 28a and 28b, as shown in
Beams 16, shown in
The distance between rib 38a and 38b is herein defined as the span 42 of the rib. The span 42 should either be as great as the distance between the groove 34 and the rear face 22, or, in the case of the resiliently deformable rib 38, should be able to achieve this distance through deformation when installed into the groove 34 of a block 12.
Beams 16 may or may not be attached at their upper ends to the structure being skirted, at or near its bottom. Attaching beams 16 thusly provides support to the independent columns 14, preventing them from leaning or falling forwardly or rearwardly. Beams 16 also act to align the blocks 12 of a given column 14, ensuring that the blocks maintain a somewhat coplanar relationship.
It is envisioned that brackets 18 be used in conjunction with beams 16 to provide stability to wall 10. Referring now to
Brackets 18 prevent rearward or forward movement of column 14 and also work in conjunction with beams 16 to prevent those columns 14 without brackets 18 from tipping over rearwardly or forwardly. As it is envisioned that beams 16 may or may not be attached to the structure, brackets 18 may be solely responsible for preventing wall 10 from tipping over. Brackets 18 can be of any suitable material, preferably synthetic, more preferably poly-vinyl chloride (PVC) or other durable plastic. It may be advantageous to make brackets 18 and beams 16 out of similar material.
In order to prevent the inflow of water into the wall structure 10, it may be desirable to apply a bead of a waterproof material 90 such as a mastic or a caulk along the top surface 24 of the blocks 12. The bead of waterproof material 90 forms a seal between the upper surface 24 of the lower block 12 upon which the bead has been placed and the lower surface 26 of the block 12 immediately above the lower block.
Legs or leg portions 60 of support beam 16 preferably extend rearwardly from flanges 38B in a perpendicular relationship thereto. Similarly, it is preferred that the feet 64 of the support beam 16 extend laterally perpendicular to the legs 60. The perpendicular relationship of the feet and legs to the remainder of the support beam 16 is the preferred embodiment thereof, it must be kept in mind that the purpose of the legs 60 and feet 64 is to provide and offset for the block wall 10 from the wall of the existing structure 62. This offset allows a block wall 10 to be secured over uneven surfaces such as the steel siding 72 illustrated in
Preferably the support beam 16 of the present invention will be extruded or molded from a material such as a plastic, a fiber reinforced resin, or a metal such as aluminum. In addition to forming embodiments of support beams 16 having the respective profiles of the support beams illustrated in
The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
This application is a Continuation in Part of U.S. patent application Ser. No. 09/547,206 filed 12 Apr. 2000 now U.S. Pat. No. 6,374,552.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US00/25791 | 9/20/2000 | WO | 00 | 10/15/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/79621 | 10/25/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1509424 | Garrard | Sep 1924 | A |
1548214 | Schaefer et al. | Aug 1925 | A |
1970414 | Brown | Aug 1934 | A |
2001696 | Amezcua | May 1935 | A |
2066205 | Keating | Dec 1936 | A |
2118207 | Lathrop | May 1938 | A |
2158732 | Shannon | May 1939 | A |
2162695 | Boyd | Jun 1939 | A |
2438140 | Auten | Mar 1948 | A |
2703004 | Kenedy | Mar 1955 | A |
2787812 | Long | Apr 1957 | A |
3114220 | Maddox et al. | Dec 1963 | A |
3171232 | Gretter | Mar 1965 | A |
3303624 | Swain | Feb 1967 | A |
3381437 | Kidney | May 1968 | A |
3412515 | Finon | Nov 1968 | A |
3427771 | Cacossa | Feb 1969 | A |
3608928 | Hooker | Sep 1971 | A |
3753323 | Nesbitt | Aug 1973 | A |
3786605 | Winfrey | Jan 1974 | A |
3888055 | Gallo | Jun 1975 | A |
4043088 | Payton | Aug 1977 | A |
4057947 | Oide | Nov 1977 | A |
4214412 | Barylski | Jul 1980 | A |
4352261 | Wargo | Oct 1982 | A |
4408427 | Zilch | Oct 1983 | A |
4443991 | Mieyal | Apr 1984 | A |
4516373 | Osawa | May 1985 | A |
4549378 | Ayers et al. | Oct 1985 | A |
4578922 | Wendt | Apr 1986 | A |
4633634 | Nemmer et al. | Jan 1987 | A |
4641469 | Wood | Feb 1987 | A |
4656797 | Marquart | Apr 1987 | A |
4674593 | McCarty | Jun 1987 | A |
4738061 | Herndon | Apr 1988 | A |
5291711 | Kopaz | Mar 1994 | A |
5363620 | Liu | Nov 1994 | A |
5501050 | Ruel | Mar 1996 | A |
5535556 | Hughes, Jr. | Jul 1996 | A |
5688078 | Hammer | Nov 1997 | A |
5860257 | Gerhaher et al. | Jan 1999 | A |
5906080 | diGirolamo et al. | May 1999 | A |
5984044 | Christensen | Nov 1999 | A |
6125597 | Hoffman et al. | Oct 2000 | A |
6374552 | Price | Apr 2002 | B1 |
6691471 | Price | Feb 2004 | B1 |
Number | Date | Country |
---|---|---|
2085503 | Apr 1982 | GB |
2264728 | Sep 1993 | GB |
40-6158814 | Jun 1994 | JP |
WO 0179620 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 09547206 | Apr 2000 | US |
Child | 10257992 | US |