This invention relates to wall structures composed of metal framing and wallboard sheeting connected to the framing. More particularly, it relates to a simple way of providing for relative movement between an upper channel member, or header, and the rest of the wall, in response to wall movement such as may occur during an earthquake, for example.
It is well known to use metal framing in building wall construction. Commonly, the framing comprises a downwardly opening upper channel, or header, an upwardly opening upper channel, or footer, and vertical studs extending between the channels and having end portions that are within the channels. An advantage of using metal framing members is that they provide a strong frame structure that can be configured to accommodate for movement of the buildings such as occurs during an earthquake, without resulting in damage to the wall of which the framing is a part.
Typically, the upper channel member is secured to an upper concrete structure and the lower channel member is secured to a lower concrete structure. During an earthquake, and at other times as well, there is relative movement between the two concrete structures. It is necessary that the framing that extends between the concrete structures be able to accommodate the relative movement without damage to the framing and the wall of which it is a part. Relative movement between the two concrete structures can be caused by earthquakes, roof loads, expansion and contraction, loading and unloading upper floors in multistory buildings, settling, and wind loads, for example.
U.S. Pat. No. 5,127,203, granted Jul. 7, 1992, to Robert F. Paquette, and U.S. Pat. No. 5,127,760, granted Jul. 7, 1992, to Todd A. Brady, each discloses the use of vertical slots in the flanges of overhead channels, for receiving screws that are used to secure upper end portions of the studs to the overhead channels. The overhead channels are provided with a plurality of slots so that a stud can be selectively positioned at a number of locations along the channel length. Screw fasteners are inserted through the slots and are then screwed into the upper end portions of the studs. In response to movement of the building, the upper channel member is movable relative to the studs and the wallboard that is connected to the studs. A problem with this use of slots is that constructing the upper channel members to include the slots is an added expense. Also, the slots weaken the metal. It often becomes necessary to use a heavier gauge metal to compensate for the loss in strength caused by use of the slots. This adds addition expense as heavier gauge metal is more expensive than lighter gauge metal.
U.S. Pat. No. 5,685,121, granted Nov. 11, 1997, to Frank DeFrancesco and Joseph Domenick Palumbo, discloses a use of a two-section stud. The upper end of the upper section is an upper channel and the lower end of the lower section is in a lower channel. The upper section is telescopically received within the lower section and includes a pair of slots that extend throughout a substantial portion of the length of the upper section. A problem with this construction is that the location of the slots cannot be determined for sure and the fasteners used may end up securing the lower section to the upper section. The installers must place the wallboard sheeting on the studs and then drill through the sheeting and the outer flange of the lower section of the stud at locations which are outwardly of the slots in the upper sections of the studs. If a screw fastener is not in alignment with a slot, it will screw into the metal bordering the slot. As a result, the upper and lower sections of the stud will be screwed together and relative movement between the two will be prevented. In such an event, the two sections of the stud are not free to move relative to each other in response to seismic or other forces to which the wall may be subjected. Also, it is difficult and expensive to make the long slots, to provide the upper section with a flared upper end, and to provide the upper section with the longitudinal V-shaped flanges that are a part of the system. Also, considerable more steel is needed in a wall that uses the two-section stud of this system.
There is a need for a wall construction that permits movement of the upper channel member relative to the rest of the wall in a positive manner without adding substantial manufacturing and/or installation costs. A principal object of the present invention is to provide such a wall structure.
A wall structure to which the present invention relates comprises a downwardly opening upper channel member that includes an upper web and a pair of spaced apart side flanges depending from the upper web to the lower edges. The upper web and the side flanges form a channel space below the upper web and between the side flanges. The wall structure also includes a plurality of vertically extending studs that are horizontally spaced apart. Each stud includes an upper end portion and an upper butt end. The upper end portions of the studs are received in the channel space, with the butt ends of the studs positioned below the web of the upper channel member and above the lower edges of the side flanges of the upper channel member. According to the invention, each stud is provided with an insert that fits in the channel space of the upper channel member.
Each inserts forms with the upper channel member a downwardly opening socket in which the upper end portion of a stud is received. The end portion of the stud preferably makes a snug or clearance fit with the walls of the socket. It is not desirable that the upper end portion of the stud be too loose in the socket and it must be capable of moving up and down in the socket relative to the upper channel member and the insert. There can be frictional forces acting between the upper end portion of the stud and the walls of the socket, but the frictional forces cannot be so large that they prevent relative movement between the stud and the assembly formed by the upper channel member and the insert.
In preferred form, each insert comprises a pair of end portions. Each end portion has a web and a pair of flanges projecting from the web in a direction opposite the flanges of the other end portion. A top web section interconnects the webs of the two end portions. The two end portions of the insert and the upper channel member form a socket that is bounded at the top by the web section, at its sides by the webs of the two end portions, and on its front and back by the flanges of the upper channel member. The insert is positioned within the channel space of the upper channel member. The flanges of the end portions of the insert are contiguous the flanges of the upper channel member and the web section is contiguous with the web of the upper channel member. In preferred form, each insert includes lips that are connected to the flanges of the inserts. The lips are parallel to each other and to the webs of the inserts.
According to an aspect of the invention, the wall structure further comprises an upwardly opening lower channel member including a lower web and a pair of spaced apart side flanges projecting upwardly from the lower web. The lower web and the side flanges form a channel space above the lower web and between the side flanges. The studs have lower end portions that are placed in the channel space of the lower channel member and are connected to the lower channel member. The connection may be by the use of screws which extend through the flanges of the lower channel member and screw into the flanges of the lower end portion of the stud.
In preferred form, the same stock material used to form the studs is used to form the inserts. This stock material has a web, a pair of flanges that are connected to the web and extend perpendicular to it and parallel to each other, and a pair of lips that are connected to the flanges. The lips extend inwardly from the flanges towards each other in co-planar parallelism. They are spaced in parallelism with the web. A length of this lipped channel member is cut to form recesses in its flanges and lips between the two end portions of the channel member. The end portions of the channel member are then bent perpendicular to a web section between them that is retained and used to connect the two end portions together. The end portions extend perpendicular to this web section. Accordingly, the end portions of the insert are of channel form and include lips on the flanges. The lips on the end portions of the inserts strengthen the regions of the upper channel member to which the insert is connected. The end portions of the inserts also brace the sockets which receive the upper end portions of the studs.
Other objects, advantages, and features of the invention will become apparent from the detailed description that is set forth below, from the drawings, and from the claims.
Like reference numerals are used to designate like parts throughout the several views of the drawing, and
Referring to
According to the invention, a separate insert 54 is provided for each stud 12. Each insert has an upper portion that extends upwardly into the channel space 16 and a lower portion that extends downwardly below the edges 32, 34. The upper portions of the inserts 54 are connected to the upper channel member 10, and move with it but are free of connection to its stud 14.
The wall framing structure that has been described so far is like the wall framing structure disclosed in co-pending application Ser. No. 10/125,293, filed Apr. 17, 2002, and entitled “Wall Construction,” except for the construction of the insert and its relationship to the studs 14. The disclosure of Ser. No. 10/125,293 is hereby incorporated herein by this specific reference to that application.
The framing is covered, usually on both sides, by wall board sheeting WS or some other form of sheeting. Typically, the sheeting comes in sheets measuring four feet by eight feet, or four feet by ten feet, or four feet by twelve feet, for example. The thickness varies, for example, from one-half inch to five eights of an inch to three-quarters of an inch. The wall board sheeting WS is secured to the studs 14, preferably by screw fasteners, as is known by those skilled in the art. These screw fasteners extend through the wall board sheeting WS and screw into the flanges 42, 44 of the studs 14. However, the top portions of the sheeting WS is not secured to the upper channel member 10. The wall board sheeting WS is secured to the studs 14 and may be secured to the side flanges 28, 30 of the lower channel member 12. As shown by
The static distance between the lower edges of 32, 34 of the side flanges 20, 22 is preferably about one and one-half inches. The studs, the inserts and the upper and lower channel members are all formed from between twelve and twenty-six gauge sheet metal.
The illustrated embodiment is only one example of the present invention and, therefore, us non-limited. It is to be understood that many changes in the particular structure, materials, and features of the invention may be made without departing from the spirit and scope of the invention. Therefore, it is my intention that my patent rights not be limited by the particular embodiment that is illustrated and described herein, but rather such rights are to be determined by the following claims, interpreted according to accepted doctrines of patent claim interpretation, including use of the Doctrine of Equivalence and Reversal of Parts.
Preferably, the channel members 10, 12 are provided with a series of dents 102. The screws 100 are placed in a pair of these dents 102. The chosen dents 102 guide the screws 100 as they are rotated to drill into the metal 20, 54. The making and use of the dents 102 are set forth in my companion application entitled structural walls. This application is hereby incorporated herein by this specific reference.
Number | Name | Date | Kind |
---|---|---|---|
626365 | Clavert | Jun 1899 | A |
1818418 | Millard | Aug 1931 | A |
2574074 | Vogel | Nov 1951 | A |
3019863 | Kearns, Jr. | Feb 1962 | A |
3159250 | Wilson | Dec 1964 | A |
3358848 | Johnsson | Dec 1967 | A |
3623290 | Downing, Jr. | Nov 1971 | A |
3653172 | Schwartz | Apr 1972 | A |
4034526 | Deslaugiers | Jul 1977 | A |
4350318 | Gallis | Sep 1982 | A |
4697393 | Madray | Oct 1987 | A |
5050358 | Vladislavic | Sep 1991 | A |
5964072 | Rasmussen | Oct 1999 | A |
6272796 | Metzler | Aug 2001 | B1 |
6449791 | Vodicka | Sep 2002 | B1 |
20020100229 | Chen et al. | Aug 2002 | A1 |
20030084637 | Daudet | May 2003 | A1 |
Number | Date | Country |
---|---|---|
03151430 | Jun 1991 | JP |
04176929 | Jun 1992 | JP |
05044266 | Feb 1993 | JP |
05179701 | Jul 1993 | JP |
06101285 | Apr 1994 | JP |
WO 9403687 | Feb 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20050086894 A1 | Apr 2005 | US |