Wash filter with wash velocity control cone

Information

  • Patent Grant
  • 8313656
  • Patent Number
    8,313,656
  • Date Filed
    Friday, September 9, 2011
    12 years ago
  • Date Issued
    Tuesday, November 20, 2012
    11 years ago
Abstract
A variable wash flow filter assembly includes guide that is operable to guide a wash velocity control cone between a minimal position and a maximum position. The guide defines at least one activation deltaP window downstream of a conical gap between the wash velocity control cone and a frusto-conical wash filter. The fuel flow through the conical gap and the activation deltaP window is operable to position the wash velocity control cone between the minimal position and maximum position to selectively split a fuel flow through an inlet into a burn flow through a thru flow port and a filtered flow thru the frusto-conical wash filter and filtered flow port.
Description
BACKGROUND

The present invention relates to a filtering system and more particularly to a wash filter therefor.


Engine systems often contain contamination sensitive components. These components are sensitive to contamination and require a filtration system which protects the clearances against contamination within the fuel.


Pumps that supply pressure and flow are typically fixed displacement pumps—that is, the flow varies linearly with speed. During steady-state operation, excess pump flow is bypassed and recirculated. Conventional fixed geometry wash filters utilize this excess flow as wash flow. The range of wash flow over the pump operating envelope supplies sufficient washing action to clean a traditional wash filter filtration system.


SUMMARY

A variable wash flow filter assembly according to an exemplary aspect of the present invention includes: a housing which defines an inlet, at least one filtered flow port, and at least one outlet port; a wash filter within the housing adjacent to at least one filtered flow port; and a wash velocity control cone biased within the housing relative to the wash filter, the wash velocity control cone is movable between a minimal position and a maximum position.


A fuel system according to an exemplary aspect of the present invention includes: a main fuel pump; and a variable wash flow filter assembly in fluid communication with the main fuel pump. The variable wash flow filter assembly comprises a wash velocity control cone movable relative to a wash filter, the wash velocity control cone movable between a minimal position and a maximum position to split a fuel flow from the fuel pump into thru flow to the demand system and a filtered flow. The thru flow serves as a wash flow to carry away contaminate trapped by the wash filter within said variable wash flow filter assembly.


A method of filtering a fuel flow according to an exemplary aspect of the present invention includes: biasing a wash velocity control cone relative to a wash filter within a variable wash flow filter assembly the wash velocity control cone movable between a minimal position and a maximum position, the variable wash flow filter assembly splits inlet flow into a thru flow to a demand system and a filtered flow. The thru flow operable as a wash flow to carry away contaminate trapped by the wash filter within the variable wash flow filter assembly.





BRIEF DESCRIPTION OF THE DRAWINGS

The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:



FIG. 1 is a schematic view of a fuel system;



FIG. 2A is a perspective cross sectional view of a variable wash flow filter assembly;



FIG. 2B is a cross sectional view of the variable wash flow filter assembly, with radial exit, of FIG. 2A in a first position;



FIG. 2C is a cross sectional view of the variable wash flow filter assembly, with radial exit, of FIG. 2A in a second position;



FIG. 2D is an exploded view of the components in the variable wash flow filter assembly, with radial exit, of FIG. 2A.



FIG. 3 is a cross sectional view of another variable wash flow filter assembly, with axial exit;



FIG. 4A is a perspective cross-sectional view of another variable wash flow filter assembly, with axial exit;



FIG. 4B is a cross-sectional view of the variable wash flow filter assembly, with axial exit of FIG. 4A; and



FIG. 4C is a rear view of the variable wash flow filter assembly, with axial exit of FIG. 4A.



FIG. 4D is an exploded view of the variable wash flow filter assembly, with axial exit of FIG. 4A.





DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS


FIG. 1 illustrates a schematic of a fuel system 50 that would utilize a Variable wash flow filter assembly 54. The fuel system 50 generally includes a main fuel pump 52 which communicates a fuel flow F from an outlet thereof through a variable wash flow filter assembly 54. The fuel flow F from the variable wash flow filter assembly 54 is split between a burn flow GG and a filtered flow FF. The filtered flow FF and/or the burn flow GG may exit the variable wash flow filter assembly 54 in a radial (FIG. 2A) or axial flow (FIG. 4A) path. The filtered flow FF is communicated to a multiple of contaminates sensitive components 56. Furthermore, it should be understood that the variable wash flow filter assembly 54 may be used in systems other than gas turbine engines.


As the filtered flow FF supplies only the flow required for contaminate sensitive devices 56, there is no excess flow to supply wash flow within the variable wash flow filter assembly 54. The burn flow GG is thereby utilized as the wash flow, however, the burn flow GG may have a relatively high “turn down ratio” or the ratio of max flow to min flow. This high turn down ratio would not allow a conventional fixed geometry wash filter to meet a standard wash velocity range for a fixed geometry wash filter. The variable wash flow filter assembly 54 maintains the wash velocity within a desired range for effective operation.


Referring to FIG. 2A, the variable wash flow filter assembly 54 includes a housing 60 which defines an inlet 62, at least one filtered flow FF port 64, and at least one thru flow GG port 66 (also illustrated in FIG. 2B). A wash velocity control cone 68 is biased within the housing 62 with a bias member 70 such as a spring to move between a minimal position (FIG. 2B) and a maximum position (FIG. 2C). The wash velocity control cone 68 defines a rounded nose section 68N along said axis A. The bias member 70 reacts against a spring seat 72 mounted to a guide 76. The guide 76 guides the wash velocity control cone 68 for axial movement along an axis A of the variable wash flow filter assembly 54.


The wash filter 74 is of conical shape to receive the wash velocity control cone 68 which has a generally equivalent shape such that, at the minimum position (FIG. 2B), a small gap is maintained between the wash velocity control cone 68 and the wash filter 74. This controlled minimum gap corresponds to a low flow condition in which the minimum gap provides sufficient wash velocity to carry away contaminate trapped by the wash filter 74. As flow from the fuel pump 52 increases, pressure drop and flow momentum forces on the wash velocity control cone 68 change. The wash velocity control cone 68 strokes against the bias member 70 to settle at a position where the flow and pressure forces are in balance. In this manner, movement of the wash velocity control cone 68 will increase the gap between the wash velocity control cone 68 and the wash filter 74 in proportion to the flow from the fuel pump in response to, for example, an increase in either demand flow or filtered flow. This movement and the variable gap maintain a relatively constant wash velocity to assure that contaminate trapped by the wash filter 74 will be carried away with the demand flow GG.


The gap between the wash velocity control cone 68 and the wash filter 74 has a relatively high fluid velocity which may cause a drop in the static fluid pressure that may result in a closing pressure load and a net closing force on the wash velocity control cone 68. To avoid this potential closing force, at least one deltaP window 78 is located within the guide 76 downstream of the conical gap between the wash velocity control cone 68 and the wash filter 74. The window 78 may be located through a sleeve section 80 of the guide 76. One or more windows 78 may be located and contoured to optimize the deltaP for various flow conditions which provide net positive forces for controlling cone position.


Fuel flow F from the main fuel pump 52 enters the variable wash flow filter assembly 54 through the inlet 62. The fuel is guided to flow between the wash velocity control cone 68 and the wash filter 74. Movement of the wash velocity control cone 68 relative the wash filter 74 operates to vary the flow area relative to the stroke of the wash velocity control cone 68. A portion of the inlet flow will pass through the wash filter 74 and into the filtered flow FF port 64 to become filtered flow FF. The balance of the fuel becomes system demand flow and will carry away contaminate trapped by the wash filter 74. System demand flow passes essentially though the variable wash flow filter assembly 54, while the filtered flow FF is directed generally perpendicular to the axis F through the wash filter assembly 54.


Referring to FIG. 3, another non-limiting embodiment of a variable wash flow filter assembly 54A includes a wash velocity control cone 68′ that integrates the stability valve 90 thereon. That is, the wash velocity control cone 68′ includes an integrated stability valve 90.


Fuel flow from the centrifugal main fuel pump 52′ enters the variable wash flow filter assembly 54A through the inlet 62′. The fuel is guided through the stability valve 90 which creates the proper backpressure for stable pump operation, then flows between the wash velocity control cone 68′ and the wash filter 74′ as described above. The wash velocity control cone 68′ that integrates the stability valve 90 are fixed together to move as a unit and therefore have the same stroke to flow relationship.


Referring to FIG. 4A, another non-limiting embodiment of a variable wash flow filter assembly 54B includes an axial thru flow GG port 66″ and a radial filter flow FF port 64″ (FIG. 4B). The variable wash flow filter assembly 54B operates generally as described above with the thru flow GG being communicated through ports 92 located through a base of the guide 76″ which then exists through the flow GG port 66″ which is located along the axis A of the housing 60″ (also shown in FIGS. 4C and 4D).


It should be understood that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” and the like are with reference to the normal operational attitude of the vehicle and should not be considered otherwise limiting.


It should be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit from the instant invention.


Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present invention.


The foregoing description is exemplary rather than defined by the limitations within. Many modifications and variations are possible in light of the above teachings. Non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.

Claims
  • 1. A variable wash flow filter assembly comprising: a housing which defines an inlet along a longitudinal axis, at least one filtered flow port, and at least one thru flow port;a frusto-conical wash filter axially fixed within said housing adjacent to said at least one filtered flow port;a wash velocity control cone movable between a minimal position and a maximum position relative to said axially fixed wash filter; anda guide operable to guide said wash velocity control cone along said longitudinal axis between said minimal position and said maximum position, said guide defines at least one activation deltaP window downstream of a conical gap between said wash velocity control cone and said frusto-conical wash filter, the fuel flow through said conical gap and said at least one activation deltaP window operable to position said wash velocity control cone between said minimal position and said maximum position to selectively split a fuel flow through said inlet into a burn flow through said thru flow port and a filtered flow thru said frusto-conical wash filter and filtered flow port, and wherein said conical gap and, said at least one deltaP window provides a differential pressure between an outside of said wash velocity control cone and an inside of said wash velocity control cone.
  • 2. The variable wash flow filter assembly as recited in claim 1, wherein said at least one filtered flow port is transverse to said longitudinal axis of said housing.
  • 3. The variable wash flow filter assembly as recited in claim 1, wherein said at least one thru flow port is transverse to said longitudinal axis of said housing.
  • 4. The variable wash flow filter assembly as recited in claim 1, further comprising a bias member within said wash velocity control cone to bias said wash velocity control cone relative to said housing.
  • 5. The variable wash flow filter assembly as recited in claim 1, wherein said conical gap is defined around said longitudinal axis.
  • 6. The variable wash flow filter assembly as recited in claim 1, wherein said guide is a cylindrical member with said at least one activation deltaP window.
  • 7. The variable wash flow filter assembly as recited in claim 1, wherein said wash velocity control cone is movable at least partially into said guide along said longitudinal axis at said maximum position.
  • 8. The variable wash flow filter assembly as recited in claim 1, further comprising a spring seat mounted to said guide to support a bias member to bias said wash velocity control cone.
  • 9. The variable wash flow filter assembly as recited in claim 1, wherein flow through the deltaP window controls cone position.
  • 10. The variable wash flow filter assembly as recited in claim 9, wherein the deltaP window is configured to optimize deltaP for various flow conditions to control cone position.
  • 11. A variable wash flow filter assembly comprising: a housing which defines an inlet along a longitudinal axis, at least one filtered flow port, and at least one thru flow port;a frusto-conical wash filter axially fixed within said housing adjacent to said at least one filtered flow port;a wash velocity control cone movable between a minimal position and a maximum position relative to said axially fixed wash filter; anda guide operable to guide said wash velocity control cone along said longitudinal axis between said minimal position and said maximum position, said guide defines at least one activation deltaP window downstream of a conical gap between said wash velocity control cone and said frusto-conical wash filter, the fuel flow through said conical gap and said at least one activation deltaP window operable to position said wash velocity control cone between said minimal position and said maximum position to selectively split a fuel flow through said inlet into a burn flow through said thru flow port and a filtered flow thru said frusto-conical wash filter and filtered flow port, and wherein said at least one activation deltaP window is operable to provide a net positive opening force to said wash velocity control cone.
  • 12. A method of filtering a fuel flow comprising: positioning an axially movable wash velocity control cone relative to an axially fixed wash filter and an axially fixed guide with at least one activation deltaP window downstream of a conical gap between the axially movable wash velocity control cone and the wash filter, the wash velocity control cone movable between a minimal position and a maximum position to split a fuel flow into a burn flow through the conical gap and the at least one activation deltaP window, and a filtered flow through the axially fixed wash filter, the fuel flow through the conical gap and the at least one activation deltaP window operable to position the wash velocity control cone between the minimal position and said maximum position, the burn flow operable as a wash flow to carry away contaminate trapped by the wash filter, and including contouring the at least one deltaP window to provide a net positive opening force to the wash velocity control cone.
  • 13. The method as recited in claim 12, further comprising: mounting the variable wash flow filter assembly to an outlet of a fuel pump.
  • 14. The method as recited in claim 12, further comprising: stroking the wash velocity control cone against a bias member to settle at a position to maintain the wash velocity within a desired range.
  • 15. The method as recited in claim 12, further comprising biasing the wash velocity control cone.
  • 16. The method as recited in claim 12, wherein axial movement of the wash velocity control cone varies the conical gap.
  • 17. The method as recited in claim 12, wherein axial movement of the wash velocity control cone selectively changes a flow passage for the burn flow through the deltaP window.
  • 18. The method as recited in claim 12, wherein flow through the deltaP window controls cone position.
  • 19. The method as recited in claim 18, wherein the deltaP window is configured to optimize deltaP for various flow conditions to control cone position.
REFERENCE TO RELATED APPLICATIONS

The present invention is a continuation of U. S. patent application Ser. No 12/146562, filed Jun. 26, 2008, now U.S. Pat. No. 8,029,664.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under N00019-02-C-3003 awarded by The United States Air Force. The Government has certain rights in this invention.

US Referenced Citations (47)
Number Name Date Kind
383901 Neu Jun 1888 A
686942 Hegarat Nov 1901 A
1518894 Bliss Dec 1924 A
2969808 Horlacher Jan 1961 A
3039988 Trinkler Jun 1962 A
3109809 Verrando, Jr. Nov 1963 A
3193102 Simister et al. Jul 1965 A
3422956 Hadden Jan 1969 A
3622004 Meyer Nov 1971 A
3942327 Noe Mar 1976 A
3967533 Tyler Jul 1976 A
4011891 Knutson et al. Mar 1977 A
4033233 Toi Jul 1977 A
4177713 Lewis et al. Dec 1979 A
4335645 Leonard Jun 1982 A
4365770 Mard et al. Dec 1982 A
4383647 Woodruff et al. May 1983 A
4450753 Basrai et al. May 1984 A
4505108 Woodruff et al. Mar 1985 A
4545198 Yoshida Oct 1985 A
4807517 Daeschner Feb 1989 A
5014667 Meyer May 1991 A
5179888 Schendel et al. Jan 1993 A
5209058 Sparks et al. May 1993 A
5346360 Cooper Sep 1994 A
5735122 Gibbons Apr 1998 A
5735503 Hietkamp Apr 1998 A
5899064 Cheung May 1999 A
5938124 Lowi, Jr. Aug 1999 A
5997431 Vukovich et al. Dec 1999 A
6142416 Markstein et al. Nov 2000 A
6402487 Clements et al. Jun 2002 B1
6655151 Mahoney et al. Dec 2003 B2
6751942 Mahoney et al. Jun 2004 B2
6851929 Goldberg Feb 2005 B2
6863704 Pillion et al. Mar 2005 B2
6886665 Parsons et al. May 2005 B2
6955113 Demers Oct 2005 B2
6957569 Napier et al. Oct 2005 B1
6981359 Wernberg et al. Jan 2006 B2
7096658 Wernberg et al. Aug 2006 B2
7174273 Goldberg Feb 2007 B2
7216487 Parsons May 2007 B2
7237535 Eick et al. Jul 2007 B2
7273507 Schwalm Sep 2007 B2
7300494 Schwalm et al. Nov 2007 B2
20110036781 Clements et al. Feb 2011 A1
Foreign Referenced Citations (3)
Number Date Country
1054161 Nov 2000 EP
1445680 Aug 1976 GB
2008063869 May 2008 WO
Related Publications (1)
Number Date Country
20120000844 A1 Jan 2012 US
Continuations (1)
Number Date Country
Parent 12146562 Jun 2008 US
Child 13228606 US