WARM-WATER GENERATING APPARATUS

Information

  • Patent Application
  • 20200309411
  • Publication Number
    20200309411
  • Date Filed
    December 13, 2018
    5 years ago
  • Date Published
    October 01, 2020
    3 years ago
Abstract
A warm-water generating apparatus (1) uses, as a refrigerant, a mixed refrigerant containing at least 1,2-difluoroethylene (HFO-1132(E)). The warm-water generating apparatus (1) includes a compressor (21), a heat-source-side air heat exchanger (24), an expansion valve (23), and a use-side water heat exchanger (22). The water heat exchanger (22) causes the mixed refrigerant flowing therein and first water to exchange heat with each other to heat the first water.
Description
TECHNICAL FIELD

The present disclosure relates to a warm-water generating apparatus.


BACKGROUND ART

There has been widely used a warm-water generating apparatus that generates warm water by a boiler or an electric heater. In addition, for example, there is also a warm-water generating apparatus that employs a heat pump unit as a heat source as disclosed in PTL 1 (Japanese Unexamined Patent Application Publication No. 2003-083614).


SUMMARY OF THE INVENTION
Technical Problem

A conventional warm-water generating apparatus that employs a heat pump unit frequently uses carbon dioxide as a refrigerant in the heat pump unit. However, there is a demand for generating warm water more efficiently as compared to the conventional warm-water generating apparatus.


Solution to Problem

A warm-water generating apparatus according to a first aspect uses, as a refrigerant, a mixed refrigerant containing at least 1,2-difluoroethylene (HFO-1132(E)). The warm-water generating apparatus includes a compressor, a heat-source-side first heat exchanger, an expansion mechanism, and a use-side second heat exchanger. The second heat exchanger causes the mixed refrigerant flowing therein and first water to exchange heat with each other to heat the first water.


The warm-water generating apparatus uses, as the refrigerant, the above-described mixed refrigerant instead of carbon dioxide which has been frequently used. Accordingly, warm water can be efficiently generated.


A warm-water generating apparatus according to a second aspect is the warm-water generating apparatus according to the first aspect, and further includes a tank and a circulation flow path. A circulation flow path allows the first water to circulate between the tank and the second heat exchanger.


A warm-water generating apparatus according to a third aspect is the warm-water generating apparatus according to the first aspect, and further includes a first circulation flow path, a second circulation flow path, a third heat exchanger, and a tank. The first circulation flow path allows the first water heated by the second heat exchanger to circulate. The second circulation flow path is different from the first circulation flow path. The third heat exchanger causes the first water flowing through the first circulation flow path and second water flowing through the second circulation flow path to exchange heat with each other to heat the second water flowing through the second circulation flow path. The tank stores the second water heated by the third heat exchanger.


A warm-water generating apparatus according to a fourth aspect is the warm-water generating apparatus according to the first aspect, and further includes a first circulation flow path and a tank. The first circulation flow path allows the first water heated by the second heat exchanger to circulate. A portion of the first circulation flow path is disposed in the tank and allows the first water flowing through the first circulation flow path and second water in the tank to exchange heat with each other to heat the second water in the tank.


A warm-water generating apparatus according to a fifth aspect is the warm-water generating apparatus according to the first aspect, and further includes a tank, a first circulation flow path, a third heat exchanger, a second circulation flow path, and a third flow path. The first circulation flow path allows the first water to circulate between the second heat exchanger and the tank. The second circulation flow path allows the first water to circulate between the third heat exchanger and the tank. The third flow path is different from the first circulation flow path and the second circulation flow path. The third heat exchanger causes the first water flowing from the tank and third water flowing through the third flow path to exchange heat with each other to heat the third water flowing through the third flow path.


A warm-water generating apparatus according to a sixth aspect is the warm-water generating apparatus according to the first aspect, and further includes a tank, a first circulation flow path, and a second flow path. The first circulation flow path allows the first water to circulate between the tank and the second heat exchanger. The second flow path is different from the first circulation flow path. A portion of the second flow path is disposed in the tank and allows the first water in the tank and second water flowing through the second flow path to exchange heat with each other to heat the second water flowing through the second flow path.


A warm-water generating apparatus according to a seventh aspect is the warm-water generating apparatus according to the first aspect, and further includes a tank that stores the first water and a flow path through which second water flows. A portion of the flow path is disposed in the tank. The second heat exchanger heats, in the tank, the first water stored in the tank. The first water stored in the tank heats the second water flowing through the flow path.


A warm-water generating apparatus according to an eighth aspect is the warm-water generating apparatus according to the first aspect, and further includes a tank and a flow path through which the first water flows from a water supply source to the tank. The second heat exchanger heats the first water flowing through the flow path.


A warm-water generating apparatus according to a ninth aspect is the warm-water generating apparatus according to any one of the first aspect to the eighth aspect, and further includes a use-side fourth heat exchanger and a fourth circulation flow path. The fourth heat exchanger is a heat exchanger that is different from the second heat exchanger. In the fourth circulation flow path, fourth water for cooling or heating flows. The fourth heat exchanger causes the mixed refrigerant flowing therein and the fourth water flowing through the fourth circulation flow path to exchange heat with each other to cool or heat the fourth water.


A warm-water generating apparatus according to a 10th aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.


A warm-water generating apparatus according to a 11th aspect is the warm-water generating apparatus according to the 10th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:


point A (68.6, 0.0, 31.4),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0),


point C (32.9, 67.1, 0.0), and


point O (100.0, 0.0, 0.0),


or on the above line segments (excluding the points on the line segments BD, CO, and OA);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments BD, CO, and OA are straight lines.


A warm-water generating apparatus according to a 12th aspect is the warm-water generating apparatus according to the 10th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:


point G (72.0, 28.0, 0.0),


point I (72.0, 0.0, 28.0),


point A (68.6, 0.0, 31.4),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0), and


point C (32.9, 67.1, 0.0),


or on the above line segments (excluding the points on the line segments IA, BD, and CG);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments GI, IA, BD, and CG are straight lines.


A warm-water generating apparatus according to a 13th aspect is the warm-water generating apparatus according to the 10th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:


point J (47.1, 52.9, 0.0),


point P (55.8, 42.0, 2.2),


point N (68.6, 16.3, 15.1),


point K (61.3, 5.4, 33.3),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0), and


point C (32.9, 67.1, 0.0),


or on the above line segments (excluding the points on the line segments BD and CJ);


the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),


the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, BD, and CG are straight lines.


A warm-water generating apparatus according to a 14th aspect is the warm-water generating apparatus according to the 10th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:


point J (47.1, 52.9, 0.0),


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0),


point M (60.3, 6.2, 33.5),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0), and


point C (32.9, 67.1, 0.0),


or on the above line segments (excluding the points on the line segments BD and CJ);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43)


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, LM, BD, and CG are straight lines.


A warm-water generating apparatus according to a 15th aspect is the warm-water generating apparatus according to the 10th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0),


point M (60.3, 6.2, 33.5),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point F (0.0, 61.8, 38.2), and


point T (35.8, 44.9, 19.3),


or on the above line segments (excluding the points on the line segment BF);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LM and BF are straight lines.


A warm-water generating apparatus according to a 16th aspect is the warm-water generating apparatus according to the 10th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0),


point Q (62.8, 29.6, 7.6), and


point R (49.8, 42.3, 7.9),


or on the above line segments;


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LQ and QR are straight lines.


A warm-water generating apparatus according to a 17th aspect is the warm-water generating apparatus according to the 10th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:


point S (62.6, 28.3, 9.1),


point M (60.3, 6.2, 33.5),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point F (0.0, 61.8, 38.2), and


point T (35.8, 44.9, 19.3),


or on the above line segments,


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and


the line segments SM and BF are straight lines.


A warm-water generating apparatus according to a 18th aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and


the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A warm-water generating apparatus according to a 19th aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein, the refrigerant comprises HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and


the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A warm-water generating apparatus according to a 20th aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),


wherein


when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,


if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:


point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),


point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),


point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),


point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),


point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and


point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),


or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),


point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),


point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),


point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),


point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),


point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),


point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),


point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),


point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),


point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),


point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),


point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),


point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.


A warm-water generating apparatus according to a 21st aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),


wherein


when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,


if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:


point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),


point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),


point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),


point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and


point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),


or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:


point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),


point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177),


point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and


point W (0.0, 100.0-a, 0.0),


or on the straight lines JK′ and K′B (excluding point J, point B, and point W);


if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:


point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),


point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),


point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and


point W (0.0, 100.0-a, 0.0),


or on the straight lines JK′ and K′B (excluding point J, point B, and point W);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:


point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),


point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),


point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),


point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and


point W (0.0, 100.0-a, 0.0),


or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:


point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),


point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),


point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),


point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and


point W (0.0, 100.0-a, 0.0),


or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.


A warm-water generating apparatus according to a 22nd aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),


wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:


point I (72.0, 0.0, 28.0),


point J (48.5, 18.3, 33.2),


point N (27.7, 18.2, 54.1), and


point E (58.3, 0.0, 41.7),


or on these line segments (excluding the points on the line segment EI;


the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);


the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and


the line segments JN and EI are straight lines.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A warm-water generating apparatus according to a 23rd aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,


wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:


point M (52.6, 0.0, 47.4),


point M′(39.2, 5.0, 55.8),


point N (27.7, 18.2, 54.1),


point V (11.0, 18.1, 70.9), and


point G (39.6, 0.0, 60.4),


or on these line segments (excluding the points on the line segment GM);


the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);


the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);


the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and


the line segments NV and GM are straight lines.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A warm-water generating apparatus according to a 24th aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,


wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:


point O (22.6, 36.8, 40.6),


point N (27.7, 18.2, 54.1), and


point U (3.9, 36.7, 59.4),


or on these line segments;


the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);


the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and


the line segment UO is a straight line.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A warm-water generating apparatus according to a 25th aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,


wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:


point Q (44.6, 23.0, 32.4),


point R (25.5, 36.8, 37.7),


point T (8.6, 51.6, 39.8),


point L (28.9, 51.7, 19.4), and


point K (35.6, 36.8, 27.6),


or on these line segments;


the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);


the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);


the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);


the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and


the line segment TL is a straight line.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A warm-water generating apparatus according to a 26th aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,


wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:


point P (20.5, 51.7, 27.8),


point S (21.9, 39.7, 38.4), and


point T (8.6, 51.6, 39.8),


or on these line segments;


the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);


the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and


the line segment TP is a straight line.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A warm-water generating apparatus according to a 27th aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:


point I (72.0, 28.0, 0.0),


point K (48.4, 33.2, 18.4),


point B′ (0.0, 81.6, 18.4),


point H (0.0, 84.2, 15.8),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segments B′H and GI);


the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments KB′ and GI are straight lines.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.


A warm-water generating apparatus according to a 28th aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:


point I (72.0, 28.0, 0.0),


point J (57.7, 32.8, 9.5),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segment GI);


the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments JR and GI are straight lines.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.


A warm-water generating apparatus according to a 29th aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:


point M (47.1, 52.9, 0.0),


point P (31.8, 49.8, 18.4),


point B′ (0.0, 81.6, 18.4),


point H (0.0, 84.2, 15.8),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segments B′H and GM);


the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments PB′ and GM are straight lines.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.


A warm-water generating apparatus according to a 30th aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:


point M (47.1, 52.9, 0.0),


point N (38.5, 52.1, 9.5),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segment GM);


the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments JR and GI are straight lines.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.


A warm-water generating apparatus according to a 31st aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:


point P (31.8, 49.8, 18.4),


point S (25.4, 56.2, 18.4), and


point T (34.8, 51.0, 14.2),


or on these line segments;


the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),


the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and


the line segment PS is a straight line.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.


A warm-water generating apparatus according to a 32nd aspect is the warm-water generating apparatus according to any of the 1st through 9th aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:


point Q (28.6, 34.4, 37.0),


point B″ (0.0, 63.0, 37.0),


point D (0.0, 67.0, 33.0), and


point U (28.7, 41.2, 30.1),


or on these line segments (excluding the points on the line segment B″D);


the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),


the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and


the line segments QB″ and B″D are straight lines.


In this warm-water generating apparatus, warm water can be efficiently generated when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of an instrument used for a flammability test.



FIG. 2 is a diagram showing points A to T and line segments that connect these points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass %.



FIG. 3 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass %.



FIG. 4 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 92.9 mass % (the content of R32 is 7.1 mass %).



FIG. 5 is a diagram showing points A to C, D′, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 88.9 mass % (the content of R32 is 11.1 mass %).



FIG. 6 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 85.5 mass % (the content of R32 is 14.5 mass %).



FIG. 7 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 81.8 mass % (the content of R32 is 18.2 mass %).



FIG. 8 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 78.1 mass % (the content of R32 is 21.9 mass %).



FIG. 9 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 73.3 mass % (the content of R32 is 26.7 mass %).



FIG. 10 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 70.7 mass % (the content of R32 is 29.3 mass %).



FIG. 11 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 63.3 mass % (the content of R32 is 36.7 mass %).



FIG. 12 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 55.9 mass % (the content of R32 is 44.1 mass %).



FIG. 13 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 52.2 mass % (the content of R32 is 47.8 mass %).



FIG. 14 is a view showing points A to C, E, G, and I to W; and line segments that connect points A to C, E, G, and I to W in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass %.



FIG. 15 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %.



FIG. 16 is an external view of a warm-water supply system serving as a warm-water generating apparatus according to a first embodiment.



FIG. 17 is a water-circuit and refrigerant-circuit diagram of the warm-water supply system according to the first embodiment.



FIG. 18 is a control block diagram of the warm-water supply system according to a first embodiment.



FIG. 19 is a water-circuit and refrigerant-circuit diagram of a warm-water supply system according to a first modification of the first embodiment.



FIG. 20 is a water-circuit and refrigerant-circuit diagram of a warm-water supply system according to a second modification of the first embodiment.



FIG. 21 illustrates a part of a configuration of a warm-water circulation heating system serving as a warm-water generating apparatus according to a second embodiment.



FIG. 22 illustrates a part of the configuration of the warm-water circulation heating system according to the second embodiment.



FIG. 23 illustrates a part of the configuration of the warm-water circulation heating system according to the second embodiment.



FIG. 24 is a control block diagram of the warm-water circulation heating system according to the second embodiment.



FIG. 25 illustrates a part of a configuration of a warm-water circulation heating system according to a first modification of the second embodiment.



FIG. 26 illustrates a part of a configuration of a warm-water circulation heating system according to a second modification of the second embodiment.



FIG. 27 is a schematic configuration diagram of a warm-water supply system serving as a warm-water generating apparatus according to a third embodiment.



FIG. 28 is a schematic configuration diagram of a heat source unit of the warm-water supply system according to the third embodiment.



FIG. 29 is a control block diagram of the warm-water supply system according to the third embodiment.





DESCRIPTION OF EMBODIMENTS
(1) Definition of Terms

In the present specification, the term “refrigerant” includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given. Refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds. Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC). Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like.


In the present specification, the phrase “composition comprising a refrigerant” at least includes (1) a refrigerant itself (including a mixture of refrigerants), (2) a composition that further comprises other components and that can be mixed with at least a refrigeration oil to obtain a working fluid for a refrigerating machine, and (3) a working fluid for a refrigerating machine containing a refrigeration oil. In the present specification, of these three embodiments, the composition (2) is referred to as a “refrigerant composition” so as to distinguish it from a refrigerant itself (including a mixture of refrigerants). Further, the working fluid for a refrigerating machine (3) is referred to as a “refrigeration oil-containing working fluid” so as to distinguish it from the “refrigerant composition.”


In the present specification, when the term “alternative” is used in a context in which the first refrigerant is replaced with the second refrigerant, the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment. In other words, this type of alternative means that the same equipment is operated with an alternative refrigerant. Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.


The term “alternative” also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.


In the present specification, the term “refrigerating machine” refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature. In other words, refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.


In the present specification, a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34−2013. Further, in the present specification, a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 34−2013 is determined to classified as be “Class 2L.”


In the present specification, a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 34−2013, of x % or more. RCL refers to a concentration limit in the air in consideration of safety factors. RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present. RCL is determined in accordance with the ASHRAE Standard. More specifically, RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.


In the present specification, temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a composition containing the refrigerant of the present disclosure in the heat exchanger of a refrigerant system.


(2) Refrigerant
(2-1) Refrigerant Component

Any one of various refrigerants such as refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E, details of these refrigerant are to be mentioned later, can be used as the refrigerant.


(2-2) Use of Refrigerant

The refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.


The composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.


(3) Refrigerant Composition

The refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.


The refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure. The refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary. As described above, when the refrigerant composition according to the present disclosure is used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil. Specifically, in the refrigerant composition according to the present disclosure, the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.


(3-1) Water

The refrigerant composition according to the present disclosure may contain a small amount of water. The water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant. A small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.


(3-2) Tracer

A tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.


The refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.


The tracer is not limited, and can be suitably selected from commonly used tracers. Preferably, a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.


Examples of tracers include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N2O). The tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.


The following compounds are preferable as the tracer.


FC-14 (tetrafluoromethane, CF4)


HCC-40 (chloromethane, CH3Cl)


HFC-23 (trifluoromethane, CHF3)


HFC-41 (fluoromethane, CH3Cl)


HFC-125 (pentafluoroethane, CF3CHF2)


HFC-134a (1,1,1,2-tetrafluoroethane, CF3CH2F)


HFC-134 (1,1,2,2-tetrafluoroethane, CHF2CHF2)


HFC-143a (1,1,1-trifluoroethane, CF3CH3)


HFC-143 (1,1,2-trifluoroethane, CHF2CH2F)


HFC-152a (1,1-difluoroethane, CHF2CH3)


HFC-152 (1,2-difluoroethane, CH2FCH2F)


HFC-161 (fluoroethane, CH3CH2F)


HFC-245fa (1,1,1,3,3-pentafluoropropane, CF3CH2CHF2)


HFC-236fa (1,1,1,3,3,3-hexafluoropropane, CF3CH2CF3)


HFC-236ea (1,1,1,2,3,3-hexafluoropropane, CF3CHFCHF2)


HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane, CF3CHFCF3)


HCFC-22 (chlorodifluoromethane, CHClF2)


HCFC-31 (chlorofluoromethane, CH2ClF)


CFC-1113 (chlorotrifluoroethylene, CF2═CClF)


HFE-125 (trifluoromethyl-difluoromethyl ether, CF3OCHF2)


HFE-134a (trifluoromethyl-fluoromethyl ether, CF3OCH2F)


HFE-143a (trifluoromethyl-methyl ether, CF3OCH3)


HFE-227ea (trifluoromethyl-tetrafluoroethyl ether, CF3OCHFCF3)


HFE-236fa (trifluoromethyl-trifluoroethyl ether, CF3OCH2CF3)


The tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm. Preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.


(3-3) Ultraviolet Fluorescent Dye

The refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.


The ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.


Examples of ultraviolet fluorescent dyes include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof. The ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.


(3-4) Stabilizer

The refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.


The stabilizer is not limited, and can be suitably selected from commonly used stabilizers.


Examples of stabilizers include nitro compounds, ethers, and amines.


Examples of nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.


Examples of ethers include 1,4-dioxane.


Examples of amines include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.


Examples of stabilizers also include butylhydroxyxylene and benzotriazole.


The content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.


(3-5) Polymerization Inhibitor

The refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.


The polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.


Examples of polymerization inhibitors include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.


The content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.


(4) Refrigeration Oil—Containing Working Fluid

The refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine. Specifically, the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition. The refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.


(4-1) Refrigeration Oil

The refrigeration oil is not limited, and can be suitably selected from commonly used refrigeration oils. In this case, refrigeration oils that are superior in the action of increasing the miscibility with the mixture and the stability of the mixture, for example, are suitably selected as necessary.


The base oil of the refrigeration oil is preferably, for example, at least one member selected from the group consisting of polyalkylene glycols (PAG), polyol esters (POE), and polyvinyl ethers (PVE).


The refrigeration oil may further contain additives in addition to the base oil. The additive may be at least one member selected from the group consisting of antioxidants, extreme-pressure agents, acid scavengers, oxygen scavengers, copper deactivators, rust inhibitors, oil agents, and antifoaming agents.


A refrigeration oil with a kinematic viscosity of 5 to 400 cSt at 40° C. is preferable from the standpoint of lubrication.


The refrigeration oil-containing working fluid according to the present disclosure may further optionally contain at least one additive. Examples of additives include compatibilizing agents described below.


(4-2) Compatibilizing Agent

The refrigeration oil-containing working fluid according to the present disclosure may comprise a single compatibilizing agent, or two or more compatibilizing agents.


The compatibilizing agent is not limited, and can be suitably selected from commonly used compatibilizing agents.


Examples of compatibilizing agents include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes. The compatibilizing agent is particularly preferably a polyoxyalkylene glycol ether.


(5) Various Refrigerants

Hereinafter, the refrigerants A to E, which are the refrigerants used in the present embodiment, will be described in detail.


In addition, each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent. The alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E. For example, the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.


(5-1) Refrigerant A

The refrigerant A according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).


The refrigerant A according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.


The refrigerant A according to the present disclosure is a composition comprising HFO-1132(E) and R1234yf, and optionally further comprising HFO-1123, and may further satisfy the following requirements. This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.


Requirements

Preferable refrigerant A is as follows:


When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:


point A (68.6, 0.0, 31.4),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0),


point C (32.9, 67.1, 0.0), and


point O (100.0, 0.0, 0.0),


or on the above line segments (excluding the points on the line CO);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments BD, CO, and OA are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.


When the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:


point G (72.0, 28.0, 0.0),


point I (72.0, 0.0, 28.0),


point A (68.6, 0.0, 31.4),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0), and


point C (32.9, 67.1, 0.0),


or on the above line segments (excluding the points on the line segment CG);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments GI, IA, BD, and CG are straight lines.


When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).


When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:


point J (47.1, 52.9, 0.0),


point P (55.8, 42.0, 2.2),


point N (68.6, 16.3, 15.1),


point K (61.3, 5.4, 33.3),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0), and


point C (32.9, 67.1, 0.0),


or on the above line segments (excluding the points on the line segment CJ);


the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),


the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, BD, and CG are straight lines.


When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).


When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′ C, and CJ that connect the following 9 points:


point J (47.1, 52.9, 0.0),


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0),


point M (60.3, 6.2, 33.5),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0), and


point (32.9, 67.1, 0.0),


or on the above line segments (excluding the points on the line segment CJ);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, LM, BD, and CG are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.


When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0),


point M (60.3, 6.2, 33.5),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point F (0.0, 61.8, 38.2), and


point T (35.8, 44.9, 19.3),


or on the above line segments (excluding the points on the line segment BF);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LM and BF are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0),


point Q (62.8, 29.6, 7.6), and


point R (49.8, 42.3, 7.9),


or on the above line segments;


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LQ and QR are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:


point S (62.6, 28.3, 9.1),


point M (60.3, 6.2, 33.5),


point A′(30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point F (0.0, 61.8, 38.2), and


point T (35.8, 44.9, 19.3),


or on the above line segments,


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and


the line segments SM and BF are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:


point d (87.6, 0.0, 12.4),


point g (18.2, 55.1, 26.7),


point h (56.7, 43.3, 0.0), and


point o (100.0, 0.0, 0.0),


or on the line segments Od, dg, gh, and hO (excluding the points O and h);


the line segment dg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),


the line segment gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and


the line segments hO and Od are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments lg, gh, hi, and il that connect the following 4 points:


point l (72.5, 10.2, 17.3),


point g (18.2, 55.1, 26.7),


point h (56.7, 43.3, 0.0), and


point i (72.5, 27.5, 0.0) or


on the line segments lg, gh, and il (excluding the points h and i);


the line segment lg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402), the line gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and


the line segments hi and il are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, de, ef, and fO that connect the following 4 points:


point d (87.6, 0.0, 12.4),


point e (31.1, 42.9, 26.0),


point f (65.5, 34.5, 0.0), and


point O (100.0, 0.0, 0.0),


or on the line segments Od, de, and ef (excluding the points O and f);


the line segment de is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),


the line segment ef is represented by coordinates (−0.0064z2−1.1565z+65.501, 0.0064z2+0.1565z+34.499, z), and


the line segments fO and Od are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,


coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments le, ef, fi, and it that connect the following 4 points:


point l (72.5, 10.2, 17.3),


point e (31.1, 42.9, 26.0),


point f (65.5, 34.5, 0.0), and


point i (72.5, 27.5, 0.0),


or on the line segments le, ef, and il (excluding the points f and i);


the line segment le is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),


the line segment ef is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and


the line segments fi and it are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,


coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Oa, ab, bc, and cO that connect the following 4 points:


point a (93.4, 0.0, 6.6),


point b (55.6, 26.6, 17.8),


point c (77.6, 22.4, 0.0), and


point O (100.0, 0.0, 0.0),


or on the line segments Oa, ab, and be (excluding the points O and c);


the line segment ab is represented by coordinates (0.0052y2−1.5588y+93.385, y, −0.0052y2+0.5588y+6.615),


the line segment be is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and


the line segments cO and Oa are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,


coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments kb, bj, and jk that connect the following 3 points:


point k (72.5, 14.1, 13.4),


point b (55.6, 26.6, 17.8), and


point j (72.5, 23.2, 4.3),


or on the line segments kb, bj, and jk;


the line segment kb is represented by coordinates (0.0052y2−1.5588y+93.385, y, and −0.0052y2+0.5588y+6.615),


the line segment bj is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and


the line segment jk is a straight line.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.


The refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.


The refrigerant according to the present disclosure may comprise HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.


Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.


(Examples of Refrigerant A)

The present disclosure is described in more detail below with reference to Examples of refrigerant A. However, refrigerant A is not limited to the Examples.


The GWP of R1234yf and a composition consisting of a mixed refrigerant R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of R410A and compositions each comprising a mixture of HFO-1132(E), HFO-1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


Further, the RCL of the mixture was calculated with the LFL of HFO-1132(E) being 4.7 vol. %, the LFL of HFO-1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 34−2013.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Degree of superheating: 5 K


Degree of subcooling: 5 K


Compressor efficiency: 70%


Tables 1 to 34 show these values together with the GWP of each mixed refrigerant.

















TABLE 1








Comp.
Comp.

Example

Comp.




Comp.
Ex. 2
Ex. 3
Example
2
Example
Ex. 4


Item
Unit
Ex. 1
O
A
1
A′
3
B























HFO-1132(E)
mass %
R410A
100.0
68.6
49.0
30.6
14.1
0.0


HFO-1123
mass %

0.0
0.0
14.9
30.0
44.8
58.7


R1234yf
mass %

0.0
31.4
36.1
39.4
41.1
41.3


GWP

2088
1
2
2
2
2
2


COP ratio
% (relative to
100
99.7
100.0
98.6
97.3
96.3
95.5



410A)


Refrigerating
% (relative to
100
98.3
85.0
85.0
85.0
85.0
85.0


capacity ratio
410A)


Condensation
° C.
0.1
0.00
1.98
3.36
4.46
5.15
5.35


glide


Discharge
% (relative to
100.0
99.3
87.1
88.9
90.6
92.1
93.2


pressure
410A)


RCL
g/m3

30.7
37.5
44.0
52.7
64.0
78.6

























TABLE 2







Comp.

Example

Comp.
Comp.
Example
Comp.




Ex. 5
Example
5
Example
Ex. 6
Ex. 7
7
Ex. 8


Item
Unit
C
4
C′
6
D
E
E′
F
























HFO-1132(E)
mass %
32.9
26.6
19.5
10.9
0.0
58.0
23.4
0.0


HFO-1123
mass %
67.1
68.4
70.5
74.1
80.4
42.0
48.5
61.8


R1234yf
mass %
0.0
5.0
10.0
15.0
19.6
0.0
28.1
38.2


GWP

1
1
1
1
2
1
2
2


COP ratio
% (relative
92.5
92.5
92.5
92.5
92.5
95.0
95.0
95.0



to 410A)


Refrigerating
% (relative
107.4
105.2
102.9
100.5
97.9
105.0
92.5
86.9


capacity ratio
to 410A)


Condensation
° C.
0.16
0.52
0.94
1.42
1.90
0.42
3.16
4.80


glide


Discharge
% (relative
119.5
117.4
115.3
113.0
115.9
112.7
101.0
95.8


pressure
to 410A)


RCL
g/m3
53.5
57.1
62.0
69.1
81.3
41.9
46.3
79.0























TABLE 3







Comp.
Example
Example
Example
Example
Example




Ex. 9
8
9
10
11
12


Item
Unit
J
P
L
N
N′
K






















HFO-1132(E)
mass %
47.1
55.8
63.1
68.6
65.0
61.3


HFO-1123
mass %
52.9
42.0
31.9
16.3
7.7
5.4


R1234yf
mass %
0.0
2.2
5.0
15.1
27.3
33.3


GWP

1
1
1
1
2
2


COP ratio
% (relative to
93.8
95.0
96.1
97.9
99.1
99.5



410A)


Refrigerating
% (relative to
106.2
104.1
101.6
95.0
88.2
85.0


capacity ratio
410A)


Condensation
° C.
0.31
0.57
0.81
1.41
2.11
2.51


glide


Discharge
% (relative to
115.8
111.9
107.8
99.0
91.2
87.7


pressure
410A)


RCL
g/m3
46.2
42.6
40.0
38.0
38.7
39.7









Table 4

















TABLE 4







Example
Example
Example
Example
Example
Example
Example




13
14
15
16
17
18
19


Item
Unit
L
M
Q
R
S
S′
T























HFO-1132(E)
mass %
63.1
60.3
62.8
49.8
62.6
50.0
35.8


HFO-1123
mass %
31.9
6.2
29.6
42.3
28.3
35.8
44.9


R1234yf
mass %
5.0
33.5
7.6
7.9
9.1
14.2
19.3


GWP

1
2
1
1
1
1
2


COP ratio
% (relative to
96.1
99.4
96.4
95.0
96.6
95.8
95.0



410A)


Refrigerating
% (relative to
101.6
85.0
100.2
101.7
99.4
98.1
96.7


capacity ratio
410A)


Condensation
° C.
0.81
2.58
1.00
1.00
1.10
1.55
2.07


glide


Discharge
% (relative to
107.8
87.9
106.0
109.6
105.0
105.0
105.0


pressure
410A)


RCL
g/m3
40.0
40.0
40.0
44.8
40.0
44.4
50.8




















TABLE 5







Comp.
Example
Example




Ex. 10
20
21


Item
Unit
G
H
I



















HFO-1132(E)
mass %
72.0
72.0
72.0


HFO-1123
mass %
28.0
14.0
0.0


R1234yf
mass %
0.0
14.0
28.0


GWP

1
1
2


COP ratio
% (relative
96.6
98.2
99.9



to 410A)


Refrigerating
% (relative
103.1
95.1
86.6


capacity ratio
to 410A)


Condensation
° C.
0.46
1.27
1.71


glide


Discharge
% (relative
108.4
98.7
88.6


pressure
to 410A)


RCL
g/m3
37.4
37.0
36.6

























TABLE 6







Comp.
Comp.
Example
Example
Example
Example
Example
Comp.


Item
Unit
Ex. 11
Ex. 12
22
23
24
25
26
Ex. 13
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
85.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


R1234yf
mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative to
91.4
92.0
92.8
93.7
94.7
95.8
96.9
98.0



410A)


Refrigerating
% (relative to
105.7
105.5
105.0
104.3
103.3
102.0
100.6
99.1


capacity ratio
410A)


Condensation
° C.
0.40
0.46
0.55
0.66
0.75
0.80
0.79
0.67


glide


Discharge
% (relative to
120.1
118.7
116.7
114.3
111.6
108.7
105.6
102.5


pressure
410A)


RCL
g/m3
71.0
61.9
54.9
49.3
44.8
41.0
37.8
35.1

























TABLE 7







Comp.
Example
Example
Example
Example
Example
Example
Comp.


Item
Unit
Ex. 14
27
28
29
30
31
32
Ex. 15
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative to
91.9
92.5
93.3
94.3
95.3
96.4
97.5
98.6



410A)


Refrigerating
% (relative to
103.2
102.9
102.4
101.5
100.5
99.2
97.8
96.2


capacity ratio
410A)


Condensation
° C.
0.87
0.94
1.03
1.12
1.18
1.18
1.09
0.88


glide


Discharge
% (relative to
116.7
115.2
113.2
110.8
108.1
105.2
102.1
99.0


pressure
410A)


RCL
g/m3
70.5
61.6
54.6
49.1
44.6
40.8
37.7
35.0

























TABLE 8







Comp.
Example
Example
Example
Example
Example
Example
Comp.


Item
Unit
Ex. 16
33
34
35
36
37
38
Ex. 17
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
75.0
65.0
55.0
45.0
35.0
25.0
15.0
5.0


R1234yf
mass %
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative to
92.4
93.1
93.9
94.8
95.9
97.0
98.1
99.2



410A)


Refrigerating
% (relative to
100.5
100.2
99.6
98.7
97.7
96.4
94.9
93.2


capacity ratio
410A)


Condensation
° C.
1.41
1.49
1.56
1.62
1.63
1.55
1.37
1.05


glide


Discharge
% (relative to
113.1
111.6
109.6
107.2
104.5
101.6
98.6
95.5


pressure
410A)


RCL
g/m3
70.0
61.2
54.4
48.9
44.4
40.7
37.5
34.8
























TABLE 9







Example
Example
Example
Example
Example
Example
Example


Item
Unit
39
40
41
42
43
44
45























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
70.0
60.0
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0


GWP

2
2
2
2
2
2
2


COP ratio
% (relative to
93.0
93.7
94.5
95.5
96.5
97.6
98.7



410A)


Refrigerating
% (relative to
97.7
97.4
96.8
95.9
94.7
93.4
91.9


capacity ratio
410A)


Condensation
° C.
2.03
2.09
2.13
2.14
2.07
1.91
1.61


glide


Discharge
% (relative to
109.4
107.9
105.9
103.5
100.8
98.0
95.0


pressure
410A)


RCL
g/m3
69.6
60.9
54.1
48.7
44.2
40.5
37.4
























TABLE 10







Example
Example
Example
Example
Example
Example
Example


Item
Unit
46
47
48
49
50
51
52























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
65.0
55.0
45.0
35.0
25.0
15.0
5.0


R1234yf
mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0


GWP

2
2
2
2
2
2
2


COP ratio
% (relative
93.6
94.3
95.2
96.1
97.2
98.2
99.3



to 410A)


Refrigerating
% (relative
94.8
94.5
93.8
92.9
91.8
90.4
88.8


capacity ratio
to 410A)


Condensation
° C.
2.71
2.74
2.73
2.66
2.50
2.22
1.78


glide


Discharge
% (relative
105.5
104.0
102.1
99.7
97.1
94.3
91.4


pressure
to 410A)


RCL
g/m3
69.1
60.5
53.8
48.4
44.0
40.4
37.3























TABLE 11







Example
Example
Example
Example
Example
Example


Item
Unit
53
54
55
56
57
58






















HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0


HFO-1123
mass %
60.0
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
30.0
30.0
30.0
30.0
30.0
30.0


GWP

2
2
2
2
2
2


COP ratio
% (relative to
94.3
95.0
95.9
96.8
97.8
98.9



410A)


Refrigerating
% (relative to
91.9
91.5
90.8
89.9
88.7
87.3


capacity ratio
410A)


Condensation
° C.
3.46
3.43
3.35
3.18
2.90
2.47


glide


Discharge
% (relative to
101.6
100.1
98.2
95.9
93.3
90.6


pressure
410A)


RCL
g/m3
68.7
60.2
53.5
48.2
43.9
40.2























TABLE 12







Example
Example
Example
Example
Example
Comp.


Item
Unit
59
60
61
62
63
Ex. 18






















HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0


HFO-1123
mass %
55.0
45.0
35.0
25.0
15.0
5.0


R1234yf
mass %
35.0
35.0
35.0
35.0
35.0
35.0


GWP

2
2
2
2
2
2


COP ratio
% (relative to
95.0
95.8
96.6
97.5
98.5
99.6



410A)


Refrigerating
% (relative to
88.9
88.5
87.8
86.8
85.6
84.1


capacity ratio
410A)


Condensation
° C.
4.24
4.15
3.96
3.67
3.24
2.64


glide


Discharge
% (relative to
97.6
96.1
94.2
92.0
89.5
86.8


pressure
410A)


RCL
g/m3
68.2
59.8
53.2
48.0
43.7
40.1






















TABLE 13







Example
Example
Comp.
Comp.
Comp.


Item
Unit
64
65
Ex. 19
Ex. 20
Ex. 21





















HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0


HFO-1123
mass %
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
40.0
40.0
40.0
40.0
40.0


GWP

2
2
2
2
2


COP ratio
% (relative to
95.9
96.6
97.4
98.3
99.2



410A)


Refrigerating
% (relative to
85.8
85.4
84.7
83.6
82.4


capacity ratio
410A)


Condensation
° C.
5.05
4.85
4.55
4.10
3.50


glide


Discharge
% (relative to
93.5
92.1
90.3
88.1
85.6


pressure
410A)


RCL
g/m3
67.8
59.5
53.0
47.8
43.5

























TABLE 14







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
66
67
68
69
70
71
72
73
























HFO-1132(E)
mass %
54.0
56.0
58.0
62.0
52.0
54.0
56.0
58.0


HFO-1123
mass %
41.0
39.0
37.0
33.0
41.0
39.0
37.0
35.0


R1234yf
mass %
5.0
5.0
5.0
5.0
7.0
7.0
7.0
7.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
95.1
95.3
95.6
96.0
95.1
95.4
95.6
95.8



to 410A)


Refrigerating
% (relative
102.8
102.6
102.3
101.8
101.9
101.7
101.5
101.2


capacity ratio
to 410A)


Condensation
° C.
0.78
0.79
0.80
0.81
0.93
0.94
0.95
0.95


glide


Discharge
% (relative
110.5
109.9
109.3
108.1
109.7
109.1
108.5
107.9


pressure
to 410A)


RCL
g/m3
43.2
42.4
41.7
40.3
43.9
43.1
42.4
41.6

























TABLE 15







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
74
75
76
77
78
79
80
81
























HFO-1132(E)
mass %
60.0
62.0
61.0
58.0
60.0
62.0
52.0
54.0


HFO-1123
mass %
33.0
31.0
29.0
30.0
28.0
26.0
34.0
32.0


R1234yf
mass %
7.0
7.0
10.0
12.0
12.0
12.0
14.0
14.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
96.0
96.2
96.5
96.4
96.6
96.8
96.0
96.2



to 410A)


Refrigerating
% (relative
100.9
100.7
99.1
98.4
98.1
97.8
98.0
97.7


capacity ratio
to 410A)


Condensation
° C.
0.95
0.95
1.18
1.34
1.33
1.32
1.53
1.53


glide


Discharge
% (relative
107.3
106.7
104.9
104.4
103.8
103.2
104.7
104.1


pressure
to 410A)


RCL
g/m3
40.9
40.3
40.5
41.5
40.8
40.1
43.6
42.9

























TABLE 16







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
82
83
84
85
86
87
88
89
























HFO-1132(E)
mass %
56.0
58.0
60.0
48.0
50.0
52.0
54.0
56.0


HFO-1123
mass %
30.0
28.0
26.0
36.0
34.0
32.0
30.0
28.0


R1234yf
mass %
14.0
14.0
14.0
16.0
16.0
16.0
16.0
16.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
96.4
96.6
96.9
95.8
96.0
96.2
96.4
96.7



to 410A)


Refrigerating
% (relative
97.5
97.2
96.9
97.3
97.1
96.8
96.6
96.3


capacity ratio
to 410A)


Condensation
° C.
1.51
1.50
1.48
1.72
1.72
1.71
1.69
1.67


glide


Discharge
% (relative
103.5
102.9
102.3
104.3
103.8
103.2
102.7
102.1


pressure
to 410A)


RCL
g/m3
42.1
41.4
40.7
45.2
44.4
43.6
42.8
42.1

























TABLE 17







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
90
91
92
93
94
95
96
97
























HFO-1132(E)
mass %
58.0
60.0
42.0
44.0
46.0
48.0
50.0
52.0


HFO-1123
mass %
26.0
24.0
40.0
38.0
36.0
34.0
32.0
30.0


R1234yf
mass %
16.0
16.0
18.0
18.0
18.0
18.0
18.0
18.0


GWP

1
1
2
2
2
2
2
2


COP ratio
% (relative
96.9
97.1
95.4
95.6
95.8
96.0
96.3
96.5



to 410A)


Refrigerating
% (relative
96.1
95.8
96.8
96.6
96.4
96.2
95.9
95.7


capacity ratio
to 410A)


Condensation
° C.
1.65
1.63
1.93
1.92
1.92
1.91
1.89
1.88


glide


Discharge
% (relative
101.5
100.9
104.5
103.9
103.4
102.9
102.3
101.8


pressure
to 410A)


RCL
g/m3
41.4
40.7
47.8
46.9
46.0
45.1
44.3
43.5

























TABLE 18







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
98
99
100
101
102
103
104
105
























HFO-1132(E)
mass %
54.0
56.0
58.0
60.0
36.0
38.0
42.0
44.0


HFO-1123
mass %
28.0
26.0
24.0
22.0
44.0
42.0
38.0
36.0


R1234yf
mass %
18.0
18.0
18.0
18.0
20.0
20.0
20.0
20.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.7
96.9
97.1
97.3
95.1
95.3
95.7
95.9



to 410A)


Refrigerating
% (relative
95.4
95.2
94.9
94.6
96.3
96.1
95.7
95.4


capacity ratio
to 410A)


Condensation
° C.
1.86
1.83
1.80
1.77
2.14
2.14
2.13
2.12


glide


Discharge
% (relative
101.2
100.6
100.0
99.5
104.5
104.0
103.0
102.5


pressure
to 410A)


RCL
g/m3
42.7
42.0
41.3
40.6
50.7
49.7
47.7
46.8

























TABLE 19







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
106
107
108
109
110
111
112
113
























HFO-1132(E)
mass %
46.0
48.0
52.0
54.0
56.0
58.0
34.0
36.0


HFO-1123
mass %
34.0
32.0
28.0
26.0
24.0
22.0
44.0
42.0


R1234yf
mass %
20.0
20.0
20.0
20.0
20.0
20.0
22.0
22.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.1
96.3
96.7
96.9
97.2
97.4
95.1
95.3



to 410A)


Refrigerating
% (relative
95.2
95.0
94.5
94.2
94.0
93.7
95.3
95.1


capacity ratio
to 410A)


Condensation
° C.
2.11
2.09
2.05
2.02
1.99
1.95
2.37
2.36


glide


Discharge
% (relative
101.9
101.4
100.3
99.7
99.2
98.6
103.4
103.0


pressure
to 410A)


RCL
g/m3
45.9
45.0
43.4
42.7
41.9
41.2
51.7
50.6

























TABLE 20







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
114
115
116
117
118
119
120
121
























HFO-1132(E)
mass %
38.0
40.0
42.0
44.0
46.0
48.0
50.0
52.0


HFO-1123
mass %
40.0
38.0
36.0
34.0
32.0
30.0
28.0
26.0


R1234yf
mass %
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
95.5
95.7
95.9
96.1
96.4
96.6
96.8
97.0



to 410A)


Refrigerating
% (relative
94.9
94.7
94.5
94.3
94.0
93.8
93.6
93.3


capacity ratio
to 410A)


Condensation
° C.
2.36
2.35
2.33
2.32
2.30
2.27
2.25
2.21


glide


Discharge
% (relative
102.5
102.0
101.5
101.0
100.4
99.9
99.4
98.8


pressure
to 410A)


RCL
g/m3
49.6
48.6
47.6
46.7
45.8
45.0
44.1
43.4

























TABLE 21







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
122
123
124
125
126
127
128
129
























HFO-1132(E)
mass %
54.0
56.0
58.0
60.0
32.0
34.0
36.0
38.0


HFO-1123
mass %
24.0
22.0
20.0
18.0
44.0
42.0
40.0
38.0


R1234yf
mass %
22.0
22.0
22.0
22.0
24.0
24.0
24.0
24.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.2
97.4
97.6
97.9
95.2
95.4
95.6
95.8



to 410A)


Refrigerating
% (relative
93.0
92.8
92.5
92.2
94.3
94.1
93.9
93.7


capacity ratio
to 410A)


Condensation
° C.
2.18
2.14
2.09
2.04
2.61
2.60
2.59
2.58


glide


Discharge
% (relative
98.2
97.7
97.1
96.5
102.4
101.9
101.5
101.0


pressure
to 410A)


RCL
g/m3
42.6
41.9
41.2
40.5
52.7
51.6
50.5
49.5

























TABLE 22







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
130
131
132
133
134
135
136
137
























HFO-1132(E)
mass %
40.0
42.0
44.0
46.0
48.0
50.0
52.0
54.0


HFO-1123
mass %
36.0
34.0
32.0
30.0
28.0
26.0
24.0
22.0


R1234yf
mass %
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.0
96.2
96.4
96.6
96.8
97.0
97.2
97.5



to 410A)


Refrigerating
% (relative
93.5
93.3
93.1
92.8
92.6
92.4
92.1
91.8


capacity ratio
to 410A)


Condensation
° C.
2.56
2.54
2.51
2.49
2.45
2.42
2.38
2.33


glide


Discharge
% (relative
100.5
100.0
99.5
98.9
98.4
97.9
97.3
96.8


pressure
to 410A)


RCL
g/m3
48.5
47.5
46.6
45.7
44.9
44.1
43.3
42.5

























TABLE 23







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
138
139
140
141
142
143
144
145
























HFO-1132(E)
mass %
56.0
58.0
60.0
30.0
32.0
34.0
36.0
38.0


HFO-1123
mass %
20.0
18.0
16.0
44.0
42.0
40.0
38.0
36.0


R1234yf
mass %
24.0
24.0
24.0
26.0
26.0
26.0
26.0
26.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.7
97.9
98.1
95.3
95.5
95.7
95.9
96.1



to 410A)


Refrigerating
% (relative
91.6
91.3
91.0
93.2
93.1
92.9
92.7
92.5


capacity ratio
to 410A)


Condensation
° C.
2.28
2.22
2.16
2.86
2.85
2.83
2.81
2.79


glide


Discharge
% (relative
96.2
95.6
95.1
101.3
100.8
100.4
99.9
99.4


pressure
to 410A)


RCL
g/m3
41.8
41.1
40.4
53.7
52.6
51.5
50.4
49.4

























TABLE 24







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
146
147
148
149
150
151
152
153
























HFO-1132(E)
mass %
40.0
42.0
44.0
46.0
48.0
50.0
52.0
54.0


HFO-1123
mass %
34.0
32.0
30.0
28.0
26.0
24.0
22.0
20.0


R1234yf
mass %
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.3
96.5
96.7
96.9
97.1
97.3
97.5
97.7



to 410A)


Refrigerating
% (relative
92.3
92.1
91.9
91.6
91.4
91.2
90.9
90.6


capacity ratio
to 410A)


Condensation
° C.
2.77
2.74
2.71
2.67
2.63
2.59
2.53
2.48


glide


Discharge
% (relative
99.0
98.5
97.9
97.4
96.9
96.4
95.8
95.3


pressure
to 410A)


RCL
g/m3
48.4
47.4
46.5
45.7
44.8
44.0
43.2
42.5

























TABLE 25







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
154
155
156
157
158
159
160
161
























HFO-1132(E)
mass %
56.0
58.0
60.0
30.0
32.0
34.0
36.0
38.0


HFO-1123
mass %
18.0
16.0
14.0
42.0
40.0
38.0
36.0
34.0


R1234yf
mass %
26.0
26.0
26.0
28.0
28.0
28.0
28.0
28.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.9
98.2
98.4
95.6
95.8
96.0
96.2
96.3



to 410A)


Refrigerating
% (relative
90.3
90.1
89.8
92.1
91.9
91.7
91.5
91.3


capacity ratio
to 410A)


Condensation
° C.
2.42
2.35
2.27
3.10
3.09
3.06
3.04
3.01


glide


Discharge
% (relative
94.7
94.1
93.6
99.7
99.3
98.8
98.4
97.9


pressure
to 410A)


RCL
g/m3
41.7
41.0
40.3
53.6
52.5
51.4
50.3
49.3

























TABLE 26







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
162
163
164
165
166
167
168
169
























HFO-1132(E)
mass %
40.0
42.0
44.0
46.0
48.0
50.0
52.0
54.0


HFO-1123
mass %
32.0
30.0
28.0
26.0
24.0
22.0
20.0
18.0


R1234yf
mass %
28.0
28.0
28.0
28.0
28.0
28.0
28.0
28.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.5
96.7
96.9
97.2
97.4
97.6
97.8
98.0



to 410A)


Refrigerating
% (relative
91.1
90.9
90.7
90.4
90.2
89.9
89.7
89.4


capacity ratio
to 410A)


Condensation
° C.
2.98
2.94
2.90
2.85
2.80
2.75
2.68
2.62


glide


Discharge
% (relative
97.4
96.9
96.4
95.9
95.4
94.9
94.3
93.8


pressure
to 410A)


RCL
g/m3
48.3
47.4
46.4
45.6
44.7
43.9
43.1
42.4

























TABLE 27







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
170
171
172
173
174
175
176
177
























HFO-1132(E)
mass %
56.0
58.0
60.0
32.0
34.0
36.0
38.0
42.0


HFO-1123
mass %
16.0
14.0
12.0
38.0
36.0
34.0
32.0
28.0


R1234yf
mass %
28.0
28.0
28.0
30.0
30.0
30.0
30.0
30.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
98.2
98.4
98.6
96.1
96.2
96.4
96.6
97.0



to 410A)


Refrigerating
% (relative
89.1
88.8
88.5
90.7
90.5
90.3
90.1
89.7


capacity ratio
to 410A)


Condensation
° C.
2.54
2.46
2.38
3.32
3.30
3.26
3.22
3.14


glide


Discharge
% (relative
93.2
92.6
92.1
97.7
97.3
96.8
96.4
95.4


pressure
to 410A)


RCL
g/m3
41.7
41.0
40.3
52.4
51.3
50.2
49.2
47.3

























TABLE 28







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
178
179
180
181
182
183
184
185
























HFO-1132(E)
mass %
44.0
46.0
48.0
50.0
52.0
54.0
56.0
58.0


HFO-1123
mass %
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0


R1234yf
mass %
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.2
97.4
97.6
97.8
98.0
98.3
98.5
98.7



to 410A)


Refrigerating
% (relative
89.4
89.2
89.0
88.7
88.4
88.2
87.9
87.6


capacity ratio
to 410A)


Condensation
° C.
3.08
3.03
2.97
2.90
2.83
2.75
2.66
2.57


glide


Discharge
% (relative
94.9
94.4
93.9
93.3
92.8
92.3
91.7
91.1


pressure
to 410A)


RCL
g/m3
46.4
45.5
44.7
43.9
43.1
42.3
41.6
40.9

























TABLE 29







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
186
187
188
189
190
191
192
193
























HFO-1132(E)
mass %
30.0
32.0
34.0
36.0
38.0
40.0
42.0
44.0


HFO-1123
mass %
38.0
36.0
34.0
32.0
30.0
28.0
26.0
24.0


R1234yf
mass %
32.0
32.0
32.0
32.0
32.0
32.0
32.0
32.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.2
96.3
96.5
96.7
96.9
97.1
97.3
97.5



to 410A)


Refrigerating
% (relative
89.6
89.5
89.3
89.1
88.9
88.7
88.4
88.2


capacity ratio
to 410A)


Condensation
° C.
3.60
3.56
3.52
3.48
3.43
3.38
3.33
3.26


glide


Discharge
% (relative
96.6
96.2
95.7
95.3
94.8
94.3
93.9
93.4


pressure
to 410A)


RCL
g/m3
53.4
52.3
51.2
50.1
49.1
48.1
47.2
46.3

























TABLE 30







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
194
195
196
197
198
199
200
201
























HFO-1132(E)
mass %
46.0
48.0
50.0
52.0
54.0
56.0
58.0
60.0


HFO-1123
mass %
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0


R1234yf
mass %
32.0
32.0
32.0
32.0
32.0
32.0
32.0
32.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.7
97.9
98.1
98.3
98.5
98.7
98.9
99.2



to 410A)


Refrigerating
% (relative
88.0
87.7
87.5
87.2
86.9
86.6
86.3
86.0


capacity ratio
to 410A)


Condensation
° C.
3.20
3.12
3.04
2.96
2.87
2.77
2.66
2.55


glide


Discharge
% (relative
92.8
92.3
91.8
91.3
90.7
90.2
89.6
89.1


pressure
to 410A)


RCL
g/m3
45.4
44.6
43.8
43.0
42.3
41.5
40.8
40.2

























TABLE 31







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
202
203
204
205
206
207
208
209
























HFO-1132(E)
mass %
30.0
32.0
34.0
36.0
38.0
40.0
42.0
44.0


HFO-1123
mass %
36.0
34.0
32.0
30.0
28.0
26.0
24.0
22.0


R1234yf
mass %
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.5
96.6
96.8
97.0
97.2
97.4
97.6
97.8



to 410A)


Refrigerating
% (relative
88.4
88.2
88.0
87.8
87.6
87.4
87.2
87.0


capacity ratio
to 410A)


Condensation
° C.
3.84
3.80
3.75
3.70
3.64
3.58
3.51
3.43


glide


Discharge
% (relative
95.0
94.6
94.2
93.7
93.3
92.8
92.3
91.8


pressure
to 410A)


RCL
g/m3
53.3
52.2
51.1
50.0
49.0
48.0
47.1
46.2

























TABLE 32







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
210
211
212
213
214
215
216
217
























HFO-1132(E)
mass %
46.0
48.0
50.0
52.0
54.0
30.0
32.0
34.0


HFO-1123
mass %
20.0
18.0
16.0
14.0
12.0
34.0
32.0
30.0


R1234yf
mass %
34.0
34.0
34.0
34.0
34.0
36.0
36.0
36.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
98.0
98.2
98.4
98.6
98.8
96.8
96.9
97.1



to 410A)


Refrigerating
% (relative
86.7
86.5
86.2
85.9
85.6
87.2
87.0
86.8


capacity ratio
to 410A)


Condensation
° C.
3.36
3.27
3.18
3.08
2.97
4.08
4.03
3.97


glide


Discharge
% (relative
91.3
90.8
90.3
89.7
89.2
93.4
93.0
92.6


pressure
to 410A)


RCL
g/m3
45.3
44.5
43.7
42.9
42.2
53.2
52.1
51.0

























TABLE 33







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
218
219
220
221
222
223
224
225
























HFO-1132(E)
mass %
36.0
38.0
40.0
42.0
44.0
46.0
30.0
32.0


HFO-1123
mass %
28.0
26.0
24.0
22.0
20.0
18.0
32.0
30.0


R1234yf
mass %
36.0
36.0
36.0
36.0
36.0
36.0
38.0
38.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.3
97.5
97.7
97.9
98.1
98.3
97.1
97.2



to 410A)


Refrigerating
% (relative
86.6
86.4
86.2
85.9
85.7
85.5
85.9
85.7


capacity ratio
to 410A)


Condensation
° C.
3.91
3.84
3.76
3.68
3.60
3.50
4.32
4.25


glide


Discharge
% (relative
92.1
91.7
91.2
90.7
90.3
89.8
91.9
91.4


pressure
to 410A)


RCL
g/m3
49.9
48.9
47.9
47.0
46.1
45.3
53.1
52.0





















TABLE 34









Example
Example



Item
Unit
226
227





















HFO-1132(E)
mass %
34.0
36.0



HFO-1123
mass %
28.0
26.0



R1234yf
mass %
38.0
38.0



GWP

2
2



COP ratio
% (relative
97.4
97.6




to 410A)



Refrigerating
% (relative
85.6
85.3



capacity ratio
to 410A)



Condensation glide
° C.
4.18
4.11



Discharge pressure
% (relative
91.0
90.6




to 410A)



RCL
g/m3
50.9
49.8










These results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:


point A (68.6, 0.0, 31.4),


point A′(30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0),


point C (32.9, 67.1, 0.0), and


point O (100.0, 0.0, 0.0),


or on the above line segments (excluding the points on the line segment CO);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments BD, CO, and OA are straight lines,


the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.


The point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.


The point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.


The point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.


The point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.


Likewise, the results indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments AA′, A′B, BF, FT, TE, EO, and OA that connect the following 7 points:


point A (68.6, 0.0, 31.4),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point F (0.0, 61.8, 38.2),


point T (35.8, 44.9, 19.3),


point E (58.0, 42.0, 0.0) and


point O (100.0, 0.0, 0.0),


or on the above line segments (excluding the points on the line EO);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2), and


the line segment TE is represented by coordinates (x, 0.0067x2−0.7607x+63.525, −0.0067x2−0.2393x+36.475), and


the line segments BF, FO, and OA are straight lines,


the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A.


The point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.


The point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.


The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which the sum of these components is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below the line segment LM connecting point L (63.1, 31.9, 5.0) and point M (60.3, 6.2, 33.5), the refrigerant has an RCL of 40 g/m3 or more.


The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123 and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment QR connecting point Q (62.8, 29.6, 7.6) and point R (49.8, 42.3, 7.9) or on the left side of the line segment, the refrigerant has a temperature glide of 1° C. or less.


The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment ST connecting point S (62.6, 28.3, 9.1) and point T (35.8, 44.9, 19.3) or on the right side of the line segment, the refrigerant has a discharge pressure of 105% or less relative to that of 410A.


In these compositions, R1234yf contributes to reducing flammability, and suppressing deterioration of polymerization etc. Therefore, the composition preferably contains R1234yf.


Further, the burning velocity of these mixed refrigerants whose mixed formulations were adjusted to WCF concentrations was measured according to the ANSI/ASHRAE Standard 34−2013. Compositions having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. In FIG. 1, reference numeral 901 refers to a sample cell, 902 refers to a high-speed camera, 903 refers to a xenon lamp, 904 refers to a collimating lens, 905 refers to a collimating lens, and 906 refers to a ring filter. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.


Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.


Tables 35 and 36 show the results.













TABLE 35





Item
Unit
G
H
I




















WCF
HFO-1132(E)
mass %
72.0
72.0
72.0



HFO-1123
mass %
28.0
9.6
0.0



R1234yf
mass %
0.0
18.4
28.0











Burning velocity (WCF)
cm/s
10
10
10























TABLE 36





Item
Unit
J
P
L
N
N′
K























WCF
HFO-1132
mass %
47.1
55.8
63.1
68.6
65.0
61.3



(E)



HFO-1123
mass %
52.9
42.0
31.9
16.3
7.7
5.4



R1234yf
mass %
0.0
2.2
5.0
15.1
27.3
33.3













Leak condition that results
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/


in WCFF
Shipping −40° C.,
Shipping −40° C.,
Shipping −40° C.,
Shipping −40° C.,
Shipping −40° C.,
Shipping, −40° C.,



92% release,
90% release,
90% release,
66% release,
12% release,
0% release,



liquid phase
liquid phase
gas phase
gas phase
gas phase
gas phase



side
side
side
side
side
side















WCFF
HFO-1132
mass %
72.0
72.0
72.0
72.0
72.0
72.0



(E)



HFO-1123
mass %
28.0
17.8
17.4
13.6
12.3
9.8



R1234yf
mass %
0.0
10.2
10.6
14.4
15.7
18.2














Burning velocity
cm/s
8 or less
8 or less
8 or less
9
9
8 or less


(WCF)


Burning velocity
cm/s
10
10
10
10
10
10


(WCFF)









The results in Table 35 clearly indicate that when a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf contains HFO-1132(E) in a proportion of 72.0 mass % or less based on their sum, the refrigerant can be determined to have a WCF lower flammability.


The results in Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, when coordinates (x,y,z) are on or below the line segments JP, PN, and NK connecting the following 6 points:


point J (47.1, 52.9, 0.0),


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0)


point N (68.6, 16.3, 15.1)


point N′ (65.0, 7.7, 27.3) and


point K (61.3, 5.4, 33.3),


the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.


In the diagram, the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43), and the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91).


The point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.


The point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.


(5-2) Refrigerant B

The refrigerant B according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant, or


a mixed refrigerant comprising HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.


The refrigerant B according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.


When the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO-1132(E), it has WCF lower flammability. When the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO-1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.


When the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved. When the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.


The refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E) and HFO-1123, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E) and HFO-1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant. Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.


(Examples of Refrigerant B)

The present disclosure is described in more detail below with reference to Examples of refrigerant B. However, the refrigerant B is not limited to the Examples.


Mixed refrigerants were prepared by mixing HFO-1132(E) and HFO-1123 at mass % based on their sum shown in Tables 37 and 38.


The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Superheating temperature: 5 K


Subcooling temperature: 5 K


Compressor efficiency: 70%


The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34−2013. The most flammable fraction was defined as WCFF.


Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results. The COP and refrigerating capacity are ratios relative to R410A.


The coefficient of performance (COP) was determined by the following formula.





COP=(refrigerating capacity or heating capacity)/power consumption


For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34−2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.



















TABLE 37







Comparative
Comparative











Example 1
Example 2
Comparative
Example
Example
Example
Example
Example
Comparative


Item
Unit
R410A
HFO-1132E
Example 3
1
2
3
4
5
Example 4

























HFO-1132E
mass %

100
80
72
70
68
65
62
60


(WCF)


HFO-1123
mass %

0
20
28
30
32
35
38
40


(WCF)


GWP

2088
1
1
1
1
1
1
1
1


COP ratio
% (relative
100
99.7
97.5
96.6
96.3
96.1
95.8
95.4
95.2



to R410A)


Refrigerating
% (relative
100
98.3
101.9
103.1
103.4
103.8
104.1
104.5
104.8


capacity ratio
to R410A)


Discharge
Mpa
2.73
2.71
2.89
2.96
2.98
3.00
3.02
3.04
3.06


pressure


Burning
cm/sec
Non-
20
13
10
9
9
8
8 or less
8 or less


velocity

flammable


(WCF)






















TABLE 38









Comparative
Comparative





Item
Unit
Example 5
Example 6
Example 7
Example 8
Example 9





HFO-1132E
mass %
50
48
47.1
46.1
45.1


(WCF)


HFO-1123
mass %
50
52
52.9
53.9
54.9


(WCF)


GWP

1
1
1
1
1


COP ratio
% (relative
94.1
93.9
93.8
93.7
93.6



to R410A)


Refrigerating
% (relative
105.9
106.1
106.2
106.3
106.4


capacity ratio
to R410A)


Discharge
Mpa
3.14
3.16
3.16
3.17
3.18


pressure












Leakage test
Storage/
Storage/
Storage/
Storage/
Storage/


conditions (WCFF)
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°



C., 92%
C., 92%
C., 92%
C., 92%
C., 92%



release,
release,
release,
release,
release,



liquid phase
liquid phase
liquid phase
liquid phase
liquid phase



side
side
side
side
side













HFO-1132E
mass %
74
73
72
71
70


(WCFF)


HFO-1123
mass %
26
27
28
29
30


(WCFF)


Burning velocity
cm/sec
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)


Burning velocity
cm/sec
11
10.5
10.0
9.5
9.5


(WCFF)












ASHRAE flammability
2
2
2L
2L
2L


classification






















Comparative





Comparative
Comparative
Comparative
Example 10



Item
Unit
Example 7
Example 8
Example 9
HFO-1123







HFO-1132E
mass %
43
40
25
0



(WCF)



HFO-1123
mass %
57
60
75
100



(WCF)



GWP

1
1
1
1



COP ratio
% (relative
93.4
93.1
91.9
90.6




to R410A)



Refrigerating
% (relative
106.6
106.9
107.9
108.0



capacity ratio
to R410A)



Discharge
Mpa
3.20
3.21
3.31
3.39



pressure













Leakage test
Storage/
Storage/
Storage/




conditions (WCFF)
Shipping −40°
Shipping −40°
Shipping −40°




C., 92%
C., 92%
C., 90%




release,
release,
release,




liquid phase
liquid phase
liquid phase




side
side
side














HFO-1132E
mass %
67
63
38




(WCFF)



HFO-1123
mass %
33
37
62



(WCFF)



Burning velocity
cm/sec
8 or less
8 or less
8 or less
5



(WCF)



Burning velocity
cm/sec
8.5
8 or less
8 or less



(WCFF)













ASHRAE flammability
2L
2L
2L
2L



classification










The compositions each comprising 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A. Moreover, compositions each comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCFF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A.


(5-3) Refrigerant C

The refrigerant C according to the present disclosure is a composition comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements. The refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.


Requirements

Preferable refrigerant C is as follows:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,


if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′ C, and CG that connect the following 6 points:


point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),


point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),


point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),


point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),


point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and


point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),


or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),


point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),


point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),


point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),


point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),


point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),


point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),


point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),


point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),


point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),


point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),


point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),


point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability.


The refrigerant C according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,


if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:


point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),


point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),


point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),


point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and


point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),


or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:


point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),


point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177),


point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and


point W (0.0, 100.0-a, 0.0),


or on the straight lines JK′ and K′B (excluding point J, point B, and point W);


if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:


point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),


point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),


point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and


point W (0.0, 100.0-a, 0.0),


or on the straight lines JK′ and K′B (excluding point J, point B, and point W);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:


point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),


point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),


point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),


point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and


point W (0.0, 100.0-a, 0.0),


or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:


point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),


point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),


point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),


point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and


point W (0.0, 100.0-a, 0.0),


or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard.


When the refrigerant C according to the present disclosure further contains R32 in addition to HFO-1132 (E), HFO-1123, and R1234yf, the refrigerant may be a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,


if 0<a≤10.0, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines that connect the following 4 points:


point a (0.02a2−2.46a+93.4, 0, −0.02a2+2.46a+6.6),


point b′ (−0.008a2−1.38a+56, 0.018a2−0.53a+26.3, −0.01a2+1.91a+17.7),


point c (−0.016a2+1.02a+77.6, 0.016a2−1.02a+22.4, 0), and


point o (100.0-a, 0.0, 0.0)


or on the straight lines oa, ab′, and b′c (excluding point o and point c);


if 10.0<a≤16.5, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:


point a (0.0244a2−2.5695a+94.056, 0, −0.0244a2+2.5695a+5.944),


point b′ (0.1161a2−1.9959a+59.749, 0.014a2−0.3399a+24.8, −0.1301a2+2.3358a+15.451),


point c (−0.0161a2+1.02a+77.6, 0.0161a2−1.02a+22.4, 0), and


point o (100.0-a, 0.0, 0.0),


or on the straight lines oa, ab′, and b′c (excluding point o and point c); or


if 16.5<a≤21.8, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:


point a (0.0161a2−2.3535a+92.742, 0, −0.0161a2+2.3535a+7.258),


point b′ (−0.0435a2−0.0435a+50.406, 0.0304a2+1.8991a−0.0661, 0.0739a2−1.8556a+49.6601),


point c (−0.0161a2+0.9959a+77.851, 0.0161a2−0.9959a+22.149, 0), and


point o (100.0-a, 0.0, 0.0),


or on the straight lines oa, ab′, and b′c (excluding point o and point c). Note that when point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved, point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%. When the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.


The refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, R1234yf, and R32 as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.


The refrigerant C according to the present disclosure may comprise HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.


Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.


(Examples of Refrigerant C)

The present disclosure is described in more detail below with reference to Examples of refrigerant C. However, the refrigerant C is not limited to the Examples.


Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, R1234yf, and R32 at mass % based on their sum shown in Tables 39 to 96.


The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


For each of these mixed refrigerants, the COP ratio and the refrigerating capacity ratio relative to those of R410 were obtained. Calculation was conducted under the following conditions.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Superheating temperature: 5 K


Subcooling temperature: 5 K


Compressor efficiency: 70%


Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant. The COP and refrigerating capacity are ratios relative to R410A.


The coefficient of performance (COP) was determined by the following formula.





COP=(refrigerating capacity or heating capacity)/power consumption



















TABLE 39








Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.





Comp.
Ex. 2
Ex. 3
Ex. 4
Ex. 5
Ex. 6
Ex. 7
Ex. 8
Ex. 1


Item
Unit
Ex. 1
A
B
C
D′
G
I
J
K′

























HFO-1132(E)
Mass %
R410A
68.6
0.0
32.9
0.0
72.0
72.0
47.1
61.7


HFO-1123
Mass %

0.0
58.7
67.1
75.4
28.0
0.0
52.9
5.9


R1234yf
Mass %

31.4
41.3
0.0
24.6
0.0
28.0
0.0
32.4


R32
Mass %

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


GWP

2088
2
2
1
2
1
2
1
2


COP ratio
% (relative to
100
100.0
95.5
92.5
93.1
96.6
99.9
93.8
99.4



R410A)


Refrigerating
% (relative to
100
85.0
85.0
107.4
95.0
103.1
86.6
106.2
85.5


capacity ratio
R410A)

























TABLE 40







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.





Ex. 9
Ex. 10
Ex. 11
Ex. 12
Ex. 13
Ex. 14
Ex. 15
Ex. 2


Item
Unit
A
B
C
D′
G
I
J
K′
























HFO-1132
Mass %
55.3
0.0
18.4
0.0
60.9
60.9
40.5
47.0


(E)











HFO-1123
Mass %
0.0
47.8
74.5
83.4
32.0
0.0
52.4
7.2


R1234yf
Mass %
37.6
45.1
0.0
9.5
0.0
32.0
0.0
38.7


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
49
49
49
50
49
50


COP ratio
%
99.8
96.9
92.5
92.5
95.9
99.6
94.0
99.2



(relative











to











R410A)










Refrigerating
%
85.0
85.0
110.5
106.0
106.5
87.7
108.9
85.5


capacity ratio
(relative











to











R410A)
























TABLE 41







Comp. Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.





16
17
18
19
20
21
Ex. 3


Item
Unit
A
B
C = D′
G
I
J
K′























HFO-1132(E)
Mass %
48.4
0.0
0.0
55.8
55.8
37.0
41.0


HFO-1123
Mass %
0.0
42.3
88.9
33.1
0.0
51.9
6.5


R1234yf
Mass %
40.5
46.6
0.0
0.0
33.1
0.0
41.4


R32
Mass %
11.1
11.1
11.1
11.1
11.1
11.1
11.1


GWP

77
77
76
76
77
76
77


COP ratio
%
99.8
97.6
92.5
95.8
99.5
94.2
99.3



(relative










to R410A)









Refrigerating
%
85.0
85.0
112.0
108.0
88.6
110.2
85.4


capacity ratio
(relative










to R410A)























TABLE 42







Comp.
Comp.
Comp.
Comp.
Comp.





Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




22
23
24
25
26
4


Item
Unit
A
B
G
I
J
K′






















HFO-
Mass %
42.8
0.0
52.1
52.1
34.3
36.5


1132(E)









HFO-1123
Mass %
0.0
37.8
33.4
0.0
51.2
5.6


R1234yf
Mass %
42.7
47.7
0.0
33.4
0.0
43.4


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5


GWP

100
100
99
100
99
100


COP ratio
%
99.9
98.1
95.8
99.5
94.4
99.5



(relative









to









R410A)








Refrig-
%
85.0
85.0
109.1
89.6
111.1
85.3


erating
(relative








capacity
to








ratio
R410A)























TABLE 43







Comp.
Comp.
Comp.
Comp.
Comp.





Ex.
Ex.
Ex.
Ex.
Ex.





27
28
29
30
31
Ex. 5


Item
Unit
A
B
G
I
J
K′






















HFO-
Mass %
37.0
0.0
48.6
48.6
32.0
32.5


1132(E)









HFO-
Mass %
0.0
33.1
33.2
0.0
49.8
4.0


1123









R1234yf
Mass %
44.8
48.7
0.0
33.2
0.0
45.3


R32
Mass %
18.2
18.2
18.2
18.2
18.2
18.2


GWP

125
125
124
125
124
125


COP
%
100.0
98.6
95.9
99.4
94.7
99.8


ratio
(relative









to









R410A)








Refrig-
%
85.0
85.0
110.1
90.8
111.9
85.2


erating
(relative








capacity
to








ratio
R410A)





























TABLE 44







Comp.
Comp.
Comp.
Comp.
Comp.





Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




32
33
34
35
36
6


Item
Unit
A
B
G
I
J
K′






















HFO-
Mass %
31.5
0.0
45.4
45.4
30.3
28.8


1132(E)









HFO-
Mass %
0.0
28.5
32.7
0.0
47.8
2.4


1123









R1234yf
Mass %
46.6
49.6
0.0
32.7
0.0
46.9


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9


GWP

150
150
149
150
149
150


COP
%
100.2
99.1
96.0
99.4
95.1
100.0


ratio
(relative









to









R410A)








Refrig-
%
85.0
85.0
111.0
92.1
112.6
85.1


erating
(relative








capacity
to








ratio
R410A)























TABLE 45







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




37
38
39
40
41
42


Item
Unit
A
B
G
I
J
K′






















HFO-
Mass %
24.8
0.0
41.8
41.8
29.1
24.8


1132(E)









HFO-
Mass %
0.0
22.9
31.5
0.0
44.2
0.0


1123









R1234yf
Mass %
48.5
50.4
0.0
31.5
0.0
48.5


R32
Mass %
26.7
26.7
26.7
26.7
26.7
26.7


GWP

182
182
181
182
181
182


COP
%
100.4
99.8
96.3
99.4
95.6
100.4


ratio
(relative









to









R410A)








Refrig-
%
85.0
85.0
111.9
93.8
113.2
85.0


erating
(relative








capacity
to








ratio
R410A)























TABLE 46







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




43
44
45
46
47
48


Item
Unit
A
B
G
I
J
K′






















HFO-
Mass %
21.3
0.0
40.0
40.0
28.8
24.3


1132(E)









HFO-
Mass %
0.0
19.9
30.7
0.0
41.9
0.0


1123









R1234yf
Mass %
49.4
50.8
0.0
30.7
0.0
46.4


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3


GWP

200
200
198
199
198
200


COP
%
100.6
100.1
96.6
99.5
96.1
100.4


ratio
(relative









to









R410A)








Refrig-
%
85.0
85.0
112.4
94.8
113.6
86.7


erating
(relative








capacity
to








ratio
R410A)























TABLE 47







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




49
50
51
52
53
54


Item
Unit
A
B
G
I
J
K′






















HFO-
Mass %
12.1
0.0
35.7
35.7
29.3
22.5


1132(E)









HFO-
Mass %
0.0
11.7
27.6
0.0
34.0
0.0


1123









R1234yf
Mass %
51.2
51.6
0.0
27.6
0.0
40.8


R32
Mass %
36.7
36.7
36.7
36.7
36.7
36.7


GWP

250
250
248
249
248
250


COP
%
101.2
101.0
96.4
99.6
97.0
100.4


ratio
(relative









to









R410A)








Refrig-
%
85.0
85.0
113.2
97.6
113.9
90.9


erating
(relative








capacity
to








ratio
R410A)























TABLE 48







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




55
56
57
58
59
60


Item
Unit
A
B
G
I
J
K′






















HFO-
Mass %
3.8
0.0
32.0
32.0
29.4
21.1


1132(E)









HFO-
Mass %
0.0
3.9
23.9
0.0
26.5
0.0


1123









R1234yf
Mass %
52.1
52.0
0.0
23.9
0.0
34.8


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1


GWP

300
300
298
299
298
299


COP
%
101.8
101.8
97.9
99.8
97.8
100.5


ratio
(relative









to









R410A)








Refrig-
%
85.0
85.0
113.7
100.4
113.9
94.9


erating
(relative








capacity
to








ratio
R410A)




























TABLE 49







Comp.
Comp.
Comp.
Comp.
Comp.




Ex.
Ex.
Ex.
Ex.
Ex.




61
62
63
64
65


Item
Unit
A = B
G
I
J
K′





















HFO-1132(E)
Mass %
0.0
30.4
30.4
28.9
20.4


HFO-1123
Mass %
0.0
21.8
0.0
23.3
0.0


R1234yf
Mass %
52.2
0.0
21.8
0.0
31.8


R32
Mass %
47.8
47.8
47.8
47.8
47.8


GWP

325
323
324
323
324


COP ratio
% (relative
102.1
98.2
100.0
98.2
100.6



to








R410A)







Refrigerating
% (relative
85.0
113.8
101.8
113.9
96.8


capacity
to







ratio
R410A)

























TABLE 50







Comp.











Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
66
7
8
9
10
11
12
13
























HFO-1132(E)
Mass %
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0


HFO-1123
Mass %
82.9
77.9
72.9
67.9
62.9
57.9
52.9
47.9


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
92.4
92.6
92.8
93.1
93.4
93.7
94.1
94.5



to











R410A)










Refrigerating
% (relative
108.4
108.3
108.2
107.9
107.6
107.2
106.8
106.3


capacity
to










ratio
R410A)

































TABLE 51











Comp.







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
14
15
16
17
67
18
19
20
























HFO-1132(E)
Mass %
45.0
50.0
55.0
60.0
65.0
10.0
15.0
20.0


HFO-1123
Mass %
42.9
37.9
32.9
27.9
22.9
72.9
67.9
62.9


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
10.0
10.0
10.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
95.0
95.4
95.9
96.4
96.9
93.0
93.3
93.6



to











R410A)










Refrigerating
% (relative
105.8
105.2
104.5
103.9
103.1
105.7
105.5
105.2


capacity
to










ratio
R410A)

























TABLE 52





Item
Unit
Ex. 21
Ex. 22
Ex. 23
Ex. 24
Ex. 25
Ex. 26
Ex. 27
Ex. 28
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0


HFO-1123
Mass %
57.9
52.9
47.9
42.9
37.9
32.9
27.9
22.9


R1234yf
Mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
93.9
94.2
94.6
95.0
95.5
96.0
96.4
96.9



to R410A)










Refrigerating
% (relative
104.9
104.5
104.1
103.6
103.0
102.4
101.7
101.0


capacity
to










ratio
R410A)

























TABLE 53







Comp. Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
68
29
30
31
32
33
34
35
























HFO-1132(E)
Mass %
65.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0


HFO-1123
Mass %
17.9
67.9
62.9
57.9
52.9
47.9
42.9
37.9


R1234yf
Mass %
10.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
97.4
93.5
93.8
94.1
94.4
94.8
95.2
95.6



to











R410A)










Refrigerating
% (relative
100.3
102.9
102.7
102.5
102.1
101.7
101.2
100.7


capacity
to










ratio
R410A)

























TABLE 54







Ex.
Ex.
Ex.
Ex.
Comp. Ex.
Ex.
Ex.
Ex.


Item
Unit
36
37
38
39
69
40
41
42
























HFO-1132(E)
Mass %
45.0
50.0
55.0
60.0
65.0
10.0
15.0
20.0


HFO-1123
Mass %
32.9
27.9
22.9
17.9
12.9
62.9
57.9
52.9


R1234yf
Mass %
15.0
15.0
15.0
15.0
15.0
20.0
20.0
20.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
96.0
96.5
97.0
97.5
98.0
94.0
94.3
94.6



to











R410A)










Refrigerating
% (relative
100.1
99.5
98.9
98.1
97.4
100.1
99.9
99.6


capacity
to










ratio
R410A)

























TABLE 55





Item
Unit
Ex. 43
Ex. 44
Ex. 45
Ex. 46
Ex. 47
Ex. 48
Ex. 49
Ex. 50
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0


HFO-1123
Mass %
47.9
42.9
37.9
32.9
27.9
22.9
17.9
12.9


R1234yf
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
95.0
95.3
95.7
96.2
96.6
97.1
97.6
98.1



to R410A)










Refrigerating
% (relative
99.2
98.8
98.3
97.8
97.2
96.6
95.9
95.2


capacity ratio
to R410A)

























TABLE 56







Comp. Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
70
51
52
53
54
55
56
57
























HFO-1132(E)
Mass %
65.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0


HFO-1123
Mass %
7.9
57.9
52.9
47.9
42.9
37.9
32.9
27.9


R1234yf
Mass %
20.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
50
50
50
50
50
50
50


COP ratio
% (relative
98.6
94.6
94.9
95.2
95.5
95.9
96.3
96.8



to R410A)










Refrigerating
% (relative
94.4
97.1
96.9
96.7
96.3
95.9
95.4
94.8


capacity ratio
to R410A)

























TABLE 57







Ex.
Ex.
Ex.
Ex.
Comp. Ex.
Ex.
Ex.
Ex.


Item
Unit
58
59
60
61
71
62
63
64
























HFO-1132(E)
Mass %
45.0
50.0
55.0
60.0
65.0
10.0
15.0
20.0


HFO-1123
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
30.0
30.0
30.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative
97.2
97.7
98.2
98.7
99.2
95.2
95.5
95.8



to R410A)










Refrigerating
% (relative
94.2
93.6
92.9
92.2
91.4
94.2
93.9
93.7


capacity ratio
to R410A)

























TABLE 58





Item
Unit
Ex. 65
Ex. 66
Ex. 67
Ex. 68
Ex. 69
Ex. 70
Ex. 71
Ex. 72
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0


HFO-1123
Mass %
37.9
32.9
27.9
22.9
17.9
12.9
7.9
2.9


R1234yf
Mass %
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative
96.2
96.6
97.0
97.4
97.9
98.3
98.8
99.3



to R410A)










Refrigerating
% (relative
93.3
92.9
92.4
91.8
91.2
90.5
89.8
89.1


capacity ratio
to R410A)

























TABLE 59





Item
Unit
Ex. 73
Ex. 74
Ex. 75
Ex. 76
Ex. 77
Ex. 78
Ex. 79
Ex. 80
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
47.9
42.9
37.9
32.9
27.9
22.9
17.9
12.9


R1234yf
Mass %
35.0
35.0
35.0
35.0
35.0
35.0
35.0
35.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative
95.9
96.2
96.5
96.9
97.2
97.7
98.1
98.5



to R410A)










Refrigerating
% (relative
91.1
90.9
90.6
90.2
89.8
89.3
88.7
88.1


capacity ratio
to R410A)

























TABLE 60





Item
Unit
Ex. 81
Ex. 82
Ex. 83
Ex. 84
Ex. 85
Ex. 86
Ex. 87
Ex. 88
























HFO-1132(E)
Mass %
50.0
55.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
7.9
2.9
42.9
37.9
32.9
27.9
22.9
17.9


R1234yf
Mass %
35.0
35.0
40.0
40.0
40.0
40.0
40.0
40.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative
99.0
99.4
96.6
96.9
97.2
97.6
98.0
98.4



to R410A)










Refrigerating
% (relative
87.4
86.7
88.0
87.8
87.5
87.1
86.6
86.1


capacity ratio
to R410A)

























TABLE 61







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.


Item
Unit
Ex. 72
Ex. 73
Ex. 74
Ex. 75
Ex. 76
Ex. 77
Ex. 78
Ex. 79
























HFO-1132(E)
Mass %
40.0
45.0
50.0
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
12.9
7.9
2.9
37.9
32.9
27.9
22.9
17.9


R1234yf
Mass %
40.0
40.0
40.0
45.0
45.0
45.0
45.0
45.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative
98.8
99.2
99.6
97.4
97.7
98.0
98.3
98.7



to R410A)










Refrigerating
% (relative
85.5
84.9
84.2
84.9
84.6
84.3
83.9
83.5


capacity ratio
to R410A)




















TABLE 62







Comp.
Comp.
Comp.


Item
Unit
Ex. 80
Ex. 81
Ex. 82



















HFO-1132(E)
Mass %
35.0
40.0
45.0


HFO-1123
Mass %
12.9
7.9
2.9


R1234yf
Mass %
45.0
45.0
45.0


R32
Mass %
7.1
7.1
7.1


GWP

50
50
50


COP ratio
% (relative
99.1
99.5
99.9



to R410A)


Refrigerating
% (relative
82.9
82.3
81.7


capacity ratio
to R410A)

























TABLE 63





Item
Unit
Ex. 89
Ex. 90
Ex. 91
Ex. 92
Ex. 93
Ex. 94
Ex. 95
Ex. 96
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
70.5
65.5
60.5
55.5
50.5
45.5
40.5
35.5


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
93.7
93.9
94.1
94.4
94.7
95.0
95.4
95.8



to R410A)










Refrigerating
% (relative
110.2
110.0
109.7
109.3
108.9
108.4
107.9
107.3


capacity ratio
to R410A)

























TABLE 64







Ex.
Comp. Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
97
83
98
99
100
101
102
103
























HFO-1132(E)
Mass %
50.0
55.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
30.5
25.5
65.5
60.5
55.5
50.5
45.5
40.5


R1234yf
Mass %
5.0
5.0
10.0
10.0
10.0
10.0
10.0
10.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
96.2
96.6
94.2
94.4
94.6
94.9
95.2
95.5



to R410A)










Refrigerating
% (relative
106.6
106.0
107.5
107.3
107.0
106.6
106.1
105.6


capacity ratio
to R410A)

























TABLE 65







Ex.
Ex.
Ex.
Comp. Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
104
105
106
84
107
108
109
110
























HFO-1132(E)
Mass %
40.0
45.0
50.0
55.0
10.0
15.0
20.0
25.0


HFO-1123
Mass %
35.5
30.5
25.5
20.5
60.5
55.5
50.5
45.5


R1234yf
Mass %
10.0
10.0
10.0
10.0
15.0
15.0
15.0
15.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
95.9
96.3
96.7
97.1
94.6
94.8
95.1
95.4



to R410A)










Refrigerating
% (relative
105.1
104.5
103.8
103.1
104.7
104.5
104.1
103.7


capacity ratio
to R410A)

























TABLE 66







Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.
Ex.
Ex.


Item
Unit
111
112
113
114
115
85
116
117
























HFO-1132(E)
Mass %
30.0
35.0
40.0
45.0
50.0
55.0
10.0
15.0


HFO-1123
Mass %
40.5
35.5
30.5
25.5
20.5
15.5
55.5
50.5


R1234yf
Mass %
15.0
15.0
15.0
15.0
15.0
15.0
20.0
20.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
95.7
96.0
96.4
96.8
97.2
97.6
95.1
95.3



to R410A)










Refrigerating
% (relative
103.3
102.8
102.2
101.6
101.0
100.3
101.8
101.6


capacity ratio
to R410A)

























TABLE 67







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.


Item
Unit
118
119
120
121
122
123
124
86
























HFO-1132(E)
Mass %
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0


HFO-1123
Mass %
45.5
40.5
35.5
30.5
25.5
20.5
15.5
10.5


R1234yf
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
95.6
95.9
96.2
96.5
96.9
97.3
97.7
98.2



to R410A)










Refrigerating
% (relative
101.2
100.8
100.4
99.9
99.3
98.7
98.0
97.3


capacity ratio
to R410A)

























TABLE 68







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
125
126
127
128
129
130
131
132
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
50.5
45.5
40.5
35.5
30.5
25.5
20.5
15.5


R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
95.6
95.9
96.1
96.4
96.7
97.1
97.5
97.9



to R410A)










Refrigerating
% (relative
98.9
98.6
98.3
97.9
97.4
96.9
96.3
95.7


capacity ratio
to R410A)

























TABLE 69







Ex.
Comp. Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
133
87
134
135
136
137
138
139
























HFO-1132(E)
Mass %
50.0
55.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
10.5
5.5
45.5
40.5
35.5
30.5
25.5
20.5


R1234yf
Mass %
25.0
25.0
30.0
30.0
30.0
30.0
30.0
30.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
100
100
100
100
100
100


COP ratio
% (relative
98.3
98.7
96.2
96.4
96.7
97.0
97.3
97.7



to R410A)










Refrigerating
% (relative
95.0
94.3
95.8
95.6
95.2
94.8
94.4
93.8


capacity ratio
to R410A)

























TABLE 70







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
140
141
142
143
144
145
146
147
























HFO-1132(E)
Mass %
40.0
45.0
50.0
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
15.5
10.5
5.5
40.5
35.5
30.5
25.5
20.5


R1234yf
Mass %
30.0
30.0
30.0
35.0
35.0
35.0
35.0
35.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

100
100
100
100
100
100
100
100


COP ratio
% (relative
98.1
98.5
98.9
96.8
97.0
97.3
97.6
97.9



to R410A)










Refrigerating
% (relative
93.3
92.6
92.0
92.8
92.5
92.2
91.8
91.3


capacity ratio
to R410A)



























TABLE 71








Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




Item
Unit
148
149
150
151
152
153
154
155



























HFO-1132(E)
Mass %
35.0
40.0
45.0
10.0
15.0
20.0
25.0
30.0




HFO-1123
Mass %
15.5
10.5
5.5
35.5
30.5
25.5
20.5
15.5




R1234yf
Mass %
35.0
35.0
35.0
40.0
40.0
40.0
40.0
40.0




R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5




GWP

100
100
100
100
100
100
100
100




COP ratio
% (relative
98.3
98.7
99.1
97.4
97.7
98.0
98.3
98.6





to R410A)












Refrigerating
% (relative
90.8
90.2
89.6
89.6
89.4
89.0
88.6
88.2




capacity ratio
to R410A)

























TABLE 72







Ex.
Ex.
Ex.
Ex.
Ex.
Comp.
Comp.
Comp.


Item
Unit
156
157
158
159
160
Ex. 88
Ex. 89
Ex. 90
























HFO-1132(E)
Mass %
35.0
40.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
10.5
5.5
30.5
25.5
20.5
15.5
10.5
5.5


R1234yf
Mass %
40.0
40.0
45.0
45.0
45.0
45.0
45.0
45.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

100
100
100
100
100
100
100
100


COP ratio
% (relative
98.9
99.3
98.1
98.4
98.7
98.9
99.3
99.6



to R410A)










Refrigerating
% (relative
87.6
87.1
86.5
86.2
85.9
85.5
85.0
84.5


capacity ratio
to R410A)






















TABLE 73







Comp.
Comp.
Comp.
Comp.
Comp.


Item
Unit
Ex. 91
Ex. 92
Ex. 93
Ex. 94
Ex. 95





















HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
25.5
20.5
15.5
10.5
5.5


R1234yf
Mass %
50.0
50.0
50.0
50.0
50.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5


GWP

100
100
100
100
100


COP ratio
% (relative
98.9
99.1
99.4
99.7
100.0



to R410A)







Refrigerating
% (relative
83.3
83.0
82.7
82.2
81.8


capacity ratio
to R410A)



























TABLE 74








Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




Item
Unit
161
162
163
164
165
166
167
168



























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0




HFO-1123
Mass %
63.1
58.1
53.1
48.1
43.1
38.1
33.1
28.1




R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0




R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9




GWP

149
149
149
149
149
149
149
149




COP ratio
% (relative
94.8
95.0
95.2
95.4
95.7
95.9
96.2
96.6





to R410A)












Refrigerating
% (relative
111.5
111.2
110.9
110.5
110.0
109.5
108.9
108.3




capacity ratio
to R410A)



























TABLE 75








Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




Item
Unit
Ex. 96
169
170
171
172
173
174
175



























HFO-1132(E)
Mass %
50.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0




HFO-1123
Mass %
23.1
58.1
53.1
48.1
43.1
38.1
33.1
28.1




R1234yf
Mass %
5.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0




R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9




GWP

149
149
149
149
149
149
149
149




COP ratio
% (relative
96.9
95.3
95.4
95.6
95.8
96.1
96.4
96.7





to R410A)












Refrigerating
% (relative
107.7
108.7
108.5
108.1
107.7
107.2
106.7
106.1




capacity ratio
to R410A)



























TABLE 76








Ex.
Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




Item
Unit
176
Ex. 97
177
178
179
180
181
182



























HFO-1132(E)
Mass %
45.0
50.0
10.0
15.0
20.0
25.0
30.0
35.0




HFO-1123
Mass %
23.1
18.1
53.1
48.1
43.1
38.1
33.1
28.1




R1234yf
Mass %
10.0
10.0
15.0
15.0
15.0
15.0
15.0
15.0




R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9




GWP

149
149
149
149
149
149
149
149




COP ratio
% (relative
97.0
97.4
95.7
95.9
96.1
96.3
96.6
96.9





to R410A)












Refrigerating
% (relative
105.5
104.9
105.9
105.6
105.3
104.8
104.4
103.8




capacity ratio
to R410A)



























TABLE 77








Ex.
Ex.
Comp.
Ex.
Ex.
Ex.
Ex.
Ex.




Item
Unit
183
184
Ex. 98
185
186
187
188
189



























HFO-1132(E)
Mass %
40.0
45.0
50.0
10.0
15.0
20.0
25.0
30.0




HFO-1123
Mass %
23.1
18.1
13.1
48.1
43.1
38.1
33.1
28.1




R1234yf
Mass %
15.0
15.0
15.0
20.0
20.0
20.0
20.0
20.0




R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9




GWP

149
149
149
149
149
149
149
149




COP ratio
% (relative
97.2
97.5
97.9
96.1
96.3
96.5
96.8
97.1





to R410A)












Refrigerating
% (relative
103.3
102.6
102.0
103.0
102.7
102.3
101.9
101.4




capacity ratio
to R410A)



























TABLE 78








Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.
Ex.




Item
Unit
190
191
192
Ex. 99
193
194
195
196



























HFO-1132(E)
Mass %
35.0
40.0
45.0
50.0
10.0
15.0
20.0
25.0




HFO-1123
Mass %
23.1
18.1
13.1
8.1
43.1
38.1
33.1
28.1




R1234yf
Mass %
20.0
20.0
20.0
20.0
25.0
25.0
25.0
25.0




R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9




GWP

149
149
149
149
149
149
149
149




COP ratio
% (relative
97.4
97.7
98.0
98.4
96.6
96.8
97.0
97.3





to R410A)












Refrigerating
% (relative
100.9
100.3
99.7
99.1
100.0
99.7
99.4
98.9




capacity ratio
to R410A)



























TABLE 79








Ex.
Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.




Item
Unit
197
198
199
200
Ex. 100
201
202
203



























HFO-1132(E)
Mass %
30.0
35.0
40.0
45.0
50.0
10.0
15.0
20.0




HFO-1123
Mass %
23.1
18.1
13.1
8.1
3.1
38.1
33.1
28.1




R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
30.0
30.0
30.0




R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9




GWP

149
149
149
149
149
150
150
150




COP ratio
% (relative
97.6
97.9
98.2
98.5
98.9
97.1
97.3
97.6





to R410A)












Refrigerating
% (relative
98.5
97.9
97.4
96.8
96.1
97.0
96.7
96.3




capacity ratio
to R410A)



























TABLE 80








Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




Item
Unit
204
205
206
207
208
209
210
211



























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
10.0
15.0
20.0




HFO-1123
Mass %
23.1
18.1
13.1
8.1
3.1
33.1
28.1
23.1




R1234yf
Mass %
30.0
30.0
30.0
30.0
30.0
35.0
35.0
35.0




R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9




GWP

150
150
150
150
150
150
150
150




COP ratio
% (relative
97.8
98.1
98.4
98.7
99.1
97.7
97.9
98.1





to R410A)












Refrigerating
% (relative
95.9
95.4
94.9
94.4
93.8
93.9
93.6
93.3




capacity ratio
to R410A)



























TABLE 81








Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.




Item
Unit
212
213
214
215
216
217
218
219



























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
10.0
15.0
20.0
25.0




HFO-1123
Mass %
18.1
13.1
8.1
3.1
28.1
23.1
18.1
13.1




R1234yf
Mass %
35.0
35.0
35.0
35.0
40.0
40.0
40.0
40.0




R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9




GWP

150
150
150
150
150
150
150
150




COP ratio
% (relative
98.4
98.7
99.0
99.3
98.3
98.5
98.7
99.0





to R410A)












Refrigerating
% (relative
92.9
92.4
91.9
91.3
90.8
90.5
90.2
89.7




capacity ratio
to R410A)



























TABLE 82








Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp.




Item
Unit
220
221
222
223
224
225
226
Ex. 101



























HFO-1132(E)
Mass %
30.0
35.0
10.0
15.0
20.0
25.0
30.0
10.0




HFO-1123
Mass %
8.1
3.1
23.1
18.1
13.1
8.1
3.1
18.1




R1234yf
Mass %
40.0
40.0
45.0
45.0
45.0
45.0
45.0
50.0




R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9




GWP

150
150
150
150
150
150
150
150




COP ratio
% (relative
99.3
99.6
98.9
99.1
99.3
99.6
99.9
99.6





to R410A)












Refrigerating
% (relative
89.3
88.8
87.6
87.3
87.0
86.6
86.2
84.4




capacity ratio
to R410A)




















TABLE 83







Comp. Ex.
Comp. Ex.
Comp. Ex.


Item
Unit
102
103
104



















HFO-1132(E)
Mass %
15.0
20.0
25.0


HFO-1123
Mass %
13.1
8.1
3.1


R1234yf
Mass %
50.0
50.0
50.0


R32
Mass %
21.9
21.9
21.9


GWP

150
150
150


COP ratio
% (relative
99.8
100.0
100.2



to R410A)





Refrigerating
% (relative
84.1
83.8
83.4


capacity ratio
to R410A)



























TABLE 84








Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp.




Item
Unit
227
228
229
230
231
232
233
Ex. 105



























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0




HFO-1123
Mass %
55.7
50.7
45.7
40.7
35.7
30.7
25.7
20.7




R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0




R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3




GWP

199
199
199
199
199
199
199
199




COP ratio
% (relative
95.9
96.0
96.2
96.3
96.6
96.8
97.1
97.3





to R410A)












Refrigerating
% (relative
112.2
111.9
111.6
111.2
110.7
110.2
109.6
109.0




capacity ratio
to R410A)



























TABLE 85








Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp.




Item
Unit
234
235
236
237
238
239
240
Ex. 106



























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0




HFO-1123
Mass %
50.7
45.7
40.7
35.7
30.7
25.7
20.7
15.7




R1234yf
Mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0




R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3




GWP

199
199
199
199
199
199
199
199




COP ratio
% (relative
96.3
96.4
96.6
96.8
97.0
97.2
97.5
97.8





to R410A)












Refrigerating
% (relative
109.4
109.2
108.8
108.4
107.9
107.4
106.8
106.2




capacity ratio
to R410A)

























TABLE 86







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.


Item
Unit
241
242
243
244
245
246
247
107
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
45.7
40.7
35.7
30.7
25.7
20.7
15.7
10.7


R1234yf
Mass %
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative to
96.7
96.8
97.0
97.2
97.4
97.7
97.9
98.2



R410A)


Refrigerating
% (relative to
106.6
106.3
106.0
105.5
105.1
104.5
104.0
103.4


capacity ratio
R410A)

























TABLE 87







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.


Item
Unit
248
249
250
251
252
253
254
108
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
40.7
35.7
30.7
25.7
20.7
15.7
10.7
5.7


R1234yf
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative to
97.1
97.3
97.5
97.7
97.9
98.1
98.4
98.7



R410A)


Refrigerating
% (relative to
103.7
103.4
103.0
102.6
102.2
101.6
101.1
100.5


capacity ratio
R410A)

























TABLE 88







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
255
256
257
258
259
260
261
262
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
10.0


HFO-1123
Mass %
35.7
30.7
25.7
20.7
15.7
10.7
5.7
30.7


R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0
30.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative to
97.6
97.7
97.9
98.1
98.4
98.6
98.9
98.1



R410A)


Refrigerating
% (relative to
100.7
100.4
100.1
99.7
99.2
98.7
98.2
97.7


capacity ratio
R410A)

























TABLE 89







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
263
264
265
266
267
268
269
270
























HFO-1132(E)
Mass %
15.0
20.0
25.0
30.0
35.0
10.0
15.0
20.0


HFO-1123
Mass %
25.7
20.7
15.7
10.7
5.7
25.7
20.7
15.7


R1234yf
Mass %
30.0
30.0
30.0
30.0
30.0
35.0
35.0
35.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
200
200
200


COP ratio
% (relative to
98.2
98.4
98.6
98.9
99.1
98.6
98.7
98.9



R410A)


Refrigerating
% (relative to
97.4
97.1
96.7
96.2
95.7
94.7
94.4
94.0


capacity ratio
R410A)

























TABLE 90







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
271
272
273
274
275
276
277
278
























HFO-1132(E)
Mass %
25.0
30.0
10.0
15.0
20.0
25.0
10.0
15.0


HFO-1123
Mass %
10.7
5.7
20.7
15.7
10.7
5.7
15.7
10.7


R1234yf
Mass %
35.0
35.0
40.0
40.0
40.0
40.0
45.0
45.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

200
200
200
200
200
200
200
200


COP ratio
% (relative to
99.2
99.4
99.1
99.3
99.5
99.7
99.7
99.8



R410A)


Refrigerating
% (relative to
93.6
93.2
91.5
91.3
90.9
90.6
88.4
88.1


capacity ratio
R410A)





















TABLE 91





Item
Unit
Ex. 279
Ex. 280
Comp. Ex. 109
Comp. Ex. 110




















HFO-1132(E)
Mass %
20.0
10.0
15.0
10.0


HFO-1123
Mass %
5.7
10.7
5.7
5.7


R1234yf
Mass %
45.0
50.0
50.0
55.0


R32
Mass %
29.3
29.3
29.3
29.3


GWP

200
200
200
200


COP ratio
% (relative to R410A)
100.0
100.3
100.4
100.9


Refrigerating
% (relative to R410A)
87.8
85.2
85.0
82.0


capacity ratio

























TABLE 92







Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.
Ex.
Ex.


Item
Unit
281
282
283
284
285
111
286
287
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
10.0
15.0


HFO-1123
Mass %
40.9
35.9
30.9
25.9
20.9
15.9
35.9
30.9


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
10.0
10.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

298
298
298
298
298
298
299
299


COP ratio
% (relative to
97.8
97.9
97.9
98.1
98.2
98.4
98.2
98.2



R410A)


Refrigerating
% (relative to
112.5
112.3
111.9
111.6
111.2
110.7
109.8
109.5


capacity ratio
R410A)

























TABLE 93







Ex.
Ex.
Ex.
Comp. Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
288
289
290
112
291
292
293
294
























HFO-1132(E)
Mass %
20.0
25.0
30.0
35.0
10.0
15.0
20.0
25.0


HFO-1123
Mass %
25.9
20.9
15.9
10.9
30.9
25.9
20.9
15.9


R1234yf
Mass %
10.0
10.0
10.0
10.0
15.0
15.0
15.0
15.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

299
299
299
299
299
299
299
299


COP ratio
% (relative to
98.3
98.5
98.6
98.8
98.6
98.6
98.7
98.9



R410A)


Refrigerating
% (relative to
109.2
108.8
108.4
108.0
107.0
106.7
106.4
106.0


capacity ratio
R410A)

























TABLE 94







Ex.
Comp. Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
295
113
296
297
298
299
300
301
























HFO-1132(E)
Mass %
30.0
35.0
10.0
15.0
20.0
25.0
30.0
10.0


HFO-1123
Mass %
10.9
5.9
25.9
20.9
15.9
10.9
5.9
20.9


R1234yf
Mass %
15.0
15.0
20.0
20.0
20.0
20.0
20.0
25.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

299
299
299
299
299
299
299
299


COP ratio
% (relative to
99.0
99.2
99.0
99.0
99.2
99.3
99.4
99.4



R410A)


Refrigerating
% (relative to
105.6
105.2
104.1
103.9
103.6
103.2
102.8
101.2


capacity ratio
R410A)

























TABLE 95







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
302
303
304
305
306
307
308
309
























HFO-1132(E)
Mass %
15.0
20.0
25.0
10.0
15.0
20.0
10.0
15.0


HFO-1123
Mass %
15.9
10.9
5.9
15.9
10.9
5.9
10.9
5.9


R1234yf
Mass %
25.0
25.0
25.0
30.0
30.0
30.0
35.0
35.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

299
299
299
299
299
299
299
299


COP ratio
% (relative to
99.5
99.6
99.7
99.8
99.9
100.0
100.3
100.4



R410A)


Refrigerating
% (relative to
101.0
100.7
100.3
98.3
98.0
97.8
95.3
95.1


capacity ratio
R410A)




















TABLE 96







Item
Unit
Ex. 400




















HFO-1132(E)
Mass %
10.0



HFO-1123
Mass %
5.9



R1234yf
Mass %
40.0



R32
Mass %
44.1



GWP

299



COP ratio
% (relative
100.7




to R410A)



Refrigerating
% (relative
92.3



capacity ratio
to R410A)










The above results indicate that the refrigerating capacity ratio relative to R410A is 85% or more in the following cases:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass %, a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, and the point (0.0, 100.0-a, 0.0) is on the left side, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4) and point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516) and point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801);


if 18.2a<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695) and point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207) and point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9) and point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05).


Actual points having a refrigerating capacity ratio of 85% or more form a curved line that connects point A and point B in FIG. 3, and that extends toward the 1234yf side. Accordingly, when coordinates are on, or on the left side of, the straight line AB, the refrigerating capacity ratio relative to R410A is 85% or more.


Similarly, it was also found that in the ternary composition diagram, if 0<a≤11.1, when coordinates (x,y,z) are on, or on the left side of, a straight line D′C that connects point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6) and point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0); or if 11.1<a≤46.7, when coordinates are in the entire region, the COP ratio relative to that of R410A is 92.5% or more.


In FIG. 3, the COP ratio of 92.5% or more forms a curved line CD. In FIG. 3, an approximate line formed by connecting three points: point C (32.9, 67.1, 0.0) and points (26.6, 68.4, 5) (19.5, 70.5, 10) where the COP ratio is 92.5% when the concentration of R1234yf is 5 mass % and 10 mass was obtained, and a straight line that connects point C and


point D′ (0, 75.4, 24.6), which is the intersection of the approximate line and a point where the concentration of HFO-1132(E) is 0.0 mass % was defined as a line segment D′C. In FIG. 4, point D′(0, 83.4, 9.5) was similarly obtained from an approximate curve formed by connecting point C (18.4, 74.5, 0) and points (13.9, 76.5, 2.5) (8.7, 79.2, 5) where the COP ratio is 92.5%, and a straight line that connects point C and point D′ was defined as the straight line D′C.


The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34−2013. The most flammable fraction was defined as WCFF.


For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34−2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.


The results are shown in Tables 97 to 104.















TABLE 97






Comp.
Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 6
Ex. 13
Ex. 19
Ex. 24
Ex. 29
Ex. 34























WCF
HFO-1132(E)
Mass %
72.0
60.9
55.8
52.1
48.6
45.4



HFO-1123
Mass %
28.0
32.0
33.1
33.4
33.2
32.7



R1234yf
Mass %
0.0
0.0
0.0
0
0
0



R32
Mass %
0.0
7.1
11.1
14.5
18.2
21.9














Burning velocity (WCF)
cm/s
10
10
10
10
10
10





















TABLE 98






Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 39
Ex. 45
Ex. 51
Ex. 57
Ex. 62






















WCF
HFO-1132(E)
Mass %
41.8
40
35.7
32
30.4



HFO-1123
Mass %
31.5
30.7
23.6
23.9
21.8



R1234yf
Mass %
0
0
0
0
0



R32
Mass %
26.7
29.3
36.7
44.1
47.8













Burning velocity (WCF)
cm/s
10
10
10
10
10






















TABLE 99






Comp.
Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 7
Ex. 14
Ex. 20
Ex. 25
Ex. 30
Ex. 35























WCF
HFO-1132(E)
Mass %
72.0
60.9
55.8
52.1
48.6
45.4



HFO-1123
Mass %
0.0
0.0
0.0
0
0
0



R1234yf
Mass %
28.0
32.0
33.1
33.4
33.2
32.7



R32
Mass %
0.0
7.1
11.1
14.5
18.2
21.9














Burning velocity (WCF)
cm/s
10
10
10
10
10
10





















TABLE 100






Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 40
Ex. 46
Ex. 52
Ex. 58
Ex. 63






















WCF
HFO-1132(E)
Mass %
41.8
40
35.7
32
30.4



HFO-1123
Mass %
0
0
0
0
0



R1234yf
Mass %
31.5
30.7
23.6
23.9
21.8



R32
Mass %
26.7
29.3
36.7
44.1
47.8













Burning velocity (WCF)
cm/s
10
10
10
10
10






















TABLE 101





Item
Comp. Ex. 8
Comp. Ex. 15
Comp. Ex. 21
Comp. Ex. 26
Comp. Ex. 31
Comp. Ex. 36























WCF
HFO-1132 (E)
Mass %
47.1
40.5
37.0
34.3
32.0
30.3



HFO-1123
Mass %
52.9
52.4
51.9
51.2
49.8
47.8



R1234yf
Mass %
0.0
0.0
0.0
0.0
0.0
0.0



R32
Mass %
0.0
7.1
11.1
14.5
18.2
21.9













Leak condition that results
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/


in WCFF
Shipping −40° C.,
Shipping −40° C.,
Shipping −40° C.,
Shipping −40° C.,
Shipping −40° C.,
Shipping −40° C.,


















92% release,
92% release,
92% release,
92% release,
92% release,
92% release,





liquid phase
liquid phase
liquid phase
liquid phase
liquid phase
liquid phase





side
side
side
side
side
side


WCFF
HFO-1132 (E)
Mass %
72.0
62.4
56.2
50.6
45.1
40.0



HFO-1123
Mass %
28.0
31.6
33.0
33.4
32.5
30.5



R1234yf
Mass %
0.0
0.0
0.0
20.4
0.0
0.0



R32
Mass %
0.0
50.9
10.8
16.0
22.4
29.5














Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)


Burning velocity
cm/s
10
10
10
10
10
10


(WCFF)





















TABLE 102






Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 41
Ex. 47
Ex. 53
Ex. 59
Ex. 64






















WCF
HFO-1132(E)
Mass %
29.1
28.8
29.3
29.4
28.9



HFO-1123
Mass %
44.2
41.9
34.0
26.5
23.3



R1234yf
Mass %
0.0
0.0
0.0
0.0
0.0



R32
Mass %
26.7
29.3
36.7
44.1
47.8












Leak condition that results
Storage/
Storage/
Storage/
Storage/
Storage/


in WCFF
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°



C., 92% release,
C., 92% release,
C., 92% release,
C., 90% release,
C., 86% release,



liquid phase
liquid phase
liquid phase
gas phase
gas phase



side
side
side
side
side














WCFF
HFO-1132(E)
Mass %
34.6
32.2
27.7
28.3
27.5



HFO-1123
Mass %
26.5
23.9
17.5
18.2
16.7



R1234yf
Mass %
0.0
0.0
0.0
0.0
0.0



R32
Mass %
38.9
43.9
54.8
53.5
55.8













Burning velocity
cm/s
8 or less
8 or less
8.3
9.3
9.6


(WCF)


Burning velocity
cm/s
10
10
10
10
10


(WCFF)






















TABLE 103






Comp.
Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 9
Ex. 16
Ex. 22
Ex. 27
Ex. 32
Ex. 37























WCF
HFO-1132(E)
Mass %
61.7
47.0
41.0
36.5
32.5
28.8



HFO-1123
Mass %
5.9
7.2
6.5
5.6
4.0
2.4



R1234yf
Mass %
32.4
38.7
41.4
43.4
45.3
46.9



R32
Mass %
0.0
7.1
11.1
14.5
18.2
21.9













Leak condition that results
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/


in WCFF
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°



C., 0% release,
C., 0% release,
C., 0% release,
C., 92% release,
C., 0% release,
C., 0% release,



gas phase
gas phase
gas phase
liquid
gas phase
gas phase



side
side
side
phase side
side
side















WCFF
HFO-1132(E)
Mass %
72.0
56.2
50.4
46.0
42.4
39.1



HFO-1123
Mass %
10.5
12.6
11.4
10.1
7.4
4.4



R1234yf
Mass %
17.5
20.4
21.8
22.9
24.3
25.7



R32
Mass %
0.0
10.8
16.3
21.0
25.9
30.8














Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)


Burning velocity
cm/s
10
10
10
10
10
10


(WCFF)





















TABLE 104






Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 42
Ex. 48
Ex. 54
Ex. 60
Ex. 65






















WCF
HFO-1132(E)
Mass %
24.8
24.3
22.5
21.1
20.4



HFO-1123
Mass %
0.0
0.0
0.0
0.0
0.0



R1234yf
Mass %
48.5
46.4
40.8
34.8
31.8



R32
Mass %
26.7
29.3
36.7
44.1
47.8












Leak conditions that results
Storage/
Storage/
Storage/
Storage/
Storage/


in WCFF
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°



C., 0% release,
C., 0% release,
C., 0% release,
C., 0% release,
C., 0% release,



gas phase
gas phase
gas phase
gas phase
gas phase



side
side
side
side
side














WCFF
HFO-1132(E)
Mass %
35.3
34.3
31.3
29.1
28.1



HFO-1123
Mass %
0.0
0.0
0.0
0.0
0.0



R1234yf
Mass %
27.4
26.2
23.1
19.8
18.2



R32
Mass %
37.3
39.6
45.6
51.1
53.7













Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)


Burning velocity
cm/s
10
10
10
10
10


(WCFF)









The results in Tables 97 to 100 indicate that the refrigerant has a WCF lower flammability in the following cases:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % and a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0) and point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0) and point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895); if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0) and point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273); if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0) and point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014); and if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0) and point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098).


Three points corresponding to point G (Table 105) and point I (Table 106) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.












TABLE 105







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
72.0
60.9
55.8
55.8
52.1
48.6
48.6
45.4
41.8


HFO-1123
28.0
32.0
33.1
33.1
33.4
33.2
33.2
32.7
31.5


R1234yf
0
0
0
0
0
0
0
0
0










R32
a
a
a


HFO-1132(E)
 0.026a2 − 1.7478a + 72.0
 0.02a2 − 1.6013a + 71.105
 0.0135a2 − 1.4068a + 69.727


Approximate


expression


HFO-1123
−0.026a2 + 0.7478a + 28.0
−0.02a2 + 0.6013a + 28.895
−0.0135a2 + 0.4068a + 30.273


Approximate


expression


R1234yf
0
0
0


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
41.8
40.0
35.7
35.7
32.0
30.4



HFO-1123
31.5
30.7
27.6
27.6
23.9
21.8



R1234yf
0
0
0
0
0
0











R32
a
a



HFO-1132(E)
 0.0111a2 − 1.3152a + 68.986
 0.0061a2 − 0.9918a + 63.902



Approximate



expression



HFO-1123
−0.0111a2 + 0.3152a + 31.014
−0.0061a2 − 0.0082a + 36.098



Approximate



expression



R1234yf
0
0



Approximate



expression




















TABLE 106







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
72.0
60.9
55.8
55.8
52.1
48.6
48.6
45.4
41.8


HFO-1123
0
0
0
0
0
0
0
0
0


R1234yf
28.0
32.0
33.1
33.1
33.4
33.2
33.2
32.7
31.5










R32
a
a
a


HFO-1132(E)
 0.026a2 − 1.7478a + 72.0
 0.02a2 − 1.6013a + 71.105
 0.0135a2 − 1.4068a + 69.727


Approximate


expression


HFO-1123
0
0
0


Approximate


expression


R1234yf
−0.026a2 + 0.7478a + 28.0
−0.02a2 + 0.6013a + 28.895
−0.0135a2 + 0.4068a + 30.273


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
41.8
40.0
35.7
35.7
32.0
30.4



HFO-1123
0
0
0
0
0
0



R1234yf
31.5
30.7
23.6
23.6
23.5
21.8











R32
x
x



HFO-1132(E)
 0.0111a2 − 1.3152a + 68.986
 0.0061a2 − 0.9918a + 63.902



Approximate



expression



HFO-1123
0
0



Approximate



expression



R1234yf
−0.0111a2 + 0.3152a + 31.014
−0.0061a2 − 0.0082a + 36.098



Approximate



expression










The results in Tables 101 to 104 indicate that the refrigerant is determined to have a WCFF lower flammability, and the flammability classification according to the ASHRAE Standard is “2L (flammability)” in the following cases:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % and a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line JK′ that connects point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0) and point K′(0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4); if 11.1<a≤18.2, coordinates are on a straight line JK′ that connects point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0) and point K′(0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177); if 18.2<a≤26.7, coordinates are on or below a straight line JK′ that connects point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0) and point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783); if 26.7<a≤36.7, coordinates are on or below a straight line JK′ that connects point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0) and point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05); and if 36.7<a≤46.7, coordinates are on or below a straight line JK′ that connects point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0) and point K′(−1.892a+29.443, 0.0, 0.892a+70.557).


Actual points having a WCFF lower flammability form a curved line that connects point J and point K′ (on the straight line AB) in FIG. 3 and extends toward the HFO-1132(E) side. Accordingly, when coordinates are on or below the straight line JK′, WCFF lower flammability is achieved.


Three points corresponding to point J (Table 107) and point K′ (Table 108) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.












TABLE 107







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
47.1
40.5
37
37.0
34.3
32.0
32.0
30.3
29.1


HFO-1123
52.9
52.4
51.9
51.9
51.2
49.8
49.8
47.8
44.2


R1234yf
0
0
0
0
0
0
0
0
0










R32
a
a
a


HFO-1132(E)
 0.0049a2 − 0.9645a + 47.1
 0.0243a2 − 1.4161a + 49.725
 0.0246a2 − 1.4476a + 50.184


Approximate


expression


HFO-1123
−0.0049a2 − 0.0355a + 52.9
−0.0243a2 + 0.4161a + 50.275
−0.0246a2 + 0.4476a + 49.816


Approximate


expression


R1234yf
0
0
0


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
47.8 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
29.1
28.8
29.3
29.3
29.4
28.9



HFO-1123
44.2
41.9
34.0
34.0
26.5
23.3



R1234yf
0
0
0
0
0
0











R32
a
a



HFO-1132(E)
 0.0183a2 − 1.1399a + 46.493
−0.0134a2 + 1.0956a + 7.13 



Approximate



expression



HFO-1123
−0.0183a2 + 0.1399a + 53.507
 0.0134a2 − 2.0956a + 92.87



Approximate



expression



R1234yf
0
0



Approximate



expression




















TABLE 108







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
61.7
47.0
41.0
41.0
36.5
32.5
32.5
28.8
24.8


HFO-1123
5.9
7.2
6.5
6.5
5.6
4.0
4.0
2.4
0


R1234yf
32.4
38.7
41.4
41.4
43.4
45.3
45.3
46.9
48.5










R32
x
x
x


HFO-1132(E)
 0.0514a2 − 2.4353a + 61.7
 0.0341a2 − 2.1977a + 61.187
 0.0196a2 − 1.7863a + 58.515


Approximate


expression


HFO-1123
−0.0323a2 + 0.4122a + 5.9 
−0.0236a2 + 0.34a + 5.636 
−0.0079a2 − 0.1136a + 8.702 


Approximate


expression


R1234yf
−0.0191a2 + 1.0231a + 32.4
−0.0105a2 + 0.8577a + 33.177
−0.0117a2 + 0.8999a + 32.783


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
24.8
24.3
22.5
22.5
21.1
20.4



HFO-1123
0
0
0
0
0
0



R1234yf
48.5
46.4
40.8
40.8
34.8
31.8











R32
x
x



HFO-1132(E)
−0.0051a2 + 0.0929a + 25.95
−1.892a + 29.443



Approximate



expression



HFO-1123
0
0



Approximate



expression



R1234yf
 0.0051a2 − 1.0929a + 74.05
 0.892a + 70.557



Approximate



expression











FIGS. 3 to 13 show compositions whose R32 content a (mass %) is 0 mass %, 7.1 mass %, 11.1 mass %, 14.5 mass %, 18.2 mass %, 21.9 mass %, 26.7 mass %, 29.3 mass %, 36.7 mass %, 44.1 mass %, and 47.8 mass %, respectively.


Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.


Point A is a point where the content of HFO-1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).












TABLE 109







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
68.6
55.3
48.4
48.4
42.8
37
37
31.5
24.8


HFO-1123
0
0
0
0
0
0
0
0
0


R1234yf
31.4
37.6
40.5
40.5
42.7
44.8
44.8
46.6
48.5










R32
a
a
a


HFO-1132(E)
 0.0134a2 − 1.9681a + 68.6
 0.0112a2 − 1.9337a + 68.484
 0.0107a2 − 1.9142a + 68.305


Approximate


expression


HFO-1123
0
0
0


Approximate


expression


R1234yf
−0.0134a2 + 0.9681a + 31.4
−0.0112a2 + 0.9337a + 31.516
−0.0107a2 + 0.9142a + 31.695


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
24.8
21.3
12.1
12.1
3.8
0



HFO-1123
0
0
0
0
0
0



R1234yf
48.5
49.4
51.2
51.2
52.1
52.2











R32
a
a



HFO-1132(E)
 0.0103a2 − 1.9225a + 68.793
 0.0085a2 − 1.8102a + 67.1



Approximate



expression



HFO-1123
0
0



Approximate



expression



R1234yf
−0.0103a2 + 0.9225a + 31.207
−0.0085a2 + 0.8102a + 32.9



Approximate



expression










Point B is a point where the content of HFO-1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.


Three points corresponding to point B were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 110).












TABLE 110







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
0
0
0
0
0
0
0
0
0


HFO-1123
58.7
47.8
42.3
42.3
37.8
33.1
33.1
28.5
22.9


R1234yf
41.3
45.1
46.6
46.6
47.7
48.7
48.7
49.6
50.4










R32
a
a
a


HFO-1132(E)
0
0
0


Approximate


expression


HFO-1123
 0.0144a2 − 1.6377a + 58.7
 0.0075a2 − 1.5156a + 58.199
 0.009a2 − 1.6045a + 59.318


Approximate


expression


R1234yf
−0.0144a2 + 0.6377a + 41.3
−0.0075a2 + 0.5156a + 41.801
−0.009a2 + 0.6045a + 40.682


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
0
0
0
0
0
0



HFO-1123
22.9
19.9
11.7
11.8
3.9
0



R1234yf
50.4
50.8
51.6
51.5
52.0
52.2











R32
a
a



HFO-1132(E)
0
0



Approximate



expression



HFO-1123
 0.0046a2 − 1.41a + 57.286
 0.0012a2 − 1.1659a + 52.95



Approximate



expression



R1234yf
−0.0046a2 + 0.41a + 42.714
−0.0012a2 + 0.1659a + 47.05



Approximate



expression










Point D′ is a point where the content of HFO-1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.


Three points corresponding to point D′ were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 111).












TABLE 111







Item
11.1 ≥ R32 > 0





















R32
0
7.1
11.1



HFO-1132(E)
0
0
0



HFO-1123
75.4
83.4
88.9



R1234yf
24.6
9.5
0










R32
a



HFO-1132(E)
0



Approximate



expression



HFO-1123
 0.0224a2 + 0.968a + 75.4



Approximate



expression



R1234yf
−0.0224a2 − 1.968a + 24.6



Approximate



expression










Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.


Three points corresponding to point C were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 112).












TABLE 112







Item
11.1 ≥ R32 > 0





















R32
0
7.1
11.1



HFO-1132(E)
32.9
18.4
0



HFO-1123
67.1
74.5
88.9



R1234yf
0
0
0










R32
a



HFO-1132(E)
−0.2304a2 − 0.4062a + 32.9



Approximate



expression



HFO-1123
 0.2304a2 − 0.5938a + 67.1



Approximate



expression



R1234yf
0



Approximate



expression










(5-4) Refrigerant D

The refrigerant D according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).


The refrigerant D according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:


point I (72.0, 0.0, 28.0),


point J (48.5, 18.3, 33.2),


point N (27.7, 18.2, 54.1), and


point E (58.3, 0.0, 41.7),


or on these line segments (excluding the points on the line segment EI);


the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);


the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and


the line segments JN and EI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:


point M (52.6, 0.0, 47.4),


point M′ (39.2, 5.0, 55.8),


point N (27.7, 18.2, 54.1),


point V (11.0, 18.1, 70.9), and


point G (39.6, 0.0, 60.4),


or on these line segments (excluding the points on the line segment GM);


the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);


the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);


the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and


the line segments NV and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:


point O (22.6, 36.8, 40.6),


point N (27.7, 18.2, 54.1), and


point U (3.9, 36.7, 59.4),


or on these line segments;


the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);


the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and


the line segment UO is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:


point Q (44.6, 23.0, 32.4),


point R (25.5, 36.8, 37.7),


point T (8.6, 51.6, 39.8),


point L (28.9, 51.7, 19.4), and


point K (35.6, 36.8, 27.6),


or on these line segments;


the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);


the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);


the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);


the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and


the line segment TL is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:


point P (20.5, 51.7, 27.8),


point S (21.9, 39.7, 38.4), and


point T (8.6, 51.6, 39.8),


or on these line segments;


the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);


the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and


the line segment TP is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ac, cf, fd, and da that connect the following 4 points:


point a (71.1, 0.0, 28.9),


point c (36.5, 18.2, 45.3),


point f (47.6, 18.3, 34.1), and


point d (72.0, 0.0, 28.0),


or on these line segments;


the line segment ac is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);


the line segment fd is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and


the line segments cf and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ab, be, ed, and da that connect the following 4 points:


point a (71.1, 0.0, 28.9),


point b (42.6, 14.5, 42.9),


point e (51.4, 14.6, 34.0), and


point d (72.0, 0.0, 28.0),


or on these line segments;


the line segment ab is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);


the line segment ed is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and


the line segments be and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gi, ij, and jg that connect the following 3 points:


point g (77.5, 6.9, 15.6),


point i (55.1, 18.3, 26.6), and


point j (77.5. 18.4, 4.1),


or on these line segments;


the line segment gi is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and


the line segments ij and jg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gh, hk, and kg that connect the following 3 points:


point g (77.5, 6.9, 15.6),


point h (61.8, 14.6, 23.6), and


point k (77.5, 14.6, 7.9),


or on these line segments;


the line segment gh is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and


the line segments hk and kg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.


The refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.


Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.


(Examples of Refrigerant D)

The present disclosure is described in more detail below with reference to Examples of refrigerant D. However, the refrigerant D is not limited to the Examples.


The composition of each mixed refrigerant of HFO-1132(E), R32, and R1234yf was defined as WCF. A leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34−2013. The most flammable fraction was defined as WCFF.


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. Tables 113 to 115 show the results.

















TABLE 113







Comparative

Example

Example

Example




Example 13
Example
12
Example
14
Example
16


Item
Unit
I
11
J
13
K
15
L
























WCF
HFO-1132 (E)
Mass %
72
57.2
48.5
41.2
35.6
32
28.9



R32
Mass %
0
10
18.3
27.6
36.8
44.2
51.7



R1234yf
Mass %
28
32.8
33.2
31.2
27.6
23.8
19.4















Burning Velocity
cm/s
10
10
10
10
10
10
10


(WCF)























TABLE 114







Comparative

Example

Example





Example 14
Example
19
Example
21
Example


Item
Unit
M
18
W
20
N
22























WCF
HFO-1132 (E)
Mass %
52.6
39.2
32.4
29.3
27.7
24.6



R32
Mass %
0.0
5.0
10.0
14.5
18.2
27.6



R1234yf
Mass %
47.4
55.8
57.6
56.2
54.1
47.8













Leak condition that results
Storage,
Storage,
Storage,
Storage,
Storage,
Storage,


in WCFF
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°



C., 0% release,
C., 0% release,
C., 0% release,
C., 0% release,
C., 0% release,
C., 0% release,



on the gas
on the gas
on the gas
on the gas
on the gas
on the gas



phase side
phase side
phase side
phase side
phase side
phase side















WCF
HFO-1132 (E)
Mass %
72.0
57.8
48.7
43.6
40.6
34.9



R32
Mass %
0.0
9.5
17.9
24.2
28.7
38.1



R1234yf
Mass %
28.0
32.7
33.4
32.2
30.7
27.0














Burning Velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)


Burning Velocity
cm/s
10
10
10  
10  
10  
10  


(WCFF)




















TABLE 115







Example

Example




23
Example
25


Item
Unit
O
24
P




















WCF
HFO-1132 (E)
Mass %
22.6
21.2
20.5



HFO-1123
Mass %
36.8
44.2
51.7



R1234yf
Mass %
40.6
34.6
27.8










Leak condition that results
Storage,
Storage,
Storage,


in WCFF
Shipping, −40° C.,
Shipping, −40° C.,
Shipping, −40° C.,















0% release,
0% release,
0% release,





on the gas
on the gas
on the gas





phase side
phase side
phase side


WCFF
HFO-1132 (E)
Mass %
31.4
29.2
27.1



HFO-1123
Mass %
45.7
51.1
56.4



R1234yf
Mass %
23.0
19.7
16.5











Burning Velocity
cm/s
8 or less
8 or less
8 or less


(WCF)


Burning Velocity
cm/s
10  
10  
10  


(WCFF)









The results indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 14 in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are on the line segment that connects point I, point J, point K, and point L, or below these line segments, the refrigerant has a WCF lower flammability.


The results also indicate that when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 14 are on the line segments that connect point M, point M′, point W, point J, point N, and point P, or below these line segments, the refrigerant has an ASHRAE lower flammability.


Mixed refrigerants were prepared by mixing HFO-1132(E), R32, and R1234yf in amounts (mass %) shown in Tables 116 to 144 based on the sum of HFO-1132(E), R32, and R1234yf. The coefficient of performance (COP) ratio and the refrigerating capacity ratio relative to R410 of the mixed refrigerants shown in Tables 116 to 144 were determined. The conditions for calculation were as described below.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Degree of superheating: 5 K


Degree of subcooling: 5 K


Compressor efficiency: 70%


Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.

















TABLE 116








Comparative
Comparative
Comparative
Comparative
Comparative
Comparative




Comparative
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7


Item
Unit
Example 1
A
B
A′
B′
A″
B″























HFO-1132(E)
Mass %

81.6
0.0
63.1
0.0
48.2
0.0


R32
Mass %
R410A
18.4
18.1
36.9
36.7
51.8
51.5


R1234yf
Mass %

0.0
81.9
0.0
63.3
0.0
48.5


GWP

2088
125
125
250
250
350
350


COP Ratio
% (relative
100
98.7
103.6
98.7
102.3
99.2
102.2



to R410A)


Refrigerating
% (relative
100
105.3
62.5
109.9
77.5
112.1
87.3


Capacity Ratio
to R410A)
























TABLE 117







Comparative

Comparative

Example

Example




Example 8
Comparative
Example 10
Example
2
Example
4


Item
Unit
C
Example 9
C′
1
R
3
T























HFO-1132(E)
Mass %
85.5
66.1
52.1
37.8
25.5
16.6
8.6


R32
Mass %
0.0
10.0
18.2
27.6
36.8
44.2
51.6


R1234yf
Mass %
14.5
23.9
29.7
34.6
37.7
39.2
39.8


GWP

1
69
125
188
250
300
350


COP Ratio
% (relative
99.8
99.3
99.3
99.6
100.2
100.8
101.4



to R410A)


Refrigerating
% (relative
92.5
92.5
92.5
92.5
92.5
92.5
92.5


Capacity Ratio
to R410A)

























TABLE 118







Comparative

Example

Example
Comparative

Example




Example 11
Example
6
Example
8
Example 12
Example
10


Item
Unit
E
5
N
7
U
G
9
V
























HFO-1132(E)
Mass %
58.3
40.5
27.7
14.9
3.9
39.6
22.8
11.0


R32
Mass %
0.0
10.0
18.2
27.6
36.7
0.0
10.0
18.1


R1234yf
Mass %
41.7
49.5
54.1
57.5
59.4
60.4
67.2
70.9


GWP

2
70
125
189
250
3
70
125


COP Ratio
% (relative
100.3
100.3
100.7
101.2
101.9
101.4
101.8
102.3



to R410A)


Refrigerating
% (relative
80.0
80.0
80.0
80.0
80.0
70.0
70.0
70.0


Capacity Ratio
to R410A)

























TABLE 119







Comparative

Example

Example

Example
Example




Example 13
Example
12
Example
14
Example
16
17


Item
Unit
I
11
J
13
K
15
L
Q
























HFO-1132(E)
Mass %
72.0
57.2
48.5
41.2
35.6
32.0
28.9
44.6


R32
Mass %
0.0
10.0
18.3
27.6
36.8
44.2
51.7
23.0


R1234yf
Mass %
28.0
32.8
33.2
31.2
27.6
23.8
19.4
32.4


GWP

2
69
125
188
250
300
350
157


COP Ratio
% (relative
99.9
99.5
99.4
99.5
99.6
99.8
100.1
99.4



to R410A)


Refrigerating
% (relative
86.6
88.4
90.9
94.2
97.7
100.5
103.3
92.5


Capacity Ratio
to R410A)























TABLE 120







Comparative

Example

Example





Example 14
Example
19
Example
21
Example


Item
Unit
M
18
W
20
N
22






















HFO-1132(E)
Mass %
52.6
39.2
32.4
29.3
27.7
24.5


R32
Mass %
0.0
5.0
10.0
14.5
18.2
27.6


R1234yf
Mass %
47.4
55.8
57.6
56.2
54.1
47.9


GWP

2
36
70
100
125
188


COP Ratio
% (relative
100.5
100.9
100.9
100.8
100.7
100.4



to R410A)


Refrigerating
% (relative
77.1
74.8
75.6
77.8
80.0
85.5


Capacity Ratio
to R410A)





















TABLE 121







Example

Example
Example




23
Example
25
26


Item
Unit
O
24
P
S




















HFO-1132(E)
Mass %
22.6
21.2
20.5
21.9


R32
Mass %
36.8
44.2
51.7
39.7


R1234yf
Mass %
40.6
34.6
27.8
38.4


GWP

250
300
350
270


COP Ratio
% (relative
100.4
100.5
100.6
100.4



to R410A)


Refrigerating
% (relative
91.0
95.0
99.1
92.5


Capacity Ratio
to R410A)

























TABLE 122







Comparative
Comparative
Comparative
Comparative
Example
Example
Comparative
Comparative


Item
Unit
Example 15
Example 16
Example 17
Example 18
27
28
Example 19
Example 20
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


R32
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R1234yf
Mass %
85.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


GWP

37
37
37
36
36
36
35
35


COP Ratio
% (relative
103.4
102.6
101.6
100.8
100.2
99.8
99.6
99.4



to R410A)


Refrigerating
% (relative
56.4
63.3
69.5
75.2
80.5
85.4
90.1
94.4


Capacity Ratio
to R410A)

























TABLE 123







Comparative
Comparative
Example
Comparative
Example
Comparative
Comparative
Comparative


Item
Unit
Example 21
Example 22
29
Example 23
30
Example 24
Example 25
Example 26
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


R32
Mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


R1234yf
Mass %
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0


GWP

71
71
70
70
70
69
69
69


COP Ratio
% (relative
103.1
102.1
101.1
100.4
99.8
99.5
99.2
99.1



to R410A)


Refrigerating
% (relative
61.8
68.3
74.3
79.7
84.9
89.7
94.2
98.4


Capacity Ratio
to R410A)

























TABLE 124







Comparative
Example
Comparative
Example
Example
Comparative
Comparative
Comparative


Item
Unit
Example 27
31
Example 28
32
33
Example 29
Example 30
Example 31
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


R32
Mass %
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R1234yf
Mass %
75.0
65.0
55.0
45.0
35.0
25.0
15.0
5.0


GWP

104
104
104
103
103
103
103
102


COP Ratio
% (relative
102.7
101.6
100.7
100.0
99.5
99.2
99.0
98.9



to R410A)


Refrigerating
% (relative
66.6
72.9
78.6
84.0
89.0
93.7
98.1
102.2


Capacity Ratio
to R410A)

























TABLE 125







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 32
Example 33
Example 34
Example 35
Example 36
Example 37
Example 38
Example 39
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
10.0


R32
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
25.0


R1234yf
Mass %
70.0
60.0
50.0
40.0
30.0
20.0
10.0
65.0


GWP

138
138
137
137
137
136
136
171


COP Ratio
% (relative
102.3
101.2
100.4
99.7
99.3
99.0
98.8
101.9



to R410A)


Refrigerating
% (relative
71.0
77.1
82.7
88.0
92.9
97.5
101.7
75.0


Capacity Ratio
to R410A)

























TABLE 126







Example
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Example


Item
Unit
34
Example 40
Example 41
Example 42
Example 43
Example 44
Example 45
35
























HFO-1132(E)
Mass %
20.0
30.0
40.0
50.0
60.0
70.0
10.0
20.0


R32
Mass %
25.0
25.0
25.0
25.0
25.0
25.0
30.0
30.0


R1234yf
Mass %
55.0
45.0
35.0
25.0
15.0
5.0
60.0
50.0


GWP

171
171
171
170
170
170
205
205


COP Ratio
% (relative
100.9
100.1
99.6
99.2
98.9
98.7
101.6
100.7



to R410A)


Refrigerating
% (relative
81.0
86.6
91.7
96.5
101.0
105.2
78.9
84.8


Capacity Ratio
to R410A)

























TABLE 127







Comparative
Comparative
Comparative
Comparative
Example
Example
Example
Comparative


Item
Unit
Example 46
Example 47
Example 48
Example 49
36
37
38
Example 50
























HFO-1132(E)
Mass %
30.0
40.0
50.0
60.0
10.0
20.0
30.0
40.0


R32
Mass %
30.0
30.0
30.0
30.0
35.0
35.0
35.0
35.0


R1234yf
Mass %
40.0
30.0
20.0
10.0
55.0
45.0
35.0
25.0


GWP

204
204
204
204
239
238
238
238


COP Ratio
% (relative
100.0
99.5
99.1
98.8
101.4
100.6
99.9
99.4



to R410A)


Refrigerating
% (relative
90.2
95.3
100.0
104.4
82.5
88.3
93.7
98.6


Capacity Ratio
to R410A)

























TABLE 128







Comparative
Comparative
Comparative
Comparative
Example
Comparative
Comparative
Comparative


Item
Unit
Example 51
Example 52
Example 53
Example 54
39
Example 55
Example 56
Example 57
























HFO-1132(E)
Mass %
50.0
60.0
10.0
20.0
30.0
40.0
50.0
10.0


R32
Mass %
35.0
35.0
40.0
40.0
40.0
40.0
40.0
45.0


R1234yf
Mass %
15.0
5.0
50.0
40.0
30.0
20.0
10.0
45.0


GWP

237
237
272
272
272
271
271
306


COP Ratio
% (relative
99.0
98.8
101.3
100.6
99.9
99.4
99.0
101.3



to R410A)


Refrigerating
% (relative
103.2
107.5
86.0
91.7
96.9
101.8
106.3
89.3


Capacity Ratio
to R410A)

























TABLE 129







Example
Example
Comparative
Comparative
Comparative
Example
Comparative
Comparative


Item
Unit
40
41
Example 58
Example 59
Example 60
42
Example 61
Example 62
























HFO-1132(E)
Mass %
20.0
30.0
40.0
50.0
10.0
20.0
30.0
40.0


R32
Mass %
45.0
45.0
45.0
45.0
50.0
50.0
50.0
50.0


R1234yf
Mass %
35.0
25.0
15.0
5.0
40.0
30.0
20.0
10.0


GWP

305
305
305
304
339
339
339
338


COP Ratio
% (relative
100.6
100.0
99.5
99.1
101.3
100.6
100.0
99.5



to R410A)


Refrigerating
% (relative
94.9
100.0
104.7
109.2
92.4
97.8
102.9
107.5


Capacity Ratio
to R410A)

























TABLE 130







Comparative
Comparative
Comparative
Comparative
Example
Example
Example
Example


Item
Unit
Example 63
Example 64
Example 65
Example 66
43
44
45
46
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
56.0
59.0
62.0
65.0


R32
Mass %
55.0
55.0
55.0
55.0
3.0
3.0
3.0
3.0


R1234yf
Mass %
35.0
25.0
15.0
5.0
41.0
38.0
35.0
32.0


GWP

373
372
372
372
22
22
22
22


COP Ratio
% (relative
101.4
100.7
100.1
99.6
100.1
100.0
99.9
99.8



to R410A)


Refrigerating
% (relative
95.3
100.6
105.6
110.2
81.7
83.2
84.6
86.0


Capacity Ratio
to R410A)

























TABLE 131







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
47
48
49
50
51
52
53
54
























HFO-1132(E)
Mass %
49.0
52.0
55.0
58.0
61.0
43.0
46.0
49.0


R32
Mass %
6.0
6.0
6.0
6.0
6.0
9.0
9.0
9.0


R1234yf
Mass %
45.0
42.0
39.0
36.0
33.0
48.0
45.0
42.0


GWP

43
43
43
43
42
63
63
63


COP Ratio
% (relative
100.2
100.0
99.9
99.8
99.7
100.3
100.1
99.9



to R410A)


Refrigerating
% (relative
80.9
82.4
83.9
85.4
86.8
80.4
82.0
83.5


Capacity Ratio
to R410A)

























TABLE 132







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
55
56
57
58
59
60
61
62
























HFO-1132(E)
Mass %
52.0
55.0
58.0
38.0
41.0
44.0
47.0
50.0


R32
Mass %
9.0
9.0
9.0
12.0
12.0
12.0
12.0
12.0


R1234yf
Mass %
39.0
36.0
33.0
50.0
47.0
44.0
41.0
38.0


GWP

63
63
63
83
83
83
83
83


COP Ratio
% (relative
99.8
99.7
99.6
100.3
100.1
100.0
99.8
99.7



to R410A)


Refrigerating
% (relative
85.0
86.5
87.9
80.4
82.0
83.5
85.1
86.6


Capacity Ratio
to R410A)

























TABLE 133







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
63
64
65
66
67
68
69
70
























HFO-1132(E)
Mass %
53.0
33.0
36.0
39.0
42.0
45.0
48.0
51.0


R32
Mass %
12.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R1234yf
Mass %
35.0
52.0
49.0
46.0
43.0
40.0
37.0
34.0


GWP

83
104
104
103
103
103
103
103


COP Ratio
% (relative
99.6
100.5
100.3
100.1
99.9
99.7
99.6
99.5



to R410A)


Refrigerating
% (relative
88.0
80.3
81.9
83.5
85.0
86.5
88.0
89.5


Capacity Ratio
to R410A)

























TABLE 134







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
71
72
73
74
75
76
77
78
























HFO-1132(E)
Mass %
29.0
32.0
35.0
38.0
41.0
44.0
47.0
36.0


R32
Mass %
18.0
18.0
18.0
18.0
18.0
18.0
18.0
3.0


R1234yf
Mass %
53.0
50.0
47.0
44.0
41.0
38.0
35.0
61.0


GWP

124
124
124
124
124
123
123
23


COP Ratio
% (relative
100.6
100.3
100.1
99.9
99.8
99.6
99.5
101.3



to R410A)


Refrigerating
% (relative
80.6
82.2
83.8
85.4
86.9
88.4
89.9
71.0


Capacity Ratio
to R410A)

























TABLE 135







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
79
80
81
82
83
84
85
86
























HFO-1132(E)
Mass %
39.0
42.0
30.0
33.0
36.0
26.0
29.0
32.0


R32
Mass %
3.0
3.0
6.0
6.0
6.0
9.0
9.0
9.0


R1234yf
Mass %
58.0
55.0
64.0
61.0
58.0
65.0
62.0
59.0


GWP

23
23
43
43
43
64
64
63


COP Ratio
% (relative
101.1
100.9
101.5
101.3
101.0
101.6
101.3
101.1



to R410A)


Refrigerating
% (relative
72.7
74.4
70.5
72.2
73.9
71.0
72.8
74.5


Capacity Ratio
to R410A)

























TABLE 136







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
87
88
89
90
91
92
93
94
























HFO-1132(E)
Mass %
21.0
24.0
27.0
30.0
16.0
19.0
22.0
25.0


R32
Mass %
12.0
12.0
12.0
12.0
15.0
15.0
15.0
15.0


R1234yf
Mass %
67.0
64.0
61.0
58.0
69.0
66.0
63.0
60.0


GWP

84
84
84
84
104
104
104
104


COP Ratio
% (relative
101.8
101.5
101.2
101.0
102.1
101.8
101.4
101.2



to R410A)


Refrigerating
% (relative
70.8
72.6
74.3
76.0
70.4
72.3
74.0
75.8


Capacity Ratio
to R410A)

























TABLE 137







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
95
96
97
98
99
100
101
102
























HFO-1132(E)
Mass %
28.0
12.0
15.0
18.0
21.0
24.0
27.0
25.0


R32
Mass %
15.0
18.0
18.0
18.0
18.0
18.0
18.0
21.0


R1234yf
Mass %
57.0
70.0
67.0
64.0
61.0
58.0
55.0
54.0


GWP

104
124
124
124
124
124
124
144


COP Ratio
% (relative
100.9
102.2
101.9
101.6
101.3
101.0
100.7
100.7



to R410A)


Refrigerating
% (relative
77.5
70.5
72.4
74.2
76.0
77.7
79.4
80.7


Capacity Ratio
to R410A)

























TABLE 138







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
103
104
105
106
107
108
109
110
























HFO-1132(E)
Mass %
21.0
24.0
17.0
20.0
23.0
13.0
16.0
19.0


R32
Mass %
24.0
24.0
27.0
27.0
27.0
30.0
30.0
30.0


R1234yf
Mass %
55.0
52.0
56.0
53.0
50.0
57.0
54.0
51.0


GWP

164
164
185
185
184
205
205
205


COP Ratio
% (relative
100.9
100.6
101.1
100.8
100.6
101.3
101.0
100.8



to R410A)


Refrigerating
% (relative
80.8
82.5
80.8
82.5
84.2
80.7
82.5
84.2


Capacity Ratio
to R410A)

























TABLE 139







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
111
112
113
114
115
116
117
118
























HFO-1132(E)
Mass %
22.0
9.0
12.0
15.0
18.0
21.0
8.0
12.0


R32
Mass %
30.0
33.0
33.0
33.0
33.0
33.0
36.0
36.0


R1234yf
Mass %
48.0
58.0
55.0
52.0
49.0
46.0
56.0
52.0


GWP

205
225
225
225
225
225
245
245


COP Ratio
% (relative
100.5
101.6
101.3
101.0
100.8
100.5
101.6
101.2



to R410A)


Refrigerating
% (relative
85.9
80.5
82.3
84.1
85.8
87.5
82.0
84.4


Capacity Ratio
to R410A)

























TABLE 140







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
119
120
121
122
123
124
125
126
























HFO-1132(E)
Mass %
15.0
18.0
21.0
42.0
39.0
34.0
37.0
30.0


R32
Mass %
36.0
36.0
36.0
25.0
28.0
31.0
31.0
34.0


R1234yf
Mass %
49.0
46.0
43.0
33.0
33.0
35.0
32.0
36.0


GWP

245
245
245
170
191
211
211
231


COP Ratio
% (relative
101.0
100.7
100.5
99.5
99.5
99.8
99.6
99.9



to R410A)


Refrigerating
% (relative
86.2
87.9
89.6
92.7
93.4
93.0
94.5
93.0


Capacity Ratio
to R410A)

























TABLE 141







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
127
128
129
130
131
132
133
134
























HFO-1132(E)
Mass %
33.0
36.0
24.0
27.0
30.0
33.0
23.0
26.0


R32
Mass %
34.0
34.0
37.0
37.0
37.0
37.0
40.0
40.0


R1234yf
Mass %
33.0
30.0
39.0
36.0
33.0
30.0
37.0
34.0


GWP

231
231
252
251
251
251
272
272


COP Ratio
% (relative
99.8
99.6
100.3
100.1
99.9
99.8
100.4
100.2



to R410A)


Refrigerating
% (relative
94.5
96.0
91.9
93.4
95.0
96.5
93.3
94.9


Capacity Ratio
to R410A)

























TABLE 142







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
135
136
137
138
139
140
141
142
























HFO-1132(E)
Mass %
29.0
32.0
19.0
22.0
25.0
28.0
31.0
18.0


R32
Mass %
40.0
40.0
43.0
43.0
43.0
43.0
43.0
46.0


R1234yf
Mass %
31.0
28.0
38.0
35.0
32.0
29.0
26.0
36.0


GWP

272
271
292
292
292
292
292
312


COP Ratio
% (relative
100.0
99.8
100.6
100.4
100.2
100.1
99.9
100.7



to R410A)


Refrigerating
% (relative
96.4
97.9
93.1
94.7
96.2
97.8
99.3
94.4


Capacity Ratio
to R410A)

























TABLE 143







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
143
144
145
146
147
148
149
150
























HFO-1132(E)
Mass %
21.0
23.0
26.0
29.0
13.0
16.0
19.0
22.0


R32
Mass %
46.0
46.0
46.0
46.0
49.0
49.0
49.0
49.0


R1234yf
Mass %
33.0
31.0
28.0
25.0
38.0
35.0
32.0
29.0


GWP

312
312
312
312
332
332
332
332


COP Ratio
% (relative
100.5
100.4
100.2
100.0
101.1
100.9
100.7
100.5



to R410A)


Refrigerating
% (relative
96.0
97.0
98.6
100.1
93.5
95.1
96.7
98.3


Capacity Ratio
to R410A)





















TABLE 144









Example
Example



Item
Unit
151
152





















HFO-1132(E)
Mass %
25.0
28.0



R32
Mass %
49.0
49.0



R1234yf
Mass %
26.0
23.0



GWP

332
332



COP Ratio
% (relative
100.3
100.1




to R410A)



Refrigerating
% (relative
99.8
101.3



Capacity Ratio
to R410A)










The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:


point I (72.0, 0.0, 28.0),


point J (48.5, 18.3, 33.2),


point N (27.7, 18.2, 54.1), and


point E (58.3, 0.0, 41.7),


or on these line segments (excluding the points on the line segment EI),


the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0),


the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7), and


the line segments JN and EI are straight lines, the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.


The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:


point M (52.6, 0.0, 47.4),


point M′ (39.2, 5.0, 55.8),


point N (27.7, 18.2, 54.1),


point V (11.0, 18.1, 70.9), and


point G (39.6, 0.0, 60.4),


or on these line segments (excluding the points on the line segment GM),


the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4),


the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02),


the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4), and


the line segments NV and GM are straight lines, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.


The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:


point O (22.6, 36.8, 40.6),


point N (27.7, 18.2, 54.1), and


point U (3.9, 36.7, 59.4),


or on these line segments,


the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488),


the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365), and


the line segment UO is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.


The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:


point Q (44.6, 23.0, 32.4),


point R (25.5, 36.8, 37.7),


point T (8.6, 51.6, 39.8),


point L (28.9, 51.7, 19.4), and


point K (35.6, 36.8, 27.6),


or on these line segments,


the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235),


the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874),


the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512),


the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324), and


the line segment TL is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.


The results further indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:


point P (20.5, 51.7, 27.8),


point S (21.9, 39.7, 38.4), and


point T (8.6, 51.6, 39.8),


or on these line segments,


the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9),


the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874), and


the line segment TP is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.


(5-5) Refrigerant E

The refrigerant E according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).


The refrigerant E according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:


point I (72.0, 28.0, 0.0),


point K (48.4, 33.2, 18.4),


point B′ (0.0, 81.6, 18.4),


point H (0.0, 84.2, 15.8),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segments B′H and GI);


the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments KB′ and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:


point I (72.0, 28.0, 0.0),


point J (57.7, 32.8, 9.5),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segment GI);


the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments JR and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:


point M (47.1, 52.9, 0.0),


point P (31.8, 49.8, 18.4),


point B′ (0.0, 81.6, 18.4),


point H (0.0, 84.2, 15.8),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segments B′H and GM);


the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments PB′ and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:


point M (47.1, 52.9, 0.0),


point N (38.5, 52.1, 9.5),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segment GM);


the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z),


the line segments NR and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:


point P (31.8, 49.8, 18.4),


point S (25.4, 56.2, 18.4), and


point T (34.8, 51.0, 14.2),


or on these line segments;


the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),


the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and


the line segment PS is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:


point Q (28.6, 34.4, 37.0),


point B″ (0.0, 63.0, 37.0),


point D (0.0, 67.0, 33.0), and


point U (28.7, 41.2, 30.1),


or on these line segments (excluding the points on the line segment B″D);


the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),


the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and


the line segments QB″ and B″D are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′e′, e′a′, and a′O that connect the following 5 points:


point O (100.0, 0.0, 0.0),


point c′ (56.7, 43.3, 0.0),


point d′ (52.2, 38.3, 9.5),


point e′ (41.8, 39.8, 18.4), and


point a′ (81.6, 0.0, 18.4),


or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′);


the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z),


the line segment d′e′ is represented by coordinates (−0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z), and


the line segments Oc′, e′a′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, de, ea′, and a′O that connect the following 5 points:


point O (100.0, 0.0, 0.0),


point c (77.7, 22.3, 0.0),


point d (76.3, 14.2, 9.5),


point e (72.2, 9.4, 18.4), and


point a′ (81.6, 0.0, 18.4),


or on the line segments cd, de, and ea′ (excluding the points c and a′);


the line segment cde is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and


the line segments Oc, ea′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′a, and aO that connect the following 5 points:


point O (100.0, 0.0, 0.0),


point c′ (56.7, 43.3, 0.0),


point d′ (52.2, 38.3, 9.5), and


point a (90.5, 0.0, 9.5),


or on the line segments c′d′ and d′a (excluding the points c′ and a);


the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z), and


the line segments Oc′, d′a, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, da, and aO that connect the following 4 points:


point O (100.0, 0.0, 0.0),


point c (77.7, 22.3, 0.0),


point d (76.3, 14.2, 9.5), and


point a (90.5, 0.0, 9.5),


or on the line segments cd and da (excluding the points c and a);


the line segment cd is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and


the line segments Oc, da, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R32, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.


Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.


(Examples of Refrigerant E)

The present disclosure is described in more detail below with reference to Examples of refrigerant E. However, the refrigerant E is not limited to the Examples.


Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, and R32 at mass % based on their sum shown in Tables 145 and 146.


The composition of each mixture was defined as WCF. A leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.


For each mixed refrigerant, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. When the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.


Tables 145 and 146 show the results.














TABLE 145





Item
Unit
I
J
K
L





















WCF
HFO-1132(E)
mass %
72.0
57.7
48.4
35.5



HFO-1123
mass %
28.0
32.8
33.2
27.5



R32
mass %
0.0
9.5
18.4
37.0












Burning velocity
cm/s
10
10
10
10


(WCF)























TABLE 146





Item
Unit
M
N
T
P
U
Q























WCF
HFO-1132(E)
mass %
47.1
38.5
34.8
31.8
28.7
28.6



HFO-1123
mass %
52.9
52.1
51.0
49.8
41.2
34.4



R32
mass %
0.0
9.5
14.2
18.4
30.1
37.0













Leak condition that results
Storage,
Storage,
Storage,
Storage,
Storage,
Storage,


in WCFF
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°



C., 92%, release,
C., 92%, release,
C., 92%, release,
C., 92%, release,
C., 92%, release,
C., 92%, release,



on the liquid
on the liquid
on the liquid
on the liquid
on the liquid
on the liquid



phase side
phase side
phase side
phase side
phase side
phase side















WCFF
HFO-1132(E)
mass %
72.0
58.9
51.5
44.6
31.4
27.1



HFO-1123
mass %
28.0
32.4
33.1
32.6
23.2
18.3



R32
mass %
0.0
8.7
15.4
22.8
45.4
54.6














Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)


Burning velocity
cm/s
10
10
10  
10  
10  
10  


(WCFF)









The results in Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments IK and KL that connect the following 3 points:


point I (72.0, 28.0, 0.0),


point K (48.4, 33.2, 18.4), and


point L (35.5, 27.5, 37.0);


the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.00, z), and


the line segment KL is represented by coordinates (0.0098z2−1.238z+67.852, −0.0098z2+0.238z+32.148, z),


it can be determined that the refrigerant has WCF lower flammability.


For the points on the line segment IK, an approximate curve (x=0.025z2−1.7429z+72.00) was obtained from three points, i.e., I (72.0, 28.0, 0.0), J (57.7, 32.8, 9.5), and K (48.4, 33.2, 18.4) by using the least-square method to determine coordinates (x=0.025z2−1.7429z+72.00, y=100−z−x=−0.00922z2+0.2114z+32.443, z).


Likewise, for the points on the line segment KL, an approximate curve was determined from three points, i.e., K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2, 27.7), and L (35.5, 27.5, 37.0) by using the least-square method to determine coordinates.


The results in Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:


point M (47.1, 52.9, 0.0),


point P (31.8, 49.8, 18.4), and


point Q (28.6, 34.4, 37.0),


it can be determined that the refrigerant has ASHRAE lower flammability.


In the above, the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and the line segment PQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z).


For the points on the line segment MP, an approximate curve was obtained from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates. For the points on the line segment PQ, an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the least-square method to determine coordinates.


The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


The COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined. The conditions for calculation were as described below.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Degree of superheating: 5K


Degree of subcooling: 5K


Compressor efficiency: 70%


Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.

















TABLE 147








Comparative
Comparative
Comparative
Comparative
Comparative
Comparative




Comparative
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7


Item
Unit
Example 1
A
B
A′
B′
A″
B″























HFO-1132(E)
mass %
R410A
90.5
0.0
81.6
0.0
63.0
0.0


HFO-1123
mass %

0.0
90.5
0.0
81.6
0.0
63.0


R32
mass %

9.5
9.5
18.4
18.4
37.0
37.0


GWP

2088
65
65
125
125
250
250


COP ratio
% (relative
100
99.1
92.0
98.7
93.4
98.7
96.1



to R410A)


Refrigerating
% (relative
100
102.2
111.6
105.3
113.7
110.0
115.4


capacity ratio
to R410A)























TABLE 148







Comparative
Comparative

Example

Comparative




Example 8
Example 9
Comparative
1
Example
Example 11


Item
Unit
O
C
Example 10
U
2
D






















HFO-1132(E)
mass %
100.0
50.0
41.1
28.7
15.2
0.0


HFO-1123
mass %
0.0
31.6
34.6
41.2
52.7
67.0


R32
mass %
0.0
18.4
24.3
30.1
32.1
33.0


GWP

1
125
165
204
217
228


COP ratio
% (relative
99.7
96.0
96.0
96.0
96.0
96.0



to R410A)


Refrigerating
% (relative
98.3
109.9
111.7
113.5
114.8
115.4


capacity ratio
to R410A)






















TABLE 149







Comparative

Example
Example
Comparative




Example 12
Comparative
3
4
Example 14


Item
Unit
E
Example 13
T
S
F





















HFO-1132(E)
mass %
53.4
43.4
34.8
25.4
0.0


HFO-1123
mass %
46.6
47.1
51.0
56.2
74.1


R32
mass %
0.0
9.5
14.2
18.4
25.9


GWP

1
65
97
125
176


COP ratio
% (relative
94.5
94.5
94.5
94.5
94.5



to R410A)


Refrigerating
% (relative
105.6
109.2
110.8
112.3
114.8


capacity ratio
to R410A)






















TABLE 150







Comparative

Example

Comparative




Example 15
Example
6
Example
Example 16


Item
Unit
G
5
R
7
H





















HFO-1132(E)
mass %
38.5
31.5
23.1
16.9
0.0


HFO-1123
mass %
61.5
63.5
67.4
71.1
84.2


R32
mass %
0.0
5.0
9.5
12.0
15.8


GWP

1
35
65
82
107


COP ratio
% (relative
93.0
93.0
93.0
93.0
93.0



to R410A)


Refrigerating
% (relative
107.0
109.1
110.9
111.9
113.2


capacity ratio
to R410A)






















TABLE 151







Comparative
Example
Example

Comparative




Example 17
8
9
Comparative
Example 19


Item
Unit
I
J
K
Example 18
L





















HFO-1132(E)
mass %
72.0
57.7
48.4
41.1
35.5


HFO-1123
mass %
28.0
32.8
33.2
31.2
27.5


R32
mass %
0.0
9.5
18.4
27.7
37.0


GWP

1
65
125
188
250


COP ratio
% (relative
96.6
95.8
95.9
96.4
97.1



to R410A)


Refrigerating
% (relative
103.1
107.4
110.1
112.1
113.2


capacity ratio
to R410A)





















TABLE 152







Comparative
Example
Example
Example




Example 20
10
11
12


Item
Unit
M
N
P
Q




















HFO-1132(E)
mass %
47.1
38.5
31.8
28.6


HFO-1123
mass %
52.9
52.1
49.8
34.4


R32
mass %
0.0
9.5
18.4
37.0


GWP

1
65
125
250


COP ratio
% (relative
93.9
94.1
94.7
96.9



to R410A)


Refrigerating
% (relative
106.2
109.7
112.0
114.1


capacity ratio
to R410A)

























TABLE 153







Comparative
Comparative
Comparative
Example
Example
Example
Comparative
Comparative


Item
Unit
Example 22
Example 23
Example 24
14
15
16
Example 25
Example 26
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
85.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


R32
mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


GWP

35
35
35
35
35
35
35
35


COP ratio
% (relative
91.7
92.2
92.9
93.7
94.6
95.6
96.7
97.7



to R410A)


Refrigerating
% (relative
110.1
109.8
109.2
108.4
107.4
106.1
104.7
103.1


capacity ratio
to R410A)

























TABLE 154







Comparative
Comparative
Comparative
Example
Example
Example
Comparative
Comparative


Item
Unit
Example 27
Example 28
Example 29
17
18
19
Example 30
Example 31
























HFO-1132(E)
mass %
90.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
5.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0


R32
mass %
5.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


GWP

35
68
68
68
68
68
68
68


COP ratio
% (relative
98.8
92.4
92.9
93.5
94.3
95.1
96.1
97.0



to R410A)


Refrigerating
% (relative
101.4
111.7
111.3
110.6
109.6
108.5
107.2
105.7


capacity ratio
to R410A)

























TABLE 155







Comparative
Example
Example
Example
Example
Example
Comparative
Comparative


Item
Unit
Example 32
20
21
22
23
24
Example 33
Example 34
























HFO-1132(E)
mass %
80.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
10.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


R32
mass %
10.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


GWP

68
102
102
102
102
102
102
102


COP ratio
% (relative
98.0
93.1
93.6
94.2
94.9
95.6
96.5
97.4



to R410A)


Refrigerating
% (relative
104.1
112.9
112.4
111.6
110.6
109.4
108.1
106.6


capacity ratio
to R410A)

























TABLE 156







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 35
Example 36
Example 37
Example 38
Example 39
Example 40
Example 41
Example 42
























HFO-1132(E)
mass %
80.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
5.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0


R32
mass %
15.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


GWP

102
136
136
136
136
136
136
136


COP ratio
% (relative
98.3
93.9
94.3
94.8
95.4
96.2
97.0
97.8



to R410A)


Refrigerating
% (relative
105.0
113.8
113.2
112.4
111.4
110.2
108.8
107.3


capacity ratio
to R410A)

























TABLE 157







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 43
Example 44
Example 45
Example 46
Example 47
Example 48
Example 49
Example 50
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
10.0


HFO-1123
mass %
65.0
55.0
45.0
35.0
25.0
15.0
5.0
60.0


R32
mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0
30.0


GWP

170
170
170
170
170
170
170
203


COP ratio
% (relative
94.6
94.9
95.4
96.0
96.7
97.4
98.2
95.3



to R410A)


Refrigerating
% (relative
114.4
113.8
113.0
111.9
110.7
109.4
107.9
114.8


capacity ratio
to R410A)

























TABLE 158







Comparative
Comparative
Comparative
Comparative
Comparative
Example
Example
Comparative


Item
Unit
Example 51
Example 52
Example 53
Example 54
Example 55
25
26
Example 56
























HFO-1132(E)
mass %
20.0
30.0
40.0
50.0
60.0
10.0
20.0
30.0


HFO-1123
mass %
50.0
40.0
30.0
20.0
10.0
55.0
45.0
35.0


R32
mass %
30.0
30.0
30.0
30.0
30.0
35.0
35.0
35.0


GWP

203
203
203
203
203
237
237
237


COP ratio
% (relative
95.6
96.0
96.6
97.2
97.9
96.0
96.3
96.6



to R410A)


Refrigerating
% (relative
114.2
113.4
112.4
111.2
109.8
115.1
114.5
113.6


capacity ratio
to R410A)

























TABLE 159







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 57
Example 58
Example 59
Example 60
Example 61
Example 62
Example 63
Example 64
























HFO-1132(E)
mass %
40.0
50.0
60.0
10.0
20.0
30.0
40.0
50.0


HFO-1123
mass %
25.0
15.0
5.0
50.0
40.0
30.0
20.0
10.0


R32
mass %
35.0
35.0
35.0
40.0
40.0
40.0
40.0
40.0


GWP

237
237
237
271
271
271
271
271


COP ratio
% (relative
97.1
97.7
98.3
96.6
96.9
97.2
97.7
98.2



to R410A)


Refrigerating
% (relative
112.6
111.5
110.2
115.1
114.6
113.8
112.8
111.7


capacity ratio
to R410A)

























TABLE 160







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
27
28
29
30
31
32
33
34
























HFO-1132(E)
mass %
38.0
40.0
42.0
44.0
35.0
37.0
39.0
41.0


HFO-1123
mass %
60.0
58.0
56.0
54.0
61.0
59.0
57.0
55.0


R32
mass %
2.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0


GWP

14
14
14
14
28
28
28
28


COP ratio
% (relative
93.2
93.4
93.6
93.7
93.2
93.3
93.5
93.7



to R410A)


Refrigerating
% (relative
107.7
107.5
107.3
107.2
108.6
108.4
108.2
108.0


capacity ratio
to R410A)

























TABLE 161







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
35
36
37
38
39
40
41
42
























HFO-1132(E)
mass %
43.0
31.0
33.0
35.0
37.0
39.0
41.0
27.0


HFO-1123
mass %
53.0
63.0
61.0
59.0
57.0
55.0
53.0
65.0


R32
mass %
4.0
6.0
6.0
6.0
6.0
6.0
6.0
8.0


GWP

28
41
41
41
41
41
41
55


COP ratio
% (relative
93.9
93.1
93.2
93.4
93.6
93.7
93.9
93.0



to R410A)


Refrigerating
% (relative
107.8
109.5
109.3
109.1
109.0
108.8
108.6
110.3


capacity ratio
to R410A)

























TABLE 162







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
43
44
45
46
47
48
49
50
























HFO-1132(E)
mass %
29.0
31.0
33.0
35.0
37.0
39.0
32.0
32.0


HFO-1123
mass %
63.0
61.0
59.0
57.0
55.0
53.0
51.0
50.0


R32
mass %
8.0
8.0
8.0
8.0
8.0
8.0
17.0
18.0


GWP

55
55
55
55
55
55
116
122


COP ratio
% (relative
93.2
93.3
93.5
93.6
93.8
94.0
94.5
94.7



to R410A)


Refrigerating
% (relative
110.1
110.0
109.8
109.6
109.5
109.3
111.8
111.9


capacity ratio
to R410A)

























TABLE 163







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
51
52
53
54
55
56
57
58
























HFO-1132(E)
mass %
30.0
27.0
21.0
23.0
25.0
27.0
11.0
13.0


HFO-1123
mass %
52.0
42.0
46.0
44.0
42.0
40.0
54.0
52.0


R32
mass %
18.0
31.0
33.0
33.0
33.0
33.0
35.0
35.0


GWP

122
210
223
223
223
223
237
237


COP ratio
% (relative
94.5
96.0
96.0
96.1
96.2
96.3
96.0
96.0



to R410A)


Refrigerating
% (relative
112.1
113.7
114.3
114.2
114.0
113.8
115.0
114.9


capacity ratio
to R410A)

























TABLE 164







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
59
60
61
62
63
64
65
66
























HFO-1132(E)
mass %
15.0
17.0
19.0
21.0
23.0
25.0
27.0
11.0


HFO-1123
mass %
50.0
48.0
46.0
44.0
42.0
40.0
38.0
52.0


R32
mass %
35.0
35.0
35.0
35.0
35.0
35.0
35.0
37.0


GWP

237
237
237
237
237
237
237
250


COP ratio
% (relative
96.1
96.2
96.2
96.3
96.4
96.4
96.5
96.2



to R410A)


Refrigerating
% (relative
114.8
114.7
114.5
114.4
114.2
114.1
113.9
115.1


capacity ratio
to R410A)

























TABLE 165







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
67
68
69
70
71
72
73
74
























HFO-1132(E)
mass %
13.0
15.0
17.0
15.0
17.0
19.0
21.0
23.0


HFO-1123
mass %
50.0
48.0
46.0
50.0
48.0
46.0
44.0
42.0


R32
mass %
37.0
37.0
37.0
0.0
0.0
0.0
0.0
0.0


GWP

250
250
250
237
237
237
237
237


COP ratio
% (relative
96.3
96.4
96.4
96.1
96.2
96.2
96.3
96.4



to R410A)


Refrigerating
% (relative
115.0
114.9
114.7
114.8
114.7
114.5
114.4
114.2


capacity ratio
to R410A)

























TABLE 166







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
75
76
77
78
79
80
81
82
























HFO-1132(E)
mass %
25.0
27.0
11.0
19.0
21.0
23.0
25.0
27.0


HFO-1123
mass %
40.0
38.0
52.0
44.0
42.0
40.0
38.0
36.0


R32
mass %
0.0
0.0
0.0
37.0
37.0
37.0
37.0
37.0


GWP

237
237
250
250
250
250
250
250


COP ratio
% (relative
96.4
96.5
96.2
96.5
96.5
96.6
96.7
96.8



to R410A)


Refrigerating
% (relative
114.1
113.9
115.1
114.6
114.5
114.3
114.1
114.0


capacity ratio
to R410A)









The above results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, and the point (0.0, 100.0, 0.0) is on the left side are within the range of a figure surrounded by line segments that connect the following 4 points:


point O (100.0, 0.0, 0.0),


point A″ (63.0, 0.0, 37.0),


point B″ (0.0, 63.0, 37.0), and


point (0.0, 100.0, 0.0),


or on these line segments,


the refrigerant has a GWP of 250 or less.


The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:


point O (100.0, 0.0, 0.0),


point A′ (81.6, 0.0, 18.4),


point B′ (0.0, 81.6, 18.4), and


point (0.0, 100.0, 0.0),


or on these line segments,


the refrigerant has a GWP of 125 or less.


The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:


point O (100.0, 0.0, 0.0),


point A (90.5, 0.0, 9.5),


point B (0.0, 90.5, 9.5), and


point (0.0, 100.0, 0.0),


or on these line segments,


the refrigerant has a GWP of 65 or less.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:


point C (50.0, 31.6, 18.4),


point U (28.7, 41.2, 30.1), and


point D (52.2, 38.3, 9.5),


or on these line segments,


the refrigerant has a COP ratio of 96% or more relative to that of R410A.


In the above, the line segment CU is represented by coordinates (−0.0538z2+0.7888z+53.701, 0.0538z2−1.7888z+46.299, z), and the line segment UD is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z).


The points on the line segment CU are determined from three points, i.e., point C, Comparative Example 10, and point U, by using the least-square method.


The points on the line segment UD are determined from three points, i.e., point U, Example 2, and point D, by using the least-square method.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:


point E (55.2, 44.8, 0.0),


point T (34.8, 51.0, 14.2), and


point F (0.0, 76.7, 23.3),


or on these line segments,


the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.


In the above, the line segment ET is represented by coordinates (−0.0547z2−0.5327z+53.4, 0.0547z2−0.4673z+46.6, z), and the line segment TF is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z).


The points on the line segment ET are determined from three points, i.e., point E, Example 2, and point T, by using the least-square method.


The points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the least-square method.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:


point G (0.0, 76.7, 23.3),


point R (21.0, 69.5, 9.5), and


point H (0.0, 85.9, 14.1),


or on these line segments,


the refrigerant has a COP ratio of 93% or more relative to that of R410A.


In the above, the line segment GR is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and the line segment RH is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z).


The points on the line segment GR are determined from three points, i.e., point G, Example 5, and point R, by using the least-square method.


The points on the line segment RH are determined from three points, i.e., point R, Example 7, and point H, by using the least-square method.


In contrast, as shown in, for example, Comparative Examples 8, 9, 13, 15, 17, and 18, when R32 is not contained, the concentrations of HFO-1132(E) and HFO-1123, which have a double bond, become relatively high; this undesirably leads to deterioration, such as decomposition, or polymerization in the refrigerant compound.


(6) First Embodiment

As illustrated in FIGS. 16 to 18, a warm-water supply system 1 that is a warm-water generating apparatus according to a first embodiment includes a heat pump 2, a warm-water storage unit 3, a controller 50 that manages and controls the above-listed components, a remote controller 90 that displays information to a user and that receives an operation by the user, and so forth.


(6-1) Heat Pump

The heat pump 2 is a unit that functions as a heat source device for heating water, and includes a refrigerant circuit 20 in which a refrigerant circulates, a fan 24F, various sensors, and so forth. In the present embodiment, the refrigerant circuit 20 is filled with a refrigerant for performing a vapor compression refrigeration cycle. The refrigerant is a mixed refrigerant containing 1,2-difluoroethylene, and can use any one of the above-described refrigerants A to E.


The refrigerant circuit 20 is constituted of a compressor 21, a use-side water heat exchanger 22, an electric expansion valve 23, a heat-source-side air heat exchanger 24, a refrigerant pipe 25, and so forth.


The compressor 21 is an inverter output-variable electric compressor.


The water heat exchanger 22 functions as a use-side heat exchanger that uses heat of the refrigerant, and includes a refrigerant pipe 22r and a water pipe 32w. The water heat exchanger 22 causes a high-temperature high-pressure gas refrigerant flowing through the refrigerant pipe 22r after discharged by the compressor 21 of the heat pump 2 and circulating water flowing from the warm-water storage unit 3 (described later) and then flowing through the water pipe 32w. By the heat exchange in the water heat exchanger 22, the refrigerant passing through the refrigerant pipe 22r is cooled, and simultaneously the water passing through the water pipe 32w is heated and heated water (high-temperature water=warm water) is generated.


The electric expansion valve 23 expands a low-temperature high-pressure refrigerant which has exited from the compressor 21 and been cooled through the heat exchange with the water.


The air heat exchanger 24 functions as a heat-source-side heat exchanger that takes heat from the outside air, and causes a low-temperature low-pressure refrigerant in a two-phase state expanded at the electric expansion valve 23 and the outside air to exchange heat with each other. The refrigerant which has absorbed heat from the outside air is evaporated and turns into a low-pressure gas refrigerant, and is sucked by the compressor 21.


The refrigerant pipe 25 connects respective devices in the order of the discharge port of the compressor 21, the refrigerant pipe 22r in the water heat exchanger 22, the electric expansion valve 23, the air heat exchanger 24, and the suction port of the compressor 21.


The various sensors include, for example, sensors that detect the temperature and pressure relating to the refrigerant. FIG. 17 illustrates, among the sensors, a heat-exchanger inlet water temperature sensor 31T and a heat-exchanger outlet water temperature sensor 32T. The heat-exchanger inlet water temperature sensor 31T detects the temperature of water before entering the water heat exchanger 22. That is, the heat-exchanger inlet water temperature sensor 31T detects the temperature of water before passing through the water heat exchanger 22. The heat-exchanger outlet water temperature sensor 32T detects the temperature of water after passing through the water heat exchanger 22.


(6-2) Warm-Water Storage Unit

The warm-water storage unit 3 is a unit that sends water supplied from the outside, such as city water (tap water) to the heat pump 2 so that the heat pump 2 heats the water, and stores the water (heated water) returned from the heat pump 2. Moreover, the warm-water storage unit 3 has a function of sending the heated water of which the temperature has been adjusted by a combustion heating device 4 and a mixing valve 77 to a warm-water supply section 82 so that heated water at a temperature set by the user is supplied.


The warm-water storage unit 3 includes a water intake section 81, the warm-water supply section 82, a warm-water supply tank 35, a circulating water pipe 30, a water-intake warm-water supply pipe 70, the combustion heating device 4, and so forth.


(6-2-1) Water Intake Section and Warm-Water Supply Section


The water intake section 81 has a connecting port to which a city-water (tap-water) supply pipe 89a is connected.


The warm-water supply section 82 has a connecting port to which an in-building pipe 99a for water supply and warm-water supply extending from a faucet 99 or the like in a building of an installation target is connected.


(6-2-2) Warm-Water Storage Tank


The warm-water storage tank 35 is a tank in which water heated by the heat pump 2 (heated water) is stored in advance before the user turns the faucet 99 for use. The warm-water storage tank 35 is usually filled with water. The warm-water storage tank 35 is provided with a tank-temperature-distribution detection sensor to cause the controller 50 to recognize the amount of water at a predetermined temperature or higher, in this case, a high temperature of 70° C. or higher (hereinafter, referred to as high-temperature water). The tank-temperature-distribution detection sensor is constituted of six sensors of a first sensor T1, a second sensor T2, a third sensor T3, a fourth sensor T4, a fifth sensor T5, and a sixth sensor T6 in that order from a lower portion toward an upper portion of the warm-water storage tank 35. The controller 50 drives the heat pump 2 to perform a boiling operation based on water temperatures at respective height positions in the warm-water storage tank 35 detected by the tank-temperature-distribution detection sensors T1 to T6 and setting with the remote controller 90. The boiling operation is an operation to increase the heat quantity of water until the temperature of water in the warm-water storage tank 35 reaches a target temperature. The target temperature in the boiling operation, that is, a target warm-water storage temperature of the water in the warm-water storage tank 35 is, for example, set in advance in a manufacturing plant of the warm-water supply system 1. In the present embodiment, the target warm-water storage temperature is 75° C.


If the temperature detection value of the sixth sensor T6 is lower than 70° C., the residual warm water amount is 0. If the temperature detection value of the sixth sensor T6 is 70° C. or higher, the residual warm water amount is 1. Furthermore, if the temperature detection value of the fifth sensor T5 is also 70° C. or higher, the residual warm water amount is 2. Likewise, the levels of the residual warm water amount includes 3, 4, 5, and 6. The residual warm water amount is 6 at maximum if the temperature detection value of the first sensor T1 is also 70° C. or higher, the residual warm water amount is 6 at maximum.


(6-2-3) Circulating Water Pipe


The circulating water pipe 30 is a circuit for transferring heat obtained by the heat pump 2 to the water in the warm-water storage tank 35, and includes an outgoing pipe 31, the water pipe 32w in the water heat exchanger 22, a return pipe 33, and a circulation pump 34. The outgoing pipe 31 connects a portion near the lower end of the warm-water storage tank 35 and the upstream-side end of the water pipe 32w in the water heat exchanger 22. The return pipe 33 connects the downstream-side end of the water pipe 32w in the water heat exchanger 22 and a portion near the upper end of the warm-water storage tank 35. The circulation pump 34 is provided midway in the outgoing pipe 31. The circulation pump 34 is an electric pump of which the output is adjustable, and circulates water between the warm-water storage tank 35 and the water heat exchanger 22. Specifically, in the circulating water pipe 30, when the circulation pump 34 is driven in response to an instruction from the controller 50, water at low temperature present in a lower portion of the water in the warm-water storage tank 35 flows out to the outgoing pipe 31, increases in temperature by passing through the water pipe 32w in the water heat exchanger 22, and returns to the portion near the upper end of the warm-water storage tank 35 via the return pipe 33. Accordingly, the boundary between high-temperature water and water at a lower temperature in the warm-water storage tank 35 moves from the upper side toward the lower side, and hence the amount of the high-temperature water in the warm-water storage tank 35 increases.


(6-2-4) Water-Intake Warm-Water Supply Pipe and Combustion Heating Device


The water-intake warm-water supply pipe 70 is a circuit for using the high-temperature water stored in the warm-water storage tank 35 while receiving supply with water from external city water or the like, and includes a water intake pipe 71, a warm-water supply pipe 73, a bypass pipe 74, and the mixing valve 77.


The water intake pipe 71 receives supply with water from the external city water or the like, supplies normal-temperature water to a portion near the lower end of the warm-water storage tank 35. The water intake pipe 71 is provided with a water-intake temperature sensor 71T for detecting the temperature of the water supplied by the city water.


The warm-water supply pipe 73 guides high-temperature water which is included in the water stored in the warm-water storage tank 35 and which is present near the upper end, from the warm-water supply section 82 to an in-building pipe 99a through a portion to be used by a user, for example, the faucet 99 in the building.


The combustion heating device 4 is disposed midway in the warm-water supply pipe 73. The combustion heating device 4 is disposed between the warm-water storage tank 35 and the mixing valve 77, and includes a combustion burner 41 that burns a fuel gas. The combustion burner 41 is a gas burner of which the heating capacity is adjustable, and heats water flowing through the warm-water supply pipe 73 while adjusting the heating quantity in response to an instruction of the controller 50.


Moreover, a before-mixing warm-water temperature sensor 4T for detecting the temperature of the passing water is provided between the combustion heating device 4 and the mixing valve 77 in the warm-water supply pipe 73.


The bypass pipe 74 is a pipe for mixing normal-temperature water flowing through the water intake pipe 71 with water (warm water) flowing through the warm-water supply pipe 73. The bypass pipe 74 extends from the water intake pipe 71 to the warm-water supply pipe 73 and is connected to the warm-water supply pipe 73 via the mixing valve 77.


The mixing valve 77 is an adjustment valve that receives an instruction from the controller 50 and adjusts the mixing ratio of the high-temperature water (warm water) flowing through the warm-water supply pipe 73 and the normal-temperature water flowing through the bypass pipe 74.


(6-3) Controller and Remote Controller


The controller 50 is installed in the warm-water storage unit 3, is connected to actuators, such as the compressor 21, the electric expansion valve 23, the fan 24F, the mixing valve 77, the combustion burner 41, and the circulation pump 34, and sends operation instructions to the actuators. Moreover, the controller 50 is connected to sensors, such as the heat-exchanger inlet water temperature sensor 31T, the heat-exchanger outlet water temperature sensor 32T, the tank-temperature-distribution detection sensors T1 to T6, the water-intake temperature sensor 71T, and the before-mixing warm-water temperature sensor 4T, and acquires detection results from the sensors. Furthermore, the remote controller 90 is connected to the controller 50. The remote controller 90 receives a setting input from the user and provides information to the user.


As illustrated in FIG. 18, the remote controller 90 is provided with a warm-water temperature setting section 91 for setting the temperature of required warm water (water), and a display section 92 that displays the set warm-water temperature and the amount of residual warm water.


(6-4) Characteristics of Warm-Water Supply System


In the warm-water supply system 1 according to the present embodiment, since the water heat exchanger 22 heats water using one of the above-described refrigerants A to E, efficiency is high. When the water to be supplied is hard water, a scale may be disadvantageously generated. However, when the water to be supplied is soft water, it is advantageous to employ the warm-water supply system 1 according to the present embodiment.


(6-5) First Modification of First Embodiment


Employing a warm-water supply system 1a illustrated in FIG. 19 instead of the warm-water supply system 1 according to the first embodiment can suppress the disadvantage of generation of a scale. In the warm-water supply system 1a in FIG. 19, a heat pump 2a includes an auxiliary circulating water pipe 60 that is not included in the heat pump 2 of the first embodiment. The auxiliary circulating water pipe 60 is provided with an auxiliary circulation pump 64. The water in the auxiliary circulating water pipe 60 takes heat from the refrigerant in the water heat exchanger 22, and radiates heat to the water flowing through the main circulating water pipe 30 in the auxiliary water heat exchanger 62. The main water heat exchanger 22 is a heat exchanger that performs heat exchange between a refrigerant and water. The auxiliary water heat exchanger 62 is a heat exchanger that performs heat exchange between water and water.


In the warm-water supply system 1a illustrated in FIG. 19, the high-temperature gas refrigerant discharged from the compressor 21 of the heat pump 2a heats, in the auxiliary water heat exchanger 62, the water flowing through the auxiliary circulating water pipe 60; and the heated water heats, in the auxiliary water heat exchanger 62, the water flowing through the main circulating water pipe 30. The flow path of water constituted by the auxiliary circulating water pipe 60 is a closed loop, and a scale is almost not generated in the closed loop.


(6-6) Second Modification of First Embodiment


Employing a warm-water supply system 1b illustrated in FIG. 20 instead of the warm-water supply system 1 according to the first embodiment can suppress the disadvantage of generation of a scale. In the warm-water supply system 1b in FIG. 20, a warm-water storage unit 3b includes a heat exchange section 38 that is not included in the warm-water storage unit 3 of the first embodiment. The heat exchange section 38 is a portion of a circulating water pipe 30b and is disposed in the warm-water storage tank 35. In the warm-water supply system 1 according to the first embodiment, water flows out from a lower portion of the warm-water storage tank 35 to the circulating water pipe 30, and the heated water returns to a portion near the upper end of the warm-water storage tank 35. In contrast, in the warm-water supply system 1b illustrated in FIG. 20, the water in the warm-water storage tank 35 is boiled using the heated water flowing through the circulating water pipe 30b constituting the closed loop. The water in the warm-water storage tank 35 takes heat from the warm water flowing through the heat exchange section 38, and hence the temperature thereof increases.


In the warm-water supply system 1b illustrated in FIG. 20, the flow path of water constituted by the circulating water pipe 30b is a closed loop, and a scale is almost not generated in the closed loop.


Moreover, a heat pump 2b of the warm-water supply system 1b illustrated in FIG. 20 includes, in addition to the water heat exchanger 22 that functions as a use-side heat exchanger, a use-side water heat exchanger 22a having a function similar to the water heat exchanger 22. The water heat exchanger 22a is disposed on the upstream side of the flow of the refrigerant of the water heat exchanger 22, and heats the water flowing through a water circulation flow path 190. The water circulation flow path 190 is a closed loop flow path that connects a heat exchanger 192 disposed under a floor for floor heating and the water heat exchanger 22a of the heat pump 2b. The water circulation flow path 190 is provided with a pump 194. The water which has taken heat from and been heated by the high-temperature mixed refrigerant discharged from the compressor 21 in the water heat exchanger 22a is sent to the heat exchanger 192 under the floor by driving of the pump 194. The water which has radiated heat in the heat exchanger 192 and performed floor heating passes through the water circulation flow path 190 and flows into the water heat exchanger 22a again.


In this case, the heat pump 2b contributes to warm-water supply by heating the water in the warm-water storage tank 35, and also serves as a heat source of floor heating.


(7) Second Embodiment

(7-1) Major Configuration of Warm-Water Circulation Heating System



FIGS. 21 to 23 illustrate a configuration of a warm-water circulation heating system that is a warm-water generating apparatus according to a second embodiment. The warm-water circulation heating system performs heating by circulating warm water in a building and has a warm-water supply function. The warm-water circulation heating system includes a tank 240 that stores warm water, in-room radiators 261a and 262a, in-toilet radiators 269b, 269c, and 269e, an indoor heating circulation pump 251, a vapor compression heat pump 210 for heating warm water, a warm-water heating circulation pump 225, a warm-water supply heat exchanger 241a, a heated-water spray device 275, and a control unit 220.


The in-room radiators 261a and 262a are disposed in rooms 261 and 262 in the building, and radiate heat held by the warm water to the indoor airs in the rooms 261 and 262.


The in-toilet radiators 269b, 269c, and 269e are disposed in a toilet 269 in the building, and radiate heat held by the warm water in the toilet 269.


The indoor heating circulation pump 251 causes the warm water to flow from the tank 240 to the in-room radiators 261a and 262a and the in-toilet radiators 269b, 269c, and 269e, and causes the warm water which has radiated heat in the in-room radiators 261a and 262a and the in-toilet radiators 269b, 269c, and 269e to return to the tank 240 again. The warm water which has exited from the tank 240 flows through the in-room radiators 261a and 262a, then flows through the in-toilet radiators 269b, 269c, and 269e, and returns to the tank 240.


The heat pump 210 includes a refrigerant circuit having a compressor 211, a radiator 212, an expansion valve 213, and an evaporator 214, takes heat from the outside air by the evaporator 214, and radiates heat from the radiator 212, thereby heating the warm water flowing from the tank 240. In the present embodiment, the refrigerant circuit is filled with a refrigerant for performing a vapor compression refrigeration cycle. The refrigerant is a mixed refrigerant containing 1,2-difluoroethylene, and can use any one of the above-described refrigerants A to E.


The warm-water heating circulation pump 225 causes the warm water from the tank 240 to the radiator 212 of the heat pump 210, and causes the warm water to return from the radiator 212 of the heat pump 210 to the tank 240 again.


The warm-water supply heat exchanger 241a is disposed in the tank 240, causes the water taken in from a water supply source and the warm water in the tank 240 to exchange heat with each other to heat water, and supplies the heated water to a warm-water supply pipe 272 in the building. The water which is heated in the warm-water supply heat exchanger 241a and which is supplied to the warm-water supply pipe 272 is hereinafter referred to as heated water. Note that the water which is taken in from the water supply source and supplied to the warm-water supply pipe 272 is not mixed with the warm water in the tank 240. Reference sign 241 in FIG. 21 denotes a flow path of the water flowing from the water supply source to the warm-water supply pipe 272.


The heated-water spray device 275 is a device that sprays the heated water which is supplied from the warm-water supply heat exchanger 241a to the warm-water supply pipe 272, onto the outer surface of the evaporator 214 of the heat pump 210.


Note that the warm water which is stored in the tank 240 and which circulates through the closed loop by the indoor heating circulation pump 251 and the warm-water heating circulation pump 225 uses normal water; however, may be a liquid and does not have to be water (H2O). If there is a liquid which can decrease the powers of the indoor heating circulation pump 251 and the warm-water heating circulation pump 225 and which can decrease the sizes of the pipes 252, 231, and so forth, serving as a circulation route to be smaller than that for water (H2O), the liquid is preferably used.


(7−2) Overview Operation of Warm-Water Circulation Heating System


In the warm-water circulation heating system, actuation of the warm-water heating circulation pump 225 causes the warm water flowing from the tank 240 to the radiator 212 of the heat pump 210 to be heated using heat radiated from the radiator 212 by actuation of the heat pump 210. Accordingly, the high-temperature warm water is returned from the heat pump 210 to the tank 240. In contrast, the warm water in the tank 240 is sent to the in-room radiators 261a and 262a in the rooms 261 and 262 and to the in-toilet radiators 269b, 269c, and 269e in the toilet 269 by actuation of the indoor heating circulation pump 251. The heat of the warm water shifts to the indoor airs in the rooms 261 and 262 and to the vicinity of the in-toilet radiators 269b, 269c, and 269e, thereby heating the rooms 261 and 262, and heating wash water in a toilet tank 269a, a toilet seat 269d, and the like, in the toilet 269. The warm water of which the temperature has decreased to about 10° C. to 20° C. is returned to the tank 240 again. The warm water whose temperature has decreased turns into high-temperature water again by actuation of the heat pump 210.


As described above, in this case, a first loop for circulation through the tank 240 and the heat pump 210 connected by a pipe 231, and a second loop for circulation through the tank 240, the in-room radiators 261a and 262a, and the in-toilet radiators 269b, 269c, and 269e connected by a pipe 252 are formed. The warm water circulates through the loops. Thus, the heat collected from the outside by actuation of the heat pump 210 and the heat generated by actuation of the compressor 211 finally shift to the indoor airs in the rooms 261 and 262 and the respective sections of the toilet 269 via the warm water stored in the tank 240.


Moreover, the warm-water supply heat exchanger 241a is disposed in the tank 240, the water taken in from the supply water source takes heat from the warm water in the tank 24 when passing through the warm-water supply heat exchanger 241a and turns into the heated water, and the heated water flows to the warm-water supply pipe 272 in the building. The heated water flowing to the warm-water supply pipe 272 is to be used for a shower 273 and in a bathtub 274. Furthermore, part of the heated water which has flowed to the warm-water supply pipe 272 is sprayed onto the outer surface of the evaporator 214 of the heat pump 210 by the heated-water spray device 275. The spray is periodically performed under a predetermined condition that a frost is generated on the evaporator 214 of the heat pump 210.


(7-3) Detailed Configuration of Control Unit 220


As illustrated in FIGS. 21 and 24, an overall controller 229 controls devices belonging to the heat pump 210 and devices belonging to the tank 240 based on signals input from the outside. The overall controller 229 is accommodated in a casing together with three-way valves 221 and 222 and the warm-water heating circulation pump 225 to form one control unit 220 (see FIG. 21).


The three-way valves 221 and 222 are provided to adjust from which portion in the height direction of the tank 240 the warm water is to be drawn and sent to the in-room radiators 261a and 262a, and to which portion in the height direction of the tank 240 the low-temperature warm water returned from the in-toilet radiators 269b, 269c, and 269e is returned. The three-way valves 221 and 222 are actuated in response to instructions from the overall controller 229.


The overall controller 229 controls, in addition to the three-way valves 221 and 222, a booster heater 242, a heat-pump control unit 219, the indoor heating circulation pump 251, the warm-water heating circulation pump 225, warm-water flow-rate adjustment valves 253 to 255, a defrost valve 277, and so forth. Moreover, the overall controller 229 receives signals of measurement results from a heating warm-water outgoing temperature sensor 252a, a heating warm-water return temperature sensor 252b, temperature sensors 240a to 240e of the tank 240, a water supply pipe temperature sensor 271a, a warm-water supply pipe temperature sensor 272a, and so forth; and receives information on the indoor temperature and the indoor set temperature from a remote controller/thermostat 291 disposed in the rooms 261 and 262, and so forth.


(7-4) Characteristics of Warm-Water Circulation Heating System


In the warm-water circulation heating system according to the second embodiment, since the radiator 212 of the heat pump 210 heats water using one of the above-described refrigerants A to E, efficiency is high. Moreover, the water to be heated by the radiator 212 of the heat pump 210 is stored in the tank 240 and circulates through the closed loop by the indoor heating circulation pump 251 and the warm-water heating circulation pump 225. In other words, the water which is heated by the radiator 212 of the heat pump 210 is not mixed with the water which is taken in from the water supply source and supplied to the warm-water supply pipe 272. Thus, an excessive scale is not generated by heating of water by the radiator 212 of the heat pump 210.


(7-5) First Modification of Second Embodiment


In the warm-water circulation heating system according to the second embodiment, the warm-water heat exchanger 241a disposed in the tank 240 heats the water taken in from the water supply source to generate heated water for warm-water supply; however, as illustrated in FIG. 25, a water heat exchanger 112 may generate heated water. In the warm-water circulation heating system illustrated in FIG. 25, a water circulation flow path 110 and a pump 115 constituting a third loop are provided, warm water is taken out from an upper portion of the tank 240, the warm water passes through the water heat exchanger 112, and then the warm water from which heat is radiated is returned to a lower portion of the tank 240. In the water heat exchanger 112, the water taken in from the water supply source is heated by heat radiated from the warm water flowing from the tank 240, the water becomes heated water for warm-water supply, and the heated water flows to the warm-water supply pipe 272. Reference sign 118 in FIG. 25 denotes a flow path of water flowing from the water supply source to the warm-water supply pipe 272.


(7-6) Second Modification of Second Embodiment


In the warm-water circulation heating system according to the second embodiment, the warm water is fed from the lower portion of the tank 240 to the radiator 212 of the heat pump 210, and the warm water is returned from the radiator 212 of the heat pump 210 to the upper portion of the tank 240 again by the warm-water heating circulation pump 225. However, as illustrated in FIG. 26, the radiator 212 may be omitted, a refrigerant circulation flow path 217 that guides a high-temperature high-pressure mixed refrigerant discharged from the compressor 211 to the inside of the tank 240 may be provided, and the water in the tank 240 may be heated by a heat exchanger 216 disposed in the tank 240. In the warm-water circulation heating system illustrated in FIG. 26, the heat exchanger 216 in the tank 240 is disposed near a warm-water supply heat exchanger 241a. The high-temperature refrigerant which has flowed through the refrigerant circulation flow path 217 radiates heat to the water in the tank 240 in the heat exchanger 216, is condensed and turns into a low-temperature high-pressure refrigerant in a liquid phase, and is returned to a unit of the heat pump 210. The liquid refrigerant returned to the unit of the heat pump 210 is decompressed at the expansion valve 213, flows into the evaporator 214, and takes heat from the outside air to be evaporated. Then, the mixed refrigerant is compressed in the compressor 211 again and turns into a high-temperature high-pressure mixed refrigerant. The water in the tank 240 heated by the heat exchanger 216 heats the water flowing through the warm-water supply heat exchanger 241a that is adjacent to the heat exchanger 216. Moreover, the heat of the refrigerant is transferred to the warm-water supply heat exchanger 241a also by radiation from the heat exchanger 216. The water taken in from the water supply source and flowing through the warm-water supply heat exchanger 241a takes heat from the heat exchanger 216 via the water in the tank 240, takes heat from the heat exchanger 216 also by radiation, and hence the water becomes heated water.


In the warm-water circulation heating system illustrated in FIG. 26, the water in the tank 240 is separated from the water flowing from the water supply source to the warm-water supply pipe 272 (water flowing through a flow path 241). Even when the heat exchanger 216 in the tank 240 that functions as the condenser of the mixed refrigerant rapidly heats the water, the amount of generation of a scale is less.


(8) Third Embodiment


FIG. 27 is a schematic configuration diagram of a warm-water supply system 310 serving as a warm-water generating apparatus according to a third embodiment. The warm-water supply system 310 is warm-water supply equipment used in a large-size facility, such as a hospital, a sport facility, or the like. As illustrated in FIG. 27, the warm-water supply system 310 mainly includes a water receiving tank 320, a heat source unit 330, a warm-water storage tank 340, a warm-water use section 350, a control section 360, a water supply line 312, a warm-water exit line 314, and a warm-water circulation path 316. The water supply line 312 is a pipe that connects the water receiving tank 320 and the heat source unit 330. The warm-water exit line 314 is a pipe that connects the heat source unit 330 and the warm-water storage tank 340 to each other. The warm-water circulation path 316 is a pipe that connects the warm-water storage tank 340 and the warm-water use section 350 to each other. In FIG. 27, arrows along the water supply line 312, the warm-water exit line 314, and the warm-water circulation path 316 represent directions in which water or warm water flows. Next, the water receiving tank 320, the heat source unit 330, the warm-water storage tank 340, the warm-water use section 350, and the control section 360 are described.


(8-1) Water Receiving Tank


The water receiving tank 320 is a tank for storing water to be used by the warm-water supply system 310. The water receiving tank 320 is connected to a water supply or the like. The water receiving tank 320 supplies water to the heat source unit 330 via the water supply line 312. The water-supply pressure of the water receiving tank 320 is 40 kPa to 500 kPa.


(8-2) Heat Source Unit


The heat source unit 330 is installed outside a room. The heat source unit 330 receives a supply with water from the water receiving tank 320 via the water supply line 312. The heat source unit 330 heats the water taken in from the water supply line 312. The heat source unit 330 sends warm water which is heated water to the warm-water storage tank 340 via the warm-water exit line 314.



FIG. 28 is a schematic configuration diagram of the heat source unit 330. FIG. 29 is a block diagram of the warm-water supply system 310. As illustrated in FIGS. 28 and 29, the heat source unit 330 mainly includes a water flow path 331, a water supply pump 332, a second heat exchanger 333, a refrigerant circulation flow path 334, a compressor 335, an expansion valve 336, a first heat exchanger 337, and a warm-water exit temperature sensor 338. The water flow path 331 is connected to the water supply pump 332 and the second heat exchanger 333. The refrigerant circulation flow path 334 is connected to the compressor 335, the expansion valve 336, and the first heat exchanger 337. In FIG. 28, arrows along the water flow path 331 and the refrigerant circulation flow path 334 represent directions in which the water or the refrigerant flows. Next, respective components of the heat source unit 330 are described.


(8-2-1) Water Flow Path


The water flow path 331 is a pipe through which the water taken in from the water supply line 312 flows. The water flow path 331 is constituted of a first water pipe 331a, a second water pipe 331b, and a third water pipe 331c. The first water pipe 331a is connected to the water supply line 312 and is also connected to the suction port of the water supply pump 332. The second water pipe 331b is connected to the discharge port of the water supply pump 332 and is also connected to a water pipe 333a of the second heat exchanger 333. The third water pipe 331c is connected to the water pipe 333a of the second heat exchanger 333 and is also connected to the warm-water exit line 314. The third water pipe 331c is provided with the warm-water exit temperature sensor 338 for measuring the temperature of the water flowing through the third water pipe 331c, at a position near the connection portion with respect to the warm-water exit line 314.


(8-2-2) Warm-Water Supply Pump


The water supply pump 332 is a capacity variable pump, and hence can adjust the amount of water flowing through the water flow path 331. The water flowing through the water flow path 331 is supplied from the water supply line 312, passes through the water supply pump 332 and the second heat exchanger 333, and is supplied to the warm-water exit line 314.


(8-2-3) Second Heat Exchanger


The second heat exchanger 333 includes the water pipe 333a through which the water flowing through the water flow path 331 passes, and a refrigerant pipe 333b through which the refrigerant flowing through the refrigerant circulation flow path 334 passes. The second heat exchanger 333 is, for example, a tornado heat exchanger having a configuration in which the refrigerant pipe 333b is wound around the outer periphery of the water pipe 333a in a helical form and a groove is formed in the water pipe 333a. In the second heat exchanger 333, low-temperature water flowing through the water pipe 333a and a high-temperature high-pressure refrigerant flowing through the refrigerant pipe 333b exchange heat with each other. The low-temperature water flowing through the water pipe 333a of the second heat exchanger 333 exchanges heat with the high-temperature refrigerant flowing through the refrigerant pipe 333b of the second heat exchanger 333 and hence is heated. Accordingly, the water supplied from the water supply line 312 is heated in the second heat exchanger 333, and is supplied as warm water to the warm-water exit line 314.


(8-2-4) Refrigerant Circulation Flow Path


The refrigerant circulation flow path 334 is a pipe through which the refrigerant circulates, heat of the refrigerant being exchanged with heat of the water in the second heat exchanger 333. In the present embodiment, the refrigerant circulation flow path 334 is filled with a refrigerant for performing a vapor compression refrigeration cycle. The refrigerant is a mixed refrigerant containing 1,2-difluoroethylene, and can use any one of the above-described refrigerants A to E.


As illustrated in FIG. 28, the refrigerant circulation flow path 334 couples the discharge port of the compressor 335 and the refrigerant pipe 333b of the second heat exchanger 333 to each other, couples the refrigerant pipe 333b of the second heat exchanger 333 and the expansion valve 336 to each other, couples the expansion valve 336 and the first heat exchanger 337 to each other, and couples the first heat exchanger 337 and the suction port of the compressor 335 to each other. The second heat exchanger 333 has a function as a condenser in a refrigeration cycle. The first heat exchanger 337 has a function as an evaporator in the refrigeration cycle.


(8-2-5) Compressor


The compressor 335 is a capacity variable inverter compressor. The compressor 335 sucks and compresses the low-pressure gas refrigerant flowing through the refrigerant circulation flow path 334. The high-temperature high-pressure gas refrigerant compressed in the compressor 335 is discharged from the compressor 335, and sent to the refrigerant pipe 333b of the second heat exchanger 333. In the second heat exchanger 333, the high-temperature high-pressure gas refrigerant flowing through the refrigerant pipe 333b of the second heat exchanger 333 exchanges heat with the low-temperature water flowing through the water pipe 333a of the second heat exchanger 333. Thus, in the second heat exchanger 333, the high-temperature high-pressure gas refrigerant is condensed and turns into a high-pressure liquid refrigerant.


(8-2-6) Expansion Valve


The expansion valve 336 is an electric valve for adjusting the pressure and the flow rate of the refrigerant flowing through the refrigerant circulation flow path 334. The high-pressure liquid refrigerant which has exchanged heat in the refrigerant pipe 333b of the second heat exchanger 333 is decompressed by passing through the expansion valve 336, and turns into a low-pressure refrigerant in a gas-liquid two-phase state.


(8-2-7) First Heat Exchanger


The first heat exchanger 337 is, for example, a plate fin-and-coil heat exchanger. A fan 337a is provided near the first heat exchanger 337. The fan 337a sends the outside air to the first heat exchanger 337, and discharges the outside air which has exchanged heat with the refrigerant in the first heat exchanger 337. In the first heat exchanger 337, the low-pressure refrigerant in a gas-liquid two-phase state decompressed at the expansion valve 336 is evaporated through heat exchange with the outside air supplied by the fan 337a and turns into a low-pressure gas refrigerant. The low-pressure gas refrigerant which has passed through the first heat exchanger 337 is sent to the compressor 335.


(8-2-8) Warm-Water Exit Temperature Sensor


The warm-water exit temperature sensor 338 is a temperature sensor that is attached to the third water pipe 331c, at a position near the connection portion between the third water pipe 331c of the water flow path 331 and the warm-water exit line 314. The warm-water exit temperature sensor 338 measures the temperature of the water heated in the second heat exchanger 333 and flowing through the third water pipe 331c. That is, the warm-water exit temperature sensor 338 measures the temperature of the warm water supplied by the heat source unit 330.


(8-3) Warm-Water Storage Tank


The warm-water storage tank 340 is an open warm-water storage tank for storing the warm water supplied from the heat source unit 330 via the warm-water exit line 314. The warm-water storage tank 340 is, for example, a tank made of stainless steel and a tank made of FRP. The warm water stored in the warm-water storage tank 340 is supplied to the warm-water use section 350 via the warm-water circulation path 316. As illustrated in FIG. 27, the warm-water circulation path 316 is constituted of a first warm-water pipe 316a and a second warm-water pipe 316b. The warm-water storage tank 340 supplies the warm water stored therein to the first warm-water pipe 316a, and sends the warm water to the warm-water use section 350 via the first warm-water pipe 316a. The warm water which has not been used in the warm-water use section 350 is returned to the warm-water storage tank 340 via the second warm-water pipe 316b. That is, part of the warm water stored in the warm-water storage tank 340 flows through the first warm-water pipe 316a and the second warm-water pipe 316b, and is returned to the warm-water storage tank 340 again.


Note that, as illustrated in FIG. 27, a warm-water supply pump 351 is attached to the first warm-water pipe 316a. The warm-water supply pump 351 is a pressure pump for sending the warm water stored in the warm-water storage tank 340 to the warm-water use section 350. The warm-water supply pump 351 is a capacity variable pump, and hence can adjust the amount of warm water to be sent to the warm-water use section 350.


As illustrated in FIG. 29, the warm-water storage tank 340 mainly includes a heat retaining heater 341, a water-pressure sensor 342, a float switch 343, and a warm-water storage temperature sensor 344. Next, respective components of the warm-water storage tank 340 are described.


(8-3-1) Keep-Warm Heater


The heat retaining heater 341 is a heater attached to the inside of the warm-water storage tank 340 to retain the temperature of the warm water stored in the warm-water storage tank 340 at a temperature at which the warm water can be used as warm water in the warm-water use section 350 or higher. The warm-water storage tank 340 performs a heat retaining operation on the warm water stored therein using the heat retaining heater 341.


(8-3-2) Water-Pressure Sensor


The water-pressure sensor 342 is a sensor for measuring the residual amount of the warm water stored in the warm-water storage tank 340. The water-pressure sensor 342 is attached to a lower portion of the inside of the warm-water storage tank 340 and detects the water pressure due to the warm water in the warm-water storage tank 340, to calculate the residual amount and the water level of the warm water stored in the warm-water storage tank 340. The water-pressure sensor 342 can detect, for example, whether the residual amount of the warm water stored in the warm-water storage tank 340 is less than a target residual warm water amount which is previously set.


(8-3-3) Float Switch


The float switch 343 auxiliary detects the residual amount of the warm water stored in the warm-water storage tank 340 using a float that moves up and down in accordance with the water level of the warm water stored in the warm-water storage tank 340.


(8-3-4) Warm-Water Storage Temperature Sensor


The warm-water storage temperature sensor 344 is a temperature sensor that is installed in the warm-water storage tank 340, at a position near the connection portion between the first warm-water pipe 316a of the warm-water circulation path 316 and the warm-water storage tank 340. The warm-water storage temperature sensor 344 measures the temperature of the warm water stored in the warm-water storage tank 340.


(8-4) Warm-Water Use Section


The warm-water use section 350 indicates places, such as a kitchen, a shower, a pool, and so forth, where the warm water stored in the warm water tank 340 is to be used. The warm water stored in the warm-water storage tank 340 is supplied to the warm-water use section 350 by the warm-water supply pump 351 via the first warm-water pipe 316a of the warm-water circulation path 316. The warm-water use section 350 may not use all the warm water supplied via the first warm-water pipe 316a. The warm water which has not been used in the warm-water use section 350 is returned to the warm-water storage tank 340 via the second warm-water pipe 316b of the warm-water circulation path 316.


(8-5) Control Unit


As illustrated in FIG. 29, the control section 360 is connected to a component of the warm-water supply system 310. Specifically, the control section 360 is connected to the water supply pump 332, the compressor 335, the expansion valve 336, the fan 337a, the warm-water exit temperature sensor 338, the heat retaining heater 341, the water-pressure sensor 342, the float switch 343, the warm-water storage temperature sensor 344, and the warm-water supply pump 351. The control section 360 is installed in, for example, an electric component unit (not illustrated) in the heat source unit 330.


The control section 360 is a computer for controlling the components of the warm-water supply system 310. For example, the control section 360 controls the number of revolutions of the water supply pump 332, the operating frequency of the compressor 335, the opening degree of the expansion valve 336, the number of revolutions of the fan 337a, the power consumption of the heat retaining heater 341, and the number of revolutions of the warm-water supply pump 351; and acquires measurement values of the warm-water exit temperature sensor 338, the water-pressure sensor 342, the float switch 343, and the warm-water storage temperature sensor 344.


Moreover, as illustrated in FIG. 29, the control section 360 is connected to a remote controller 370. The remote controller 370 is a device for controlling the warm-water supply system 310.


(8-6) Characteristics of Warm-Water Supply System


In the warm-water supply system according to the third embodiment, since the second heat exchanger 333 of the heat source unit 330 heats water using one of the above-described refrigerants A to E, efficiency is high.


The embodiments of the present disclosure have been described above, and it is understood that the embodiments and details can be modified in various ways without departing from the idea and scope of the present disclosure described in the claims.


REFERENCE SIGNS LIST






    • 1 warm-water supply system (warm-water generating apparatus)


    • 1
      a warm-water supply system (warm-water generating apparatus)


    • 1
      b warm-water supply system (warm-water generating apparatus)


    • 21 compressor


    • 22 water heat exchanger (second heat exchanger)


    • 23 expansion valve (expansion mechanism)


    • 24 air heat exchanger (first heat exchanger)


    • 30 circulating water pipe (circulation flow path; second circulation flow path)


    • 30
      b circulating water pipe (first circulation flow path)


    • 35 warm-water storage tank (tank)


    • 38 heat exchange section (part of first circulation flow path)


    • 60 auxiliary circulating water pipe (first circulation flow path)


    • 62 auxiliary water heat exchanger (third heat exchanger)


    • 110 water circulation pipe (second circulation flow path)


    • 112 water heat exchanger (third heat exchanger)


    • 118 flow path (third flow path)


    • 211 compressor


    • 212 radiator (second heat exchanger)


    • 213 expansion valve (expansion mechanism)


    • 214 evaporator (second heat exchanger)


    • 231 pipe (first circulation flow path)


    • 240 tank


    • 241 flow path (second flow path)


    • 241
      a warm-water supply heat exchanger (part of second flow path)


    • 320 water receiving tank (water supply source)


    • 312 water supply line (flow path)


    • 314 warm-water exit line (flow path)


    • 331 water flow path (flow path)


    • 333 second heat exchanger


    • 335 compressor


    • 336 expansion valve (expansion mechanism)


    • 337 first heat exchanger


    • 340 warm-water storage tank (tank)





CITATION LIST
Patent Literature

PTL 1: Japanese Unexamined Patent Application Publication No. 2003−083614

Claims
  • 1. A warm-water generating apparatus using a refrigerant containing at least 1,2-difluoroethylene (HFO-1132(E)), comprising: a compressor;a heat-source-side first heat exchanger;an expansion mechanism; anda use-side second heat exchanger,wherein the second heat exchanger causes the refrigerant flowing therein and first water to exchange heat with each other to heat the first water.
  • 2. The warm-water generating apparatus according to claim 1, further comprising: a tank; anda circulation flow path that allows the first water to circulate between the tank and the second heat exchanger.
  • 3. The warm-water generating apparatus according to claim 1, further comprising: a first circulation flow path that allows the first water heated by the second heat exchanger to circulate;a second circulation flow path that is different from the first circulation flow path;a third heat exchanger that causes the first water flowing through the first circulation flow path and second water flowing through the second circulation flow path to exchange heat with each other to heat the second water flowing through the second circulation flow path; anda tank that stores the second water heated by the third heat exchanger.
  • 4. The warm-water generating apparatus according to claim 1, further comprising: a first circulation flow path that allows the first water heated by the second heat exchanger to circulate; anda tank,wherein a portion of the first circulation flow path is disposed in the tank and allows the first water flowing through the first circulation flow path and second water in the tank to exchange heat with each other to heat the second water in the tank.
  • 5. The warm-water generating apparatus according to claim 1, further comprising: a tank;a first circulation flow path that allows the first water to circulate between the second heat exchanger and the tank;a third heat exchanger;a second circulation flow path that allows the first water to circulate between the third heat exchanger and the tank; anda third flow path that is different from the first circulation flow path and the second circulation flow path,wherein the third heat exchanger causes the first water flowing from the tank and third water flowing through the third flow path to exchange heat with each other to heat the third water flowing through the third flow path.
  • 6. The warm-water generating apparatus according to claim 1, further comprising: a tank;a first circulation flow path that allows the first water to circulate between the tank and the second heat exchanger; anda second flow path that is different from the first circulation flow path,wherein a portion of the second flow path is disposed in the tank and allows the first water in the tank and second water flowing through the second flow path to exchange heat with each other to heat the second water flowing through the second flow path.
  • 7. The warm-water generating apparatus according to claim 1, further comprising: a tank that stores the first water; anda flow path that has a portion disposed in the tank and through which second water flows,wherein the second heat exchanger heats, in the tank, the first water stored in the tank, andwherein the first water stored in the tank heats the second water flowing through the flow path.
  • 8. The warm-water generating apparatus according to claim 1, further comprising: a tank; anda flow path through which the first water flows from a water supply source to the tank,wherein the second heat exchanger heats the first water flowing through the flow path.
  • 9. The warm-water generating apparatus according to claim 1, further comprising: a use-side fourth heat exchanger that is different from the second heat exchanger; anda fourth circulation flow path through which fourth water for cooling or heating flows,wherein the fourth heat exchanger causes the refrigerant flowing therein and the fourth water flowing through the fourth circulation flow path to exchange heat with each other to cool or heat the fourth water.
  • 10. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • 11. The warm-water generating apparatus according to claim 10, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
  • 12. The warm-water generating apparatus according to claim 10, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
  • 13. The warm-water generating apparatus according to claim 10, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • 14. The warm-water generating apparatus according to claim 10, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • 15. The warm-water generating apparatus according to claim 10, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
  • 16. The warm-water generating apparatus according to claim 10, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
  • 17. The warm-water generating apparatus according to claim 10, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
  • 18. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, andthe refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
  • 19. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, andthe refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
  • 20. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
  • 21. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
  • 22. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
  • 23. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
  • 24. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
  • 25. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
  • 26. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
  • 27. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • 28. The warm-water generating apparatus according to claim 1,
  • 29. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • 30. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • 31. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • 32. The warm-water generating apparatus according to claim 1, whereinthe refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
Priority Claims (9)
Number Date Country Kind
2017-242183 Dec 2017 JP national
2017-242185 Dec 2017 JP national
2017-242186 Dec 2017 JP national
2017-242187 Dec 2017 JP national
PCT/JP2018/037483 Oct 2018 JP national
PCT/JP2018/038746 Oct 2018 JP national
PCT/JP2018/038747 Oct 2018 JP national
PCT/JP2018/038748 Oct 2018 JP national
PCT/JP2018/038749 Oct 2018 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2018/045979 12/13/2018 WO 00