1. Field of the Invention
This invention relates to the explosive transfer between a booster and a warhead.
2. Description of the Related Art
The detonation of a warhead in a munition e.g., a missile, projectile, artillery shell, bomb, etc. is typically a multi-stage process to ensure both reliability and safety. It is important that the warhead detonate when triggered and not detonate accidentally due, for example, to mishandling or exposure to fire. The consequences of accidental detonation at a munitions depot or on-board a ship could be devastating. The explosive transfer between the booster and warhead can be a very challenging problem when trying to satisfy cost, interoperability, reliability and safety concerns.
As shown in
To detonate the warhead, fuze 14 detonates its small explosive pellet 34, which transfers a pressure wave to the booster causing the booster explosive pellet 26 to detonate. Detonation of the booster generates a much larger pressure wave that is transferred to the warhead causing the warhead explosive 24 to detonate. In order to detonate the warhead explosive, the booster pressure wave that is transferred to the explosive material must exceed a characteristic ‘detonation threshold’ of the material. To address safety concerns, modern insensitive munitions (IM) compliant explosives are switching to explosive materials in the warhead that have a higher detonation threshold. The other factor that affects detonation transfer is the ‘barrier’ between the booster detonation and the warhead's explosive material. This barrier includes the steel fuze well and asphalt lining and the charge tube fitting that attenuate the pressure wave. The barrier also includes any airgap between the fuze well and explosive materials that will occur at low temperatures, which also attenuates the pressure wave. To ensure reliability, explosive transfer must be designed for the worst case conditions including thickness of the barriers and extreme cold.
By raising the detonation threshold to address accidental detonation, modern IM compliant explosives have made the task of reliable explosive transfer between the booster and warhead more difficult. A cost-effective solution for improving explosive transfer that can be used with general purpose warheads and fuzes is needed.
The present invention provides a cost-effective solution to improve explosive transfer between booster and warhead that is compatible with the existing base of general purpose warheads and flexible to work with new warhead configurations.
This is accomplished by placing a booster lens in the fuze well that concentrates the pressure wave to penetrate the fuze well with a peak pressure that exceeds the detonation threshold and detonates the warhead explosive. The booster lens can be configured to control the direction of the concentrated lobe to penetrate the fuze well where the barriers are low. In an embodiment for a general purpose warhead, a radial lens re-directs a portion of the axial component of the booster detonation in the radial direction away from the charge tube fittings to penetrate and detonate the warhead explosive approximately radially from the lens. The radial lens is suitably positioned between the booster and the closed end of the fuze well and has an annular surface that forms an angle with the booster to re-direct the explosive force radially. In another embodiment, an axial lens re-directs a portion of the radial component of the booster detonation in the axial direction to penetrate and detonate the warhead explosive approximately axially from the lens. The axial lens is suitably positioned around the booster in the fuze well and has a parabolic shape. The booster-lens assembly may be designed to occupy no more space than a standard booster and yet produce higher peak pressure and a more reliable explosive transfer. As such, the booster-lens assembly is ideally suited for use with general purpose warheads and existing fuzes.
These and other features and advantages of the invention will be apparent to those skilled in the art from the following detailed description of preferred embodiments, taken together with the accompanying drawings, in which:
a and 1b, as described above, are an exploded and section view of a warhead, booster and fuze assembly;
a and 4b are an exploded and section view of a warhead, booster and fuze assembly including a booster lens for concentrating the pressure wave to detonate the warhead explosive;
a and 5b are diagrams of a standard booster of the prior art and an integrated booster-lens assembly of the present invention;
a and 7b are time-elapsed diagrams of the pressure wave of a simulated booster explosion using the lens that achieves detonation transfer;
The present invention provides a cost-effective solution to improve explosive transfer between booster and warhead that is compatible with the existing base of general purpose warheads and flexible to work with new warhead configurations. A booster lens is placed in the fuze well that concentrates the pressure wave to penetrate the fuze well with a peak pressure that exceeds the detonation threshold and detonates the warhead explosive. The booster lens can be configured to control the direction of the concentrated lobe to penetrate the fuze well where the barriers are low.
To illustrate the ease with which the booster lens can be implemented with a general purpose warhead and standard fuze and the effectiveness of the lens, the invention will be described with reference to the munition 10 illustrated in
Like numbers will be used to describe like components. This particular embodiment is directed at a radial booster lens that re-directs a portion of the axial component of the booster explosion in the radial direction.
As shown in
The booster and lens can be discrete components as shown above or they can be integrated into a booster-lens assembly 70 as shown in
As shown in
a-7b and 8 depict a simulation of explosive transfer using a booster-lens assembly in which the warhead explosive successfully detonated 101 because the peak pressure in lobe 100 of pressure wave 94 that was transferred to the explosive material exceeded the detonation threshold 102, approximately 4.55×1010 dynes/cm2 for this design. As shown, the pressure wave emanates in a narrow field of view from the booster explosive pellet outward through the fuze well and into the warhead explosive material. The wave is heavily concentrated in lobe 100 with a maximum pressure of approximately 2.75×1011 dynes/cm2 about 10-30° above the radial direction and is heavily attenuated with a minimum pressure of approximately 1.35×109 dynes/cm2 elsewhere demonstrating that the lens effectively redirected the energy towards the radial direction. Although the total explosive energy may be a fraction, e.g. 50%, of the standard booster for the described general purpose warhead and fuze configuration, the peak pressure transferred to the explosive material is significantly higher and thus much more effective at producing a successful explosive transfer.
The simulation was run for a range of lens angles and the time to detonation was plotted 106, 108 for both a steel lens and an aluminum lens as shown in
Although the booster-lens assembly of the current invention is particularly well-suited for use with the general purpose warhead and interchangeable fuze, it is not so limited. The principle of using the lens to concentrate and redirect the pressure to penetrate a portion of the fuze well having a low barrier can be extended to other existing or new warhead designs. The lens can be used to increase the reliability of explosive transfer for a given booster or can be used to provide reliable explosive transfer for a smaller booster. The booster-lens assembly can be configured to fit into a predefined space in the fuze well or configured for use in a new design that is not so constrained.
As illustrated in
While several illustrative embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention as defined in the appended claims.
This application claims benefit of priority under 35 U.S.C. 120 as a continuation application of U.S. Nonprovisional application Ser. No. 11/779,568 entitled “Warhead Booster Explosive Lens” filed on Jul. 18, 2007, now U.S. Pat. No. 7,921,775, which claims the benefit of priority under 35 U.S.C. 119(e) to U.S. Provisional Application No. 60/823,874 entitled “Warhead Booster Explosive Lens” filed on Aug. 29, 2006, the entire contents of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3027838 | Meddick | Apr 1962 | A |
3100445 | Poulter | Aug 1963 | A |
3661086 | Thomanek et al. | May 1972 | A |
4111126 | Thomanek | Sep 1978 | A |
4665826 | Marer | May 1987 | A |
4672896 | Precoul et al. | Jun 1987 | A |
4711177 | Foster et al. | Dec 1987 | A |
4729318 | Marsh | Mar 1988 | A |
4920883 | Barker | May 1990 | A |
4998477 | Barker | Mar 1991 | A |
5052301 | Walker | Oct 1991 | A |
5565644 | Chawla | Oct 1996 | A |
5801323 | Kerdraon | Sep 1998 | A |
5859383 | Davison et al. | Jan 1999 | A |
Number | Date | Country | |
---|---|---|---|
20110094405 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
60823874 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11779568 | Jul 2007 | US |
Child | 12985970 | US |